
Improving Conflict Analysis in MIP Solvers by
Pseudo-Boolean Reasoning
Gioni Mexi #Ñ

Zuse Institute Berlin, Germany

Timo Berthold #Ñ

Fair Isaac Deutschland GmbH, Berlin, Germany
TU Berlin, Germany

Ambros Gleixner # Ñ

HTW Berlin, Germany
Zuse Institute Berlin, Germany

Jakob Nordström # Ñ

University of Copenhagen, Denmark
Lund University, Sweden

Abstract
Conflict analysis has been successfully generalized from Boolean satisfiability (SAT) solving to
mixed integer programming (MIP) solvers, but although MIP solvers operate with general linear
inequalities, the conflict analysis in MIP has been limited to reasoning with the more restricted
class of clausal constraint. This is in contrast to how conflict analysis is performed in so-called
pseudo-Boolean solving, where solvers can reason directly with 0–1 integer linear inequalities rather
than with clausal constraints extracted from such inequalities.

In this work, we investigate how pseudo-Boolean conflict analysis can be integrated in MIP solving,
focusing on 0–1 integer linear programs (0–1 ILPs). Phrased in MIP terminology, conflict analysis
can be understood as a sequence of linear combinations and cuts. We leverage this perspective
to design a new conflict analysis algorithm based on mixed integer rounding (MIR) cuts, which
theoretically dominates the state-of-the-art division-based method in pseudo-Boolean solving.

We also report results from a first proof-of-concept implementation of different pseudo-Boolean
conflict analysis methods in the open-source MIP solver SCIP. When evaluated on a large and diverse
set of 0–1 ILP instances from MIPLIB 2017, our new MIR-based conflict analysis outperforms both
previous pseudo-Boolean methods and the clause-based method used in MIP. Our conclusion is that
pseudo-Boolean conflict analysis in MIP is a promising research direction that merits further study,
and that it might also make sense to investigate the use of such conflict analysis to generate stronger
no-goods in constraint programming.

2012 ACM Subject Classification Theory of computation → Discrete optimization; Mathematics of
computing → Solvers

Keywords and phrases Integer programming, pseudo-Boolean solving, conflict analysis, cutting
planes proof system, mixed integer rounding, division, saturation

Digital Object Identifier 10.4230/LIPIcs.CP.2023.27

Funding The work for this article has been conducted within the Research Campus Modal funded
by the German Federal Ministry of Education and Research (BMBF grant numbers 05M14ZAM,
05M20ZBM).
Jakob Nordström: supported by the Swedish Research Council grant 2016-00782 and the Independent
Research Fund Denmark grant 9040-00389B.

Acknowledgements Part of this work was carried out while some of the authors participated in
the extended reunion for the program Satisfiability: Theory, Practice, and Beyond at the Simons
Institute for the Theory of Computing at UC Berkeley in the spring of 2023. This work has also
benefited greatly from discussions during the Dagstuhl Seminar 22411 Theory and Practice of SAT
and Combinatorial Solving.

© Gioni Mexi, Timo Berthold, Ambros Gleixner, and Jakob Nordström;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 27; pp. 27:1–27:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mexi@zib.de
https://www.zib.de/members/mexi
https://orcid.org/0000-0003-0964-9802
mailto:timoberthold@fico.com
https://www.zib.de/berthold
https://orcid.org/0000-0002-6320-8154
mailto:gleixner@htw-berlin.de
https://www.zib.de/gleixner/
https://orcid.org/0000-0003-0391-5903
mailto:jn@di.ku.dk
http://www.jakobnordstrom.se/
https://orcid.org/0000-0002-2700-4285
https://doi.org/10.4230/LIPIcs.CP.2023.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


27:2 Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

1 Introduction

The area of Boolean satisfiability (SAT) solving has witnessed dramatic performance improve-
ments over the last couple of decades, and several techniques from SAT have also inspired
developments for other combinatorial optimization paradigms such as SAT-based and (linear)
pseudo-Boolean optimization, constraint programming, and mixed integer programming. In
particular, conflict analysis as introduced in the works on conflict-driven clause learning
(CDCL) [3, 38, 40] ushering in the modern SAT solving revolution has been picked up and
generalized in different ways to these more general settings. Interestingly, precursors of this
version of conflict analysis and nonchronological backtracking can be traced back all the
way to early work in the AI community [47], and related ideas have been used in constraint
programming for decades [24, 31]. Our focus in this paper is on conflict analysis in mixed
integer programming and pseudo-Boolean optimization, which we proceed to discuss next.

1.1 Mixed Integer Programming and Conflict Analysis
The core method of mixed integer programming (MIP) is that a linear programming (LP)
relaxation of the problem is fed to an LP solver. If the LP solver finds a solution that assigns
real values to integral variables, then either additional cut constraints can be generated
that eliminate such solutions, or the problem can be split into subproblems by branching
on integer variables, generating new nodes in the search tree. During the solving process
infeasible nodes in the search tree are pruned. Unlike in SAT, there can be different reasons
for backtracking due to infeasibility of the LP relaxation, node presolving (propagation),
or to the current objective value of the relaxed problem being worse than the best solution
found so far (branch-and-bound). MIP solvers employ a multitude of further techniques such
as symmetry detection, disjoint subtree detection, restarts, et cetera. For a comprehensive
description of MIP solving we refer the reader to, e.g., [2].

The use of SAT techniques in MIP solvers has been a fruitful direction of research over
the last decades. Specifically, CDCL conflict analysis has proven to be a useful tool to
enhance the performance of MIP solvers by learning constraints from infeasibilities detected
by propagation or from the LP relaxation [1, 44, 48]. However, SAT and MIP solvers differ
fundamentally in how they explore the search space, in that SAT solvers search depth-first,
maintaining only the current state of the search, whereas in MIP the search tree is generated
in a “best-first” manner based on careful analysis on search statistics such as dual bounds
and integrality of LP solutions to subproblems. These differences make it harder for MIP
solvers to profit from conflict analysis, and so in contrast to SAT solving, for which this
technique is absolutely crucial, in MIP solving it plays more of a supplemental if still highly
valuable role.

Although the setting is different, the graph-based conflict analysis [1] used to learn from
infeasibilities in MIP is very similar to the classic SAT approach. First, a partial assignment
is extracted that consists of branching decisions and implications that led to the infeasibility.
If the LP relaxation is infeasible, the information which bound changes led to infeasibility is
gathered from the non-zero duals of the LP. Next, a directed acyclic graph is constructed
that encodes information about the conflict, in that source nodes correspond to branching
decisions, non-source nodes encode implications, and the sink node represents the infeasibility.
Each cut in this graph that separates the source nodes from the sink is a valid constraint. It is
important to note that all implications correspond to clausal constraints, and so this conflict
analysis operates not on the linear constraints of the problem but on clauses extracted from
these linear constraints. (There are also methods that can learn general linear constraints



G. Mexi, T. Berthold, A. Gleixner, and J. Nordström 27:3

from infeasibilities, one notable example being dual-proof analysis [48], but this technique is
limited to conflicts arising from infeasibility of the LP relaxation and does not analyze or
strengthen the partial assignment that led to infeasibility.)

1.2 Pseudo-Boolean Solving and Conflict Analysis
Pseudo-Boolean (PB) solving is another approach specific to integer linear programs with
only binary variables, or 0–1 ILPs, which are referred to as (linear) pseudo-Boolean formulas
in the PB solving literature. While MIP solvers find real-valued solutions and try to push such
solutions closer and closer to integrality, PB solvers follow the SAT approach of considering
only Boolean assignments and trying to extend partial assignments to more and more
variables without violating any constraints. Just as in SAT, this search is performed in a
depth-first manner.

Some PB solvers stick very closely to SAT in that they immediately translate the 0–1 ILP
into conjunctive normal form (CNF) using auxiliary variables and then run a standard CDCL
SAT solver [21, 39, 43]. Another approach, which is what is of interest in the context of this
work, is to extend the solvers to reason natively with 0-1 linear inequalities [12, 46, 34, 23].
Such conflict-driven pseudo-Boolean solvers have the potential to run exponentially faster
than CDCL-based solvers, since their conflict analysis method is exponentially stronger than
that used in CDCL SAT solvers.

Since it is crucial for our work to understand the differences between conflict analysis in
MIP and PB solvers, let us try to provide a somewhat simplified exposition of PB solving
in a language that is meant to convey a MIP perspective (and where what follows below is
heavily indebted to [19]). During the search phase, the pseudo-Boolean solver always first
tries to extend the current partial solution with any variable assignments that are propagated
by some linear inequality. When no further propagations are possible, the solver chooses
some unassigned variable and makes a decision to assign this variable 0 or 1, after which it
again turns to propagation. This cycle of decisions and propagations repeats until either a
satisfying assignment is found or some 0–1 linear inequality C is violated. In the latter case,
the solver switches to the conflict analysis phase, which works as follows:
1. The linear inequality R responsible for propagating the last variable x in C to the “wrong

value” from the point of view of C is identified; this inequality R is referred to as the
reason constraint for x.

2. A division or saturation rule is applied to R to generate a modified inequality R∗ that
propagates x tightly to its assigned value even when considered over the reals.

3. A new linear constraint D is computed as the smallest integer linear combination of R∗

and C for which the variable x cancels and is eliminated. It is not too hard to show that
it follows from the description above that this constraint D is violated by the current
partial assignment of the solver with the value of x removed, and we can set C := D and
go to step 1 again.

This continues until a termination criterion analogous to the unique implication point (UIP)
notion used in SAT solving leads to D being declared as the learned constraint. At this
point, the solver undoes further assignments in reverse chronological order until D is no
longer violated, and then switches back to the search phase. We refer the reader to the
chapter [11] for a more detailed description of conflict-driven pseudo-Boolean solving (and to
the handbook [8] for an in-depth treatment of SAT and related topics in general).

In contrast to MIP conflict analysis, the algorithm described above is not phrased in
terms of the conflict graph, but focuses on the syntactic resolution method [9, 17, 16, 42]
employed in CDCL conflict analysis and harnesses the observation by Hooker [29, 30] that

CP 2023



27:4 Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

resolution can be understood as a cut rule and extended to 0–1 integer linear inequalities.
The conflict-graph-based analysis in MIP does not operate on the reason constraints R as
described above, but instead on disjunctive clauses extracted from these constraints. It is
not hard to prove formally (appealing to [4, 14, 28]) that this incurs an exponential loss in
reasoning power compared to performing derivations on the linear constraints themselves.

In practice, however, it seems fair to say that current pseudo-Boolean solvers do not
quite deliver on this promise of exponential gains in performance. Although there are
specific problem domains where PB solvers outperform even commercial MIP solvers [35, 45],
evaluations over larger sets of benchmarks [5, 19, 20] have demonstrated that the open-source
MIP solver SCIP [7] tends to be clearly more effective in solving pseudo-Boolean optimization
problems, and is also quite competitive for decision problems. This is especially so for some
decision problems that are in some sense close to LP-infeasibility – such problems are almost
trivial for MIP solvers, but can be extremely challenging for pseudo-Boolean solvers [22].

1.3 Questions Studied in This Work and Our Contributions
Since mixed integer programming solvers and pseudo-Boolean solvers approach 0–1 integer
linear problems from quite different angles, and seem to have complementary performance
profiles, it is natural to ask whether techniques from one of the paradigms can be used to
improve solvers based on the other paradigm.

Some MIP-inspired approaches have been integrated with success in SAT and PB solvers,
perhaps most recently in [19], where the PB solver RoundingSAT [23] makes careful use
of the LP solver SoPlex [7] to detect infeasibility of LP relaxations and generate cut
constraints (though this paper also raises many questions that would seem to merit further
study). However, in the other direction we are not aware of any work trying to harness
state-of-the-art techniques from pseudo-Boolean solving to improve the performance of MIP
solvers.

In this work, we consider how the clausal conflict analysis in MIP solvers can be replaced
by pseudo-Boolean reasoning, focusing on 0–1 integer linear programs. A key difference
between the clausal and pseudo-Boolean conflict analysis methods is that in the latter
algorithm the linear reason constraint R propagating a variable assignment might need
to be modified, or reduced, to another constraint R∗ that propagates tightly also over the
reals (which is already guaranteed to hold if R is a clausal constraint). Viewed from a MIP
perspective, this reduction step deriving R∗ from R can be seen to be an application of one of
two specific cut rules, where saturation-based reduction as in [34] corresponds to coefficient
tightening and division-based reduction as in [23] uses Chvátal-Gomory cuts.

This observation raises the question of whether more general cuts could also used to
obtain other, and potentially more powerful, reduction methods for pseudo-Boolean conflict
analysis. The answer turns out to be yes, and, in particular, we introduce a new reduction
algorithm utilizing mixed integer rounding (MIR) cuts [27, 37]. A theoretical comparison of
the MIR-based reduction rule with the reduction methods currently used in PB solvers show
that MIR-based reduction dominates the division-based method that is considered to be
state of the art in pseudo-Boolean solving, while saturation-based reduction and MIR-based
reduction appear to be incomparable.

We implement pseudo-Boolean conflict analysis for 0–1 ILPs in the MIP solver SCIP,
including all three reduction methods discussed above, and compare these different flavours
of PB conflict analysis with each other as well as with clausal MIP conflict analysis on a large
benchmark set consisting of pure 0–1 ILP instances from MIPLIB 2017. We find that the
MIR-based pseudo-Boolean conflict analysis has the best performance, beating not only the



G. Mexi, T. Berthold, A. Gleixner, and J. Nordström 27:5

conflict analysis methods in the PB literature but also the standard clausal conflict analysis
in SCIP. Interestingly, the new method is better measured not only in terms of number of
nodes in the search tree, but also in terms of the number of instances solved, even though
we only provide a proof-of-concept implementation lacking many of the optimizations that
would be included in a full integration of this method into the SCIP codebase. Although
our experimental data cannot provide conclusive evidence as to what causes this improved
performance, we observe that the constraints learned from pseudo-Boolean conflict analysis
seem more useful in that they take part more actively in propagations than constraints
obtained by clausal conflict analysis.

1.4 Organization of This Paper
After reviewing preliminaries in Section 2, we give a detailed description of clausal and
pseudo-Boolean conflict analysis for 0–1 integer linear programs in Section 3, including a
discussion of the reduction methods found in the PB literature and our new version using
mixed integer rounding cuts, and study how the different reduction rules compare in theory.
In Section 4 we present our experimental results. We conclude the paper in Section 5 by
summarizing our work and discussing direction for future research.

2 Preliminaries and Notation

Let n ∈ Z>0, and N := [1, . . . , n]. We let xi denote Boolean (i.e., {0, 1}-valued) variables
and ℓi denote literals, which can be either xi or its negation xi = 1− xi. A pseudo-Boolean
constraint is a 0–1 integer linear inequality∑

i∈N
aiℓi ≥ b , (1)

where we can assume without loss of generality that ai ∈ Z≥0 for all i ∈ N and b ∈
Z≥0 (so-called normalized form). We can convert “≤”-constraints with 0–1 variables to
“≥”-constraints by multiplying the constraint by −1 and normalizing, i.e., replacing the
variables by literals. Moreover, equalities “=” can be viewed as syntactic sugar for two
opposing inequalities, which can also be transformed into normalized pseudo-Boolean format.
In particular, every pure 0–1 integer linear program can be transformed to a normalized
pseudo-Boolean representation. Note that in Section 3 we develop our theory and algorithms
using normalized PB constraints for simplicity of exposition. However, in our actual imple-
mentation and experiments (described in Section 4), we directly operate on general linear
constraints.

A (partial) assignment ρ is a (partial) map from variables to {0, 1}, which is extended
to literals by respecting the meaning of negation. We call a literal ℓi falsified or false if
ρ(ℓi) = 0 and satisfied or true if ρ(ℓi) = 1. If ρ is undefined for a literal, we call the literal
unassigned or free. A constraint is satisfied under some partial assignment ρ if the respective
inequality holds, independently of which values the unassigned literals take, and is falsified if
no assignment to the unassigned literals can make the inequality true.

The slack of a PB constraint C :
∑

i∈N aiℓi ≥ b under a partial assignment ρ is defined
as slack(C, ρ) :=

∑
{i∈N :ρ(i)̸=0} ai − b. With this definition, C is falsified under ρ if and only

if slack(C, ρ) < 0. For example the constraint C : 2x1 + 2x2 + 3x3 ≥ 4 is falsified under
the partial assignment ρ = {x1 = 1, x2 = 0} since slack(C, ρ) = −1 < 0. For a non-falsified
constraint C and an unassigned literal ℓi with coefficient ai, the constraint propagates ℓi

if and only if slack(C, ρ) < ai. For instance, the same constraint C : 2x1 + 2x2 + 3x3 ≥ 4

CP 2023



27:6 Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

propagates both variables x2 and x3 to 1 under the partial assignment ρ = {x1 = 1} since
slack(C, ρ) = 1 is strictly smaller than the coefficients of each of the variables. A constraint
propagates the assignment of a free variable tightly if the slack under the current partial
assignment is 0. For any two pseudo-Boolean constraints C and C ′ and partial assignment ρ

it holds that the slack is subadditive, i.e., slack(C + C ′, ρ) ≤ slack(C, ρ) + slack(C ′, ρ). The
decision level of a literal ℓi under a partial assignment ρ is the number of decisions prior to
the fixing of ℓi. Note that the first fixing in every decision level is a decision literal.

3 Conflict Analysis Algorithms

For simplicity, in this section we present all algorithms in a pseudo-Boolean framework, where
all coefficients and constants are integral, and the proofs of correctness that we provide also
make crucial use of this fact. It is important to note that this is not the case in the actual
implementation in SCIP, which operates with real-valued coefficients and constants. In fact,
one of the challenges in implementing pseudo-Boolean conflict analysis in a MIP framework is
that careful thought is required to rephrase the algorithms in such a way that they can deal
with real-valued data but are still correct. Next, we describe the details of conflict analysis
algorithms used in PB solvers and the different techniques that we consider in this paper.

3.1 Clausal Conflict Analysis
To explain the idea of conflict analysis, we first consider the case where all constraints are
clauses. Conflict analysis begins at the stage where a conflict clause Cconfl is falsified by
the current partial assignment ρ. Let ℓr be the literal in Cconfl that was last propagated to
false, and let Creason be the reason clause in chronological order that is responsible for the
propagation, i.e., we have Cconfl = C ′ ∨ ℓr and Creason = C ′′ ∨ ℓ̄r. Using the resolution rule,
we can derive the so-called resolvent C ′ ∨ C ′′ as a new learned clause Clearn.

Note that, even after removing ℓr from the partial assignment ρ, both C ′ and C ′′ remain
falsified: C ′ because Cconfl = C ′ ∨ ℓr and ℓr were false, and C ′′ because Creason = C ′′ ∨ ℓ̄r

propagated. This is the key invariant of the algorithm: At any point during the algorithm
the resolvent is falsified by the remaining partial assignment ρ.

Hence, we can replace the conflict clause by the resolvent and continue this process. At
each step either a propagating literal is removed from ρ or the learned clause is empty (at
which point unsatisfiability is proven) or the last fixed literal is a decision literal. In the third
case, we have reached a first unique implication point (FUIP) and conflict analysis terminates,
with the final resolvent being the learned clause Clearn. With Clearn added, propagation on
the previous decision level will prevent the last infeasible decisions to happen as the search
continues.

It is straightforward to apply this algorithm to problems with 0–1 linear constraints. Sup-
pose

∑
i∈N aiℓi ≥ b is the initial conflict constraint falsified under ρ, then

∨
i:ai>0∧ρ(ℓi)=0 ℓj

can be used as initial conflict clause. Analogously, we can extract at each step a reason clause
from the linear constraint that propagated the last literal and perform resolution. After
terminating at an FUIP, the learned clause can be added as linear constraint to the solver.

3.2 PB Conflict Analysis
As in the clausal version, the main idea of PB conflict analysis is also to find a new constraint
that explains the infeasibility of the current subproblem under a falsifying partial assignment.
Algorithm 1 shows the base algorithm for all variants of PB conflict analysis considered in this



G. Mexi, T. Berthold, A. Gleixner, and J. Nordström 27:7

paper, using the first unique implication point (FUIP) learning scheme. It is initialized with
a falsifying partial assignment ρ and a conflicting constraint Cconfl under ρ. First, the learned
conflict constraint Clearn is set equal to the conflict constraint Cconfl. In each iteration, we
extract the latest literal ℓr from ρ. If the literal assignment was due to propagation of a
constraint and the negated literal ℓ̄r occurs in Cconfl, then we extract the reason constraint
Creason that propagated ℓr. In line 6 we “reduce” the reason constraint such that the resolvent
of Clearn and the reduced reason Creason (Line 7) that cancel the last literal ℓr is still falsified
under the remaining partial assignment ρ. The conflict constraint is set to the resolvent
and we continue until we reach an FUIP (Clearn is asserting) or we prove Clearn makes the
problem infeasible. We have reached an FUIP if Clearn would propagate some literal after
removing at least all literal assignments in the current decision level from ρ. We have shown
that the problem is infeasible if Clearn is falsified under an empty partial assignment ρ. At
this point, the learned constraint can be added to the constraint database of our problem to
prevent the solver from exploring the same search space again.

Algorithm 1 Pseudo-Boolean Conflict Analysis Algorithm.

Input : conflict constraint Cconfl, falsifying partial assignment ρ

Output : learned conflict constraint Clearn
1 Clearn ← Cconfl
2 while Clearn not asserting and Clearn ̸=⊥ do
3 ℓr ← literal last assigned on ρ

4 if ℓr propagated and ℓ̄r occurs in Clearn then
5 Creason ← reason(ℓr, ρ)
6 Creason ← reduce(Creason, Clearn, ℓr, ρ)
7 Clearn ← resolve(Clearn, Creason, ℓr)
8 ρ← ρ \ {ℓr}
9 return Clearn

The key invariant of Algorithm 1 is that in each iteration the resolvent Clearn remains
falsified. In the clausal version this holds even without the reduction step in line 6. However,
for general linear constraints this is not the case, as shown by the next example.

▶ Example 1. Consider the two PB constraints Creason = x1 + x2 + 2x3 ≥ 2 and Cconfl =
x1 + 2x3 + x4 + x5 ≥ 3 and the partial assignment ρ = {x1 = 0, x3 = 1} where x1 = 0 is
a decision, and x3 = 1 is propagated by Creason. Under ρ the constraint Cconfl is falsified.
Applying generalized resolution to cancel x3 yields the constraint 2x1 + x2 + x4 + x5 ≥ 3
which is not falsified under ρ.

In the following sections, we present three different reduction techniques for Algorithm 1
that operate directly on PB constraints. The main idea is to apply valid operations on the
reason constraint to reduce the slack and ensure that the resolvent will have negative slack.
The two main ingredients of the reduction techniques are weakening and cutting planes and
are applied to the reason constraint until the invariant is fulfilled.

Weakening a literal in a PB constraint simply sets it to 1. For example, weakening a
constraint C : x1 + x2 + 2x3 ≥ 2 on x1 yields x2 + 2x3 ≥ 1. Weakening is a valid operation
since it simply adds a multiple of the valid bound constraint x1 ≥ 0 to C. Note that
weakening entails a loss of information. However, as we will see, it is a necessary operation
to reduce the slack of the reason constraint. Note that whenever weakening is applied on
non-falsified literal, it does not change the slack of the constraint. See Section 3.7 for more
details on weakening.

CP 2023



27:8 Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

Our main focus in this paper, however, is the second necessary ingredient of the reduction
algorithm: cutting planes (cuts). Cuts are applied to the “weakened” version of the reason
constraint in order to reduce its slack. We first present two well-documented cuts from
existing literature, namely Saturation (Section 3.3) and Division (Section 3.4). Both ensure
the reduction of the slack of the reason constraint to 0 at least after weakening all non-falsified
literals in the original reason constraint. In Section 3.5, we introduce a new cut based on
the Mixed Integer Rounding (MIR) procedure and prove that it has the same property. In
Section 3.6 we show that the reduction algorithm using MIR always returns an equally strong
or stronger reason constraint than the reduction using Division.

3.3 Saturation-based Reduction

First, we present the Saturation cut. Then, we provide details about the Saturation-based
Reduction algorithm and demonstrate how the reduction ensures that the key invariant of
conflict analysis holds.

▶ Definition 2 (Saturation Cut). Let C :
∑

i∈N aiℓi ≥ b. The Saturation Cut of C is given
by the constraint∑

i∈N
min{ai, b}ℓi ≥ b.

Saturation is a valid cut known as coefficient tightening cut in the MIP literature [10] and
does not entail a loss of information. Algorithm 2 is used to reduce the reason constraint
Creason before applying generalized resolution. Similar to the implementation in [12], in each
iteration, the algorithm picks a non-falsified literal in the reason constraint different from the
literal we are resolving on and weakens it. Then it applies the Saturation cut to the resulting
constraint. The algorithm terminates when the slack of the resolvent becomes negative.

Algorithm 2 Saturation-based Reduction Algorithm.

Input : conflict constraint Cconfl, reason constraint Creason,
literal to resolve ℓr, partial assignment ρ

Output : reduced reason Creason
1 while slack((resolve(Creason, Cconfl, ℓr)), ρ) ≥ 0 do
2 ℓj ← non falsified literal in Creason\{ℓr}
3 Creason ← weaken(Creason, ℓj)
4 Creason ← saturate(Creason)
5 return Creason

For completeness, we prove the following well-known fact that demonstrates that the
slack of the reason constraint will be reduced to 0 at the latest after weakening the last
non-falsified literal and applying the Saturation cut. Since the slack is subadditive, the
resolvent’s slack becomes negative and the resolvent is thus falsified.

▶ Lemma 3. Let ρ be a partial assignment, and Creason :
∑

i∈N aiℓi ≥ b a constraint
propagating a literal ℓr to 1. Further, assume that slack(Creason, ρ) > 0. Then, after
weakening all non-falsified literals in Creason (except for ℓr) and applying Saturation on
Creason, the slack of the reduced reason constraint is 0.



G. Mexi, T. Berthold, A. Gleixner, and J. Nordström 27:9

Proof. First, we rewrite the constraint Creason as∑
j:ρ(j)=0

ajℓj +
∑

i ̸=r:ρ(i)̸=0

aiℓi + arℓr ≥ b.

Since slack(Creason, ρ) :=
∑

i ̸=r:ρ(i) ̸=0
ai + ar − b > 0, it holds that

ar > b−
∑

i ̸=r:ρ(i)̸=0

ai. (2)

After weakening all literals from {i ̸= r : ρ(i) ̸= 0} the constraint Creason becomes∑
j:ρ(j)=0

ajℓj + arℓr ≥ b̃ := b−
∑

i̸=r:ρ(i)̸=0

ai. (3)

Applying Saturation on (3) sets ar to b̃ because of (2). Therefore the slack of the reduced
reason constraint becomes b̃− b̃ = 0. ◀

3.4 Division-based Reduction
A very competitive alternative to Saturation in the reduction algorithm is based on Division
cuts. Division is also a valid cut known as Chvátal-Gomory cut in the MIP literature [13].

▶ Definition 4 (Division Cut). Let C :
∑

i∈N aiℓi ≥ b. The Division Cut of C with divisor
d ∈ Z>0 is given by the constraint∑

i∈N

⌈ai

d

⌉
ℓi ≥

⌈
b

d

⌉
.

To see why this procedure is valid, we can think of it as three steps: dividing by d maintains
the validity of the constraint; rounding up coefficients on the left-hand side relaxes the
constraint and is hence valid; the validity of rounding up the right-hand side follows from
the integrality of the left-hand side coefficients and literals.

In the Division-based reduction algorithm, the divisor d used is the coefficient of the
literal ℓr we are resolving on. As proven in [23], it suffices to weaken non-falsified variables
with a coefficient that is not a multiple of ar, i.e., from the index set W := {i ∈ N : ρ(i) ̸=
0 and ai ∤ ar}. After weakening all literals in W and applying Division on Creason, the slack
of the reduced reason constraint is 0, which for completeness we include in Lemma 6 below.

3.5 MIR-based Reduction
Next, we define a new cut for the reduction algorithm based on the Mixed Integer Rounding
formula [37], which is a generalization of Gomory’s mixed integer cuts [27].

▶ Definition 5 (Mixed Integer Rounding Cut). Let C :
∑

i∈N aiℓi ≥ b. The Mixed Integer
Rounding (MIR) Cut of C with divisor d ∈ Z>0 is given by the constraint∑

i∈I1

⌈ai

d

⌉
ℓi +

∑
i∈I2

(⌊ai

d

⌋
+ f(ai/d)

f(b/d)

)
ℓi ≥

⌈
b

d

⌉
, (4)

where

I1 = {i ∈ N : f(ai/d) ≥ f(b/d) or f(ai/d) ∈ Z},

CP 2023



27:10 Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

I2 = {i′ ∈ N : f(ai′/d) < f(b/d) and f(ai′/d) /∈ Z},

and f(·) = · − ⌊·⌋. To obtain a normalized version of the MIR cut, we multiply both sides of
the constraint by (b mod d).

The proof that applying MIR to a constraint is a valid procedure can be found in [37]. Similar
to the Division-based reduction, it suffices to weaken non-falsified variables with a coefficient
that is not a multiple of ar before applying MIR in order to reduce the slack of the reason
constraint to at most 0. This is shown in the following lemma.

▶ Lemma 6. Let ρ be a partial assignment and Creason :
∑

i∈N aiℓi ≥ b a constraint
propagating a literal ℓr to 1. Then, after weakening all non-falsified literal in W := {i ∈ N :
ρ(i) ̸= 0 and ar ∤ ai} and applying Division or MIR on Creason with d = ar, the slack of the
reduced reason is at most 0.

Proof. After weakening all literals in W , the constraint Creason becomes

arℓr +
∑

j∈N \W

ajℓj ≥ b̃ := b−
∑
i∈W

ai. (5)

Its slack is

slack(Creason, ρ) = ar +
∑

j∈N \W :
ρ(j)̸=0

aj − b̃ = ar +
∑

j∈N :
ρ(j) ̸=0,ar|aj

aj − b̃.

Since weakening does not affect the slack, we have slack(Creason, ρ) < ar.
1. After applying the Division cut to (5) with d = ar, the slack becomes

slack(Creason, ρ) = 1 +
∑

j∈N :
ρ(j) ̸=0,ar|aj

⌈
aj

ar

⌉
−
⌈

b̃

ar

⌉
≤ 1 +

∑
j∈N :

ρ(j) ̸=0,ar|aj

aj

ar
− b̃

ar
<

ar

ar
= 1. (6)

Because Creason contains only integer coefficients after applying the division rule, its slack is
integer; hence, it must be at most 0.

2. Applying the MIR cut to (5) with d = ar results in the same slack as in (6). This is
because all left-hand side coefficients in the slack computation are divisible by d, hence they
fall into the index set I1 and are transformed the same way as by the Division cut. ◀

3.6 Dominance Relationships
In this section, we would like to discuss briefly known dominance relationships between the
different reduction techniques. The ultimate goal is to find a reduction technique that yields
the strongest possible reason constraint to use in the resolution step of conflict analysis. The
following lemma states the well-known fact that constraints from Saturation-based reduction
are always at least as strong as the resolvents created during clausal conflict analysis as
described in Section 3.1.

▶ Lemma 7. Let ρ be a partial assignment and Creason :
∑

i∈N aiℓi ≥ b be a PB constraint
which propagates literal ℓr to 1. Let C ′

reason and C ′′
reason be the constraints obtained by clausal

and Saturation-based reduction, respectively. Then C ′′
reason implies C ′

reason.

Proof. Under the current partial assignment ρ, the disjunctive clause reason is given by
ℓr

∨
j:ρ(ℓj)=0 ℓj , which can be linearized as

C ′
reason : ℓr +

∑
j : ρ(ℓj)=0

ℓj ≥ 1.



G. Mexi, T. Berthold, A. Gleixner, and J. Nordström 27:11

Now let W be the set of all non-falsified literals, except ℓr. After weakening all literals in W

and applying Saturation, we obtain the constraint

C ′′
reason : min{ar, b−

∑
i∈W

ai}ℓr +
∑

j:ρ(lj)=0

min{aj , b−
∑
i∈W

ai}ℓj ≥ b−
∑
i∈W

ai.

As in the proof of Lemma 3, it holds that min{ar, b−
∑

i∈W ai} = b−
∑

i∈W ai. Now, after
scaling C ′

reason by b−
∑

i∈W ai we see that C ′′
reason has the same right-hand side as C ′

reason,
but smaller or equal coefficients on the left-hand side. ◀

In [26] the authors show that using Division instead of Saturation can be exponentially
stronger, and that a single Saturation step can be simulated by an exponential number of
Division steps.

The dominance of MIR cuts over Chvátal-Gomory cuts is a well-known fact in the MIP
literature. The following lemma shows essentially the same result as in [15], but in the
context of conflict analysis for pseudo-Boolean problems.

▶ Lemma 8. Let ρ, Creason, ℓr be given as in Lemma 7. Let C ′
reason and C ′′

reason be the
constraints obtained by Division-based and MIR-based reduction, respectively. Then C ′′

reason
implies C ′

reason.

Proof. Let C ′
reason, C ′′

reason be constraints as in Definition 4 and 5, respectively, with divisor
d = ar. The constraints have the same right-hand side and the same coefficients for all
literals ℓi with i ∈ I1. For i ∈ I2 the coefficient of literal ℓi in C ′

reason is given by
⌈

ai

ar

⌉
and

in C ′′
reason by

⌊
ai

ar

⌋
+ f(ai/ar)

f(b/ar) . The coefficients of the literals ℓi in C ′
reason are always greater

than or equal to the coefficients in C ′′
reason, since by definition of the set I2 it holds that

f(ai/ar)/f(b/ar) < 1. Therefore C ′′
reason implies C ′

reason. ◀

As an example, consider the partial assignment ρ = {x1 = 0, x2 = 0, x3 = 1} and the
constraint Creason : 2x1 + 6x2 + 10x3 ≥ 8 which propagates variable x3 to 1. Then the
Division cut with divisor 10 is x1 + x2 + x3 ≥ 1. The MIR cut with the same divisior is
0.2
0.8 x1 + 0.6

0.8 x2 + x3 ≥ 1. Multiplying with 8 mod 10 = 8 gives the normalized MIR cut
2x1 + 6x2 + 8x3 ≥ 8. The normalized MIR cut is stronger than the Division cut, which can
be easily seen after scaling the Division cut by 8.

3.7 Practical Aspects of Weakening
While the evaluation of different weakening strategies is not the focus of this paper, we would
like to discuss briefly some practical aspects of weakening literals. In our implementation
we consider the following iterative weakening strategy: weaken free literals first followed by
implied literals. We stop as soon as the resolvent is falsified under the remaining partial
assignment. Intuitively, this order is motivated by the fact that free literals are not relevant
for the propagation of literals in the reason constraint and do not affect the falsification of
the conflict constraint.

However, the optimal order in which to weaken literals is not yet fully understood, and
remains an open research question. Possible approaches include weakening literals in order
of increasing or decreasing coefficient size. In [33] the authors conducted experiments with
various weakening techniques, including partial weakening of literals and applying weakening
on the conflict constraint, but the results did not yield a conclusive “best” weakening strategy.

A simple alternative is to weaken literals in a single sweep. For all three reduction
algorithms, we can weaken the entire candidate set of literals as stated in Lemma 3 and
Lemma 6 at once. Weakening literals all at once leads to a faster reduction algorithm

CP 2023



27:12 Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

since repeated slack computations are avoided and only one cut is applied in each iteration.
However, this may result in the constraint being less informative due to unnecessary weakening
of literals.

4 Experiments

It is well known in the SAT and PB communities that efficient conflict-driven search requires
substantial amounts of very careful engineering. In this first work, our focus has been on
importing and adapting the pseudo-Boolean conflict analysis to a MIP setting – which is a
nontrivial task in its own right – leaving further optimizations as future work.

All techniques from Section 3 have been implemented in the open source MIP solver
SCIP 8.0.3 [7] and we conducted extensive experiments to compare the different reduction
techniques in isolation. Obtaining accurate performance results for MIP solvers requires a
carefully designed experimental setup since even small changes to algorithms or the input
data can have a large impact on the behavior and the performance of the solver. This is
a well-known fact in the MIP literature known as performance variability [36]. To lessen
the effects of performance variability and obtain a fair comparison of the different reduction
techniques in the context of MIP solving, we use a fairly large and diverse testset of instances
and different permutations of each instance, see, e.g., [25]. Our experiments were carried out
on all pure 0–1 models from the MIPLIB 2017 collection [25]. After removing numerically
unstable models (with the tag “numerics”) our testset consists of 195 instances permuted by
5 different random seeds, giving a total of 975 measurements per run. For the remainder of
this paper, we will refer to the combination of a model and a permutation as an instance.
All experiments are conducted on a cluster with Intel Xeon Gold 6338 CPUs with a limit of
16GB of RAM.

It’s worth noting that SCIP, along with its underlying LP solver, is based on floating-point
arithmetic. Implementing a Pseudo-Boolean Optimization solver using a limited-precision LP-
based branch-and-cut framework comes with some technical challenges which are discussed,
e.g., in [5, 6]. From a theoretical standpoint, switching between reals and integers (rather
than between limited and arbitrary precision) is straightforward:

All the algorithms presented in Section 3 can be naturally extended to the case of 0–1
constraints with coefficients that are real numbers instead of nonnegative integers. The
Chvátal-Gomory procedure, MIR cutting, and coefficient tightening algorithm were originally
designed for MIP with real coefficients.

However, in practice, floating-point arithmetic may cause numerical issues due to imprecise
representations of real numbers and cancellation effects. To mitigate the risk of numeric
instability, many components of SCIP, such as MIR-cut generation, utilize double-double
precision arithmetic [18], which could be also employed in conflict analysis. Currently, for
constraints generated in conflict analysis, we use the following standard techniques:

We terminate conflict analysis if the coefficients of the constraints span too many orders
of magnitude. Specifically, if the quotient of the largest to smallest coefficient is large (in
our implementation, 106), we stop conflict analysis.

We remove variables from the conflict constraint if their coefficients are too small (in our
implementation, 10−9), thereby relaxing the constraint slightly.

The latter threshold is a common default value for the zero tolerance in MIP solvers, and
the former is a common modeling recommendation for MIP.



G. Mexi, T. Berthold, A. Gleixner, and J. Nordström 27:13

Table 1 Average percentage of true or unassigned literals that should be weakened to preserve
the conflict analysis invariant. This experiment is conducted on the test set with 3 random seeds.

Setting avg(%) literals weakened

Division 98.0
Saturation 99.7
MIR 97.3

4.1 Pre-Experiment: Weaken-All-At-Once vs. Weaken-Iteratively
As noted earlier, the weakening rule can be applied iteratively or in a single sweep. In
preliminary experiments, we noticed that in almost all cases, most unassigned or true literals
must be weakened to achieve the conflict analysis invariant that the resolved constraint
has a negative slack. Table 1 summarizes this finding for different reduction techniques:
Over all instances and all conflict analysis calls, an average between 97.3% (MIR) and
99.7% (Saturation) of all literals had to be weakened. Furthermore, for most instances both
weakening variants did not lead to different execution paths.

In this case, weakening all literals at once avoids the overhead of iterative use of cuts
and expensive slack computations. Consequently, we decided to always weaken all literals
at once and apply the cut rule on the reason side only once for the remaining experiments
presented in this paper.

4.2 Main Experiments: Comparing Different Reasoning Techniques
In the following, we compare all different reduction techniques from Section 3 to SCIP
without any conflict analysis.

In our comparisons, we report for each technique the number of optimally solved instances,
as well as the shifted geometric means of the number of processed nodes and the CPU time
in seconds. The shifted geometric mean, a standard performance aggregator in the MIP
literature, of the values t1, . . . , tn is defined as(

n∏
i=1

(ti + s)
)1/n

− s, (7)

for some s > 0. We set the shift s to 1 second for the CPU time and to 100 nodes for the
number of nodes. Our base of comparison is SCIP without conflict analysis (“No Conflicts”).
We report absolute values for the shifted means, and also quotients comparing them to our
base setting. A factor below 1 means that a setting was faster (or needed less nodes), and a
factor greater than 1 means that it was detrimental.

In Table 2 we report the results of our experiments. The table is split in four parts. We
show results for “all” instances, as well as for three subsets of instances: (i) instances that
are “affected” by conflict analysis, hence where the execution path of at least one setting
differs from the others, (ii) “ [100, limit] ” instances, which take at least 100 seconds to solve
to optimality or hit the time limit and (iii) “all-optimal”, which are instances solved by all
settings. Note that the number of nodes can only be fairly compared on the “all-optimal”
subset, since the number of nodes when hitting a time limit is hard to interpret and hard to
aggregate with the same statistics on instances that are solved to optimality.

The variant of SCIP with clausal conflict analysis is referred to as “Clausal-CA”. For
a fair comparison of the different strategies, we disabled the upgrading of constraints to
specialized types, i.e., all generated conflicts are treated as linear constraints, and further

CP 2023



27:14 Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

Table 2 Main results.

Setting solved time(s) # nodes time quot nodes quot

all(975) No Conflicts 394 656.75 784 1.0 1.0
Clausal-CA 405 603.55 682 0.92 0.87
Division 419 601.4 683 0.92 0.87
MIR 420 599.37 677 0.91 0.86
Saturation 418 599.76 692 0.91 0.88

affected(295) No Conflicts 259 160.46 1096 1.0 1.0
Clausal-CA 270 122.64 776 0.76 0.71
Division 284 119.24 707 0.74 0.65
MIR 285 118.29 700 0.74 0.64
Saturation 283 118.09 735 0.74 0.67

[100, limit](218) No Conflicts 182 667.14 2056 1.0 1.0
Clausal-CA 193 486.45 1466 0.73 0.71
Division 207 486.23 1345 0.73 0.65
MIR 208 485.26 1336 0.73 0.65
Saturation 206 491.98 1428 0.74 0.69

all-optimal(374) No Conflicts 374 46.16 320 1.0 1.0
Clausal-CA 374 40.58 259 0.88 0.81
Division 374 40.75 244 0.88 0.77
MIR 374 40.40 241 0.88 0.75
Saturation 374 40.24 246 0.87 0.77

only generated one conflict per call. Conversely, we accept PB reasoning conflicts only if the
number of nonzeros is less than 15% of the original problem variables, as in the default clausal
implementation in SCIP. Our preliminary experiments confirmed that in our implementation,
it is indeed detrimental to accept too-long conflicts. We did, however, add a fallback strategy,
of applying weakening on the conflict constraint if the constraints are too long. This happens
for about 9% of the instances.

We observe that all conflict analysis variants solved more instances than SCIP without
conflict analysis, needed significantly less nodes on the all-optimal set, and less time on all
four instance sets. Note that on average, the time spent in conflict analysis is only about
0.1% of the total run time. The three PB conflict analysis variants could solve more instances
than the clausal variant, and needed significantly less nodes. The difference in time was less
pronounced.

The performance of the PB conflict analysis variants is quite similar in all three cases.
Nevertheless, MIR-based reduction could solve the most instances and needed the least nodes
on the all-optimal set. When looking at the seemingly identical time-wise performance in
more detail, it turns out that MIR also slightly improves on the other settings in this measure.
There are 104 instances for which the path differs between Saturation-based resolution and
MIR-based resolution and MIR was on average 1.1% faster on those. There are 86 instances
for which the path differs between Division-based resolution and MIR-based resolution and
MIR was on average 3.6% faster on those. Consequently, we decided to concentrate on
MIR-based resolution for our next statistic.

Ultimately, the purpose of conflict constraints is to restrict the future search space by
propagating literal assignments and pruning the search tree. Hence we analyzed how many
conflicts each of the methods generates in shifted geometric mean, how large these conflicts
are on average, and how many of them lead to propagations down the road. Table 3 shows



G. Mexi, T. Berthold, A. Gleixner, and J. Nordström 27:15

Table 3 Shifted geometric mean of number of conflicts, average percentage of conflict constraints
that propagate at least once and average length of learned conflicts.

Setting mean # conflicts avg % prop. conflicts avg # literals

Clausal-CA 290.77 34.54 82.45
MIR 169.61 58.54 80.20

the results on the set of all instances that have a search tree of at least 100 nodes (to get a
decent chance of conflict generation and propagation) and for which at least one conflict was
generated with one of the methods. We consider only instances where the two settings have
the same execution path. We observe that our MIR-based conflict analysis generated about
a third less conflicts, but at the same time, they are much more likely to propagate: for the
classic clausal conflict analysis of SCIP, about a third of the generated conflicts are used for
propagation later on, while for our MIR-based variant, slightly more than half (58.54%) of
all conflicts propagate at least once. At the same time, MIR-based conflicts are about the
same size as clausal conflicts.

At first glance, this might appear as a contradiction, given that, as a rule of thumb,
shorter conflicts tend to propagate more often and one might expect similar-sized conflicts
to be similarly likely to propagate. Note, however, that the conflicts are of a quite different
nature in the two cases. On the one hand, clausal conflicts are always logic clauses that only
propagate when all but one literal are assigned. On the other hand, MIR-based conflicts are
general pseudo-Boolean constraints, which might propagate some assignments (of literals
with large coefficients) even when a majority of literals are still unassigned. This goes nicely
together with the above observation that the reduction in the number of nodes is more
pronounced than the reduction in runtime. As a final remark, integrating PB conflict analysis
in a production-grade MIP solver would require substantially more work, but should also be
expected to provide substantial further improvements measured in wallclock time.

5 Conclusion

In this work, we study how to integrate pseudo-Boolean conflict analysis for 0–1 integer
linear programs into a MIP solving framework. In contrast to standard MIP conflict analysis,
the pseudo-Boolean method operates directly on the linear constraints, rather than on
clauses extracted from these constraints, and this makes it exponentially stronger in terms of
reasoning power. Viewing PB conflict analysis from a MIP perspective is also helpful since it
provides a view of the algorithm as a sequence of linear combinations and cuts, and we use
this to strengthen the pseudo-Boolean conflict analysis further by developing a new conflict
analysis method using the powerful mixed integer rounding (MIR) cuts.

We have made a first proof-of-concept implementation of our new pseudo-Boolean conflict
analysis method, as well as methods from the PB literature based on saturation [34] and
division [23], in the open-source MIP solver SCIP, and have run experiments on 0–1 ILP
instances from MIPLIB 2017 comparing the different methods with each other and with
standard clause-based MIP conflict analysis. We find that solving 0–1 ILPs with MIR-based
pseudo-Boolean conflict analysis performs better than other methods, not only in the sense
that it reduces the size of the search tree, but also in that our implementation can beat the
highly optimized MIP conflict analysis currently used in SCIP in terms of actual running
time. In our opinion, this demonstrates convincingly that pseudo-Boolean conflict analysis
in MIP is a research direction that should be worth pursuing further, and that similar
proof-of-concept studies could also be relevant to investigate for other combinatorial solving
paradigms such as constraint programming.

CP 2023



27:16 Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

As already noted above, an obvious direction of future work is to provide a more carefully
engineered version of pseudo-Boolean conflict analysis that could deliver more fully on the
potential for improved performance identified by our experiments. In addition to optimizing
the existing code, however, it would be valuable to develop a better understanding of how
and why the conflict analysis works and of ways in which the reasoning could be improved.

Pseudo-Boolean conflict analysis alternates between weakening constraints (to eliminate
seemingly less relevant variables) and strenghtening them by applying cut rules (to get tighter
propagation on the variables that remain). The interplay between these two operations is
quite poorly understood even for pseudo-Boolean solvers, and so both PB solvers and MIP
solvers could gain from a careful study of how to strike the right balance. Since PB conflict
analysis can be performed with several different reduction methods, and since different
reduction methods can be employed independently in consecutive steps in one and the same
conflict analysis, it would also be good to be able to assess the quality of constraints derived
during conflict analysis, so as to select the most promising candidate at each step to pass on
to the next step in the conflict analysis.

Arguably the most interesting research question, though, is whether pseudo-Boolean
conflict analysis could be extended beyond 0–1 ILPs to 0–1 mixed linear problems, and/or
to general integer linear programs. It is worth noting that the latter has been attempted
in [32, 41], but so far with quite limited success. It is clear that the algorithms presented
in this paper cannot work for 0–1 mixed LPs or general ILPs if generalized in the obvious,
naive way, and so additional, new ideas will be needed.

References
1 Tobias Achterberg. Conflict analysis in mixed integer programming. Discrete Optimization,

4(1):4–20, March 2007.
2 Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität

Berlin, 2007. Available at https://opus4.kobv.de/opus4-zib/files/1112/Achterberg_
Constraint_Integer_Programming.pdf.

3 Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve real-
world SAT instances. In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI ’97), pages 203–208, July 1997.

4 Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research, 22:319–351, December
2004. Preliminary version in IJCAI ’03.

5 Timo Berthold, Stefan Heinz, and Marc Pfetsch. Solving Pseudo-Boolean problems with SCIP,
2008.

6 Timo Berthold, Stefan Heinz, and Marc E Pfetsch. Nonlinear Pseudo-Boolean optimization:
relaxation or propagation? In Theory and Applications of Satisfiability Testing-SAT 2009:
12th International Conference, SAT 2009, Swansea, UK, June 30-July 3, 2009. Proceedings
12, pages 441–446. Springer, 2009.

7 Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz,
Jasper van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al.
The SCIP Optimization Suite 8.0. arXiv preprint arXiv:2112.08872, 2021.

8 Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 336 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2nd edition, February 2021.

9 Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago,
1937.

10 AL Brearley, Gautam Mitra, and H Paul Williams. Analysis of mathematical programming
problems prior to applying the simplex algorithm. Mathematical programming, 8:54–83, 1975.

https://opus4.kobv.de/opus4-zib/files/1112/Achterberg_Constraint_Integer_Programming.pdf
https://opus4.kobv.de/opus4-zib/files/1112/Achterberg_Constraint_Integer_Programming.pdf


G. Mexi, T. Berthold, A. Gleixner, and J. Nordström 27:17

11 Samuel R. Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere,
Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
volume 336 of Frontiers in Artificial Intelligence and Applications, chapter 7, pages 233–350.
IOS Press, 2nd edition, February 2021.

12 Donald Chai and Andreas Kuehlmann. A fast pseudo-Boolean constraint solver. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(3):305–317,
March 2005. Preliminary version in DAC ’03.

13 Vasek Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
mathematics, 4(4):305–337, 1973.

14 William Cook, Collette Rene Coullard, and György Turán. On the complexity of cutting-plane
proofs. Discrete Applied Mathematics, 18(1):25–38, November 1987.

15 Gérard Cornuéjols and Yanjun Li. Elementary closures for integer programs. Operations
Research Letters, 28(1):1–8, 2001. doi:10.1016/S0167-6377(00)00067-5.

16 Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962.

17 Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal
of the ACM, 7(3):201–215, 1960.

18 Theodorus Jozef Dekker. A floating-point technique for extending the available precision.
Numerische Mathematik, 18(3):224–242, 1971.

19 Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer
linear programming with pseudo-Boolean conflict-driven search. Constraints, 26(1–4):26–55,
October 2021. Preliminary version in CPAIOR ’20.

20 Jo Devriendt, Stephan Gocht, Emir Demirović, Jakob Nordström, and Peter Stuckey. Cutting
to the core of pseudo-Boolean optimization: Combining core-guided search with cutting planes
reasoning. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI ’21),
pages 3750–3758, February 2021.

21 Niklas Eén and Niklas Sörensson. Translating pseudo-Boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, March 2006.

22 Jan Elffers, Jesús Giráldez-Cru, Jakob Nordström, and Marc Vinyals. Using combinatorial
benchmarks to probe the reasoning power of pseudo-Boolean solvers. In Proceedings of the
21st International Conference on Theory and Applications of Satisfiability Testing (SAT ’18),
volume 10929 of Lecture Notes in Computer Science, pages 75–93. Springer, July 2018.

23 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-Boolean solving.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI ’18),
pages 1291–1299, July 2018.

24 Matthew L Ginsberg. Dynamic backtracking. Journal of artificial intelligence research, 1:25–46,
1993.

25 Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bas-
tubbe, Timo Berthold, Philipp M. Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth,
Marco Lübbecke, Hans D. Mittelmann, Derya Ozyurt, Ted K. Ralphs, Domenico Sal-
vagnin, and Yuji Shinano. MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-
Integer Programming Library. Mathematical Programming Computation, 13:443–490, 2021.
doi:10.1007/s12532-020-00194-3.

26 Stephan Gocht, Jakob Nordström, and Amir Yehudayoff. On division versus saturation in
pseudo-Boolean solving. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence (IJCAI ’19), pages 1711–1718, August 2019.

27 Ralph E. Gomory. An algorithm for the mixed integer problem. Technical Report P-1885,
The RAND Corporation, June 1960.

28 Armin Haken. The intractability of resolution. Theoretical Computer Science, 39(2-3):297–308,
August 1985.

29 John N. Hooker. Generalized resolution and cutting planes. Annals of Operations Research,
12(1):217–239, December 1988.

CP 2023

https://doi.org/10.1016/S0167-6377(00)00067-5
https://doi.org/10.1007/s12532-020-00194-3


27:18 Improving Conflict Analysis in MIP Solvers by Pseudo-Boolean Reasoning

30 John N. Hooker. Generalized resolution for 0-1 linear inequalities. Annals of Mathematics and
Artificial Intelligence, 6(1):271–286, March 1992.

31 Yuejun Jiang, Thomas Richards, and Barry Richards. Nogood backmarking with min-conflict
repair in constraint satisfaction and optimization. In Principles and Practice of Constraint
Programming: Second International Workshop, PPCP’94 Rosario, Orcas Island, WA, USA,
May 2–4, 1994 Proceedings, pages 21–39. Springer, 1994.

32 Dejan Jovanovic and Leonardo de Moura. Cutting to the chase solving linear integer arithmetic.
Journal of Automated Reasoning, 51(1):79–108, June 2013. Preliminary version in CADE-23.

33 Daniel Le Berre, Pierre Marquis, and Romain Wallon. On weakening strategies for PB
solvers. In Proceedings of the 23rd International Conference on Theory and Applications of
Satisfiability Testing (SAT ’20), volume 12178 of Lecture Notes in Computer Science, pages
322–331. Springer, July 2020.

34 Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7:59–64, July 2010.

35 Vincent Liew, Paul Beame, Jo Devriendt, Jan Elffers, and Jakob Nordström. Verifying
properties of bit-vector multiplication using cutting planes reasoning. In Proceedings of the
20th Conference on Formal Methods in Computer-Aided Design (FMCAD ’20), pages 194–204,
September 2020.

36 Andrea Lodi and Andrea Tramontani. Performance variability in mixed-integer programming.
In Theory driven by influential applications, pages 1–12. INFORMS, 2013.

37 Hugues Marchand and Laurence A Wolsey. Aggregation and mixed integer rounding to solve
mips. Operations research, 49(3):363–371, 2001.

38 João P. Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999. Preliminary version
in ICCAD ’96.

39 Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT
solver. In Proceedings of the 17th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’14), volume 8561 of Lecture Notes in Computer Science, pages
438–445. Springer, July 2014.

40 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference (DAC ’01), pages 530–535, June 2001.

41 Robert Nieuwenhuis. The IntSat method for integer linear programming. In Proceedings of the
20th International Conference on Principles and Practice of Constraint Programming (CP ’14),
volume 8656 of Lecture Notes in Computer Science, pages 574–589. Springer, September 2014.

42 John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of
the ACM, 12(1):23–41, January 1965.

43 Masahiko Sakai and Hidetomo Nabeshima. Construction of an ROBDD for a PB-constraint
in band form and related techniques for PB-solvers. IEICE Transactions on Information and
Systems, 98-D(6):1121–1127, June 2015.

44 Tuomas Sandholm and Robert Shields. Nogood learning for mixed integer programming. In
Workshop on Hybrid Methods and Branching Rules in Combinatorial Optimization, Montréal,
volume 20, pages 21–22, 2006.

45 Buser Say, Jo Devriendt, Jakob Nordström, and Peter Stuckey. Theoretical and experimental
results for planning with learned binarized neural network transition models. In Proceedings
of the 26th International Conference on Principles and Practice of Constraint Programming
(CP ’20), volume 12333 of Lecture Notes in Computer Science, pages 917–934. Springer,
September 2020.

46 Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-Boolean SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):165–189, March 2006.
Preliminary version in DATE ’05.



G. Mexi, T. Berthold, A. Gleixner, and J. Nordström 27:19

47 Richard M Stallman and Gerald J Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial intelligence, 9(2):135–
196, 1977.

48 Jakob Witzig, Timo Berthold, and Stefan Heinz. Computational aspects of infeasibility analysis
in mixed integer programming. Technical Report 19-54, ZIB, Takustr. 7, 14195 Berlin, 2019.

CP 2023


	1 Introduction
	1.1 Mixed Integer Programming and Conflict Analysis 
	1.2 Pseudo-Boolean Solving and Conflict Analysis 
	1.3 Questions Studied in This Work and Our Contributions
	1.4 Organization of This Paper

	2 Preliminaries and Notation
	3 Conflict Analysis Algorithms
	3.1 Clausal Conflict Analysis
	3.2 PB Conflict Analysis
	3.3 Saturation-based Reduction
	3.4 Division-based Reduction
	3.5 MIR-based Reduction
	3.6 Dominance Relationships
	3.7 Practical Aspects of Weakening

	4 Experiments
	4.1 Pre-Experiment: Weaken-All-At-Once vs. Weaken-Iteratively
	4.2 Main Experiments: Comparing Different Reasoning Techniques

	5 Conclusion

