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—— Abstract

Short-term underground mine planning problems are often difficult to solve due to the large number

of activities and diverse machine types to be scheduled, as well as multiple operational constraints.
This paper presents a Constraint Programming (CP) model to optimize short-term scheduling for
the Meliadine underground gold mine in Nunavut, Canada, taking into consideration operational
constraints and the daily development and production targets of the mine plan. To evaluate the
efficacy of the developed CP short-term planning model, we compare schedules generated by the
CP model with the ones created manually by the mine planner for two real data sets. Results
demonstrate that the CP model outperforms the manual approach by generating more efficient
schedules with lower makespans.
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1 Introduction

The mining industry is an important component of Canada’s economic vitality. In 2019, its
economic contribution was estimated at $ 109 billion, or 5 % of Canada’s GDP [10]. Mining
projects involve a variety of operations that handle significant amounts of material and
require substantial investment. Even small reductions in costs or increases in ore yield can
have a considerable economic impact. These projects can generate significant profits when
they are managed efficiently. Furthermore, the mining industry is evolving and transitioning
towards automated mining. With the advent of new communication and data collection
tools, mining operation data is becoming more easily accessible. This creates opportunities
to develop new optimization tools that can use the available data to enhance the operational
efficiency in mines.

The model presented in this study is designed for an underground gold mine. The price
of gold is set by the market and the same for all mining companies. Among other things, 47
% of the gold produced in Canada is purchased by the London Bullion Market, which trades
gold worldwide. The only options for gold mines to increase their profits is to reduce their
operating costs. One way to reduce operating costs is to make better use of available resources.
Minimizing the makespan indirectly reduces operating costs by doing more activities with
the same equipment and reducing downtime.

Short-term planning in underground mines plays a crucial role in ensuring the profitability
and success of mining operations. It involves allocating resources to activities and determining
the sequence and start time of activities during each work shift over a planning horizon
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ranging from one to two weeks [1, 3]. Currently, scheduling decisions in underground mines
are typically made manually based on the planner’s experience. Planning has been done
manually for several reasons. First, communication systems in the underground mines
were virtually non-existent. As a result, the exchange of information between the planning
teams was essentially done between shifts. In addition, the management systems are not yet
standardized in the mines, which means that information on geology, equipment maintenance
and production management are found in different systems and the transfer of one system to
another is not always trivial. However, manual planning is prone to errors and often results in
infeasible schedules with low accuracy and efficiency. Therefore, developing a decision tool to
optimize short-term scheduling in underground mines can help achieve high-quality schedules,
improve mine productivity, and reduce reliance on the planner’s experience, while ensuring
technical and safety requirements are met [17]. In this paper, a Constraint Programming (CP)
model is presented for the short-term scheduling of activities at the Meliadine underground
gold mine located in Nunavut, Canada. The model considers both operational constraints
and the mine’s development and production targets to generate more practical and reliable
schedules.

1.1 Why CP?

Previous research has shown that Constraint Programming is an effective and efficient method
for solving scheduling problems across various industries, including planning, scheduling,
transportation, and automated systems [9]. CP uses a wide variety of variable types, functions,
and global constraints to offer modeling at a high level of abstraction, making it a more
flexible and intuitive approach than other model-based methods such as Mixed Integer
Programming (MIP)[4]. Consequently CP models are more concise and require fewer decision
variables and constraints which makes them an attractive tool for addressing large-scale
scheduling problems. In the context of underground mining, the use of CP functions (as
described in detail in Section 3) makes it easier to model operational constraints in the
short-term scheduling problem, resulting in a more compact and efficient model.

1.2 Plan of the Paper

Section 2 describes the problem we address, Section 3 introduces the CP model we developed
to solve it, and Section 4 discusses the outcomes of implementing the presented model on
two actual data sets. Section 5 highlights the advantages of using CP for this short-term
underground mine planning problem. Section 6 presents an overview of related computational
approaches in the literature. Finally Section 7 concludes the paper.

2 Problem Description

Underground mining operations involve two primary categories of activities: development
and production. In order to access economically valuable ore deposits, development activities
are conducted in waste rocks that lack financial value. Production activities take place in
economically significant rocks located in areas referred to as stopes [5]. Mining activities
occur in a cycle at one of several sites that serve as a workplace to perform these activities.
Figures 1la and 1b show the development and production cycles with activities arranged in a
sequence-dependent order. Table 1 provides the description of activities in the cycle, along
with the required machine type. There are several machines available for each type of activity.
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Each machine can be viewed as a renewable unitary resource, limited to performing one
activity at a time. Short-term scheduling for underground mines includes assigning activities
in the cycle to eligible machines and determining the start and end times for each activity [1].

: Production
Cleaning Charging Cabling

. Backfilling Charging
Bolting Blasting

(a) (b)

Figure 1 Typical development (a) and production (b) cycles in underground mining.

Table 1 Activities and the required machine type in the cycle.

Activity Machine Description

Drilling Drilling rigs Drilling blast holes in the rock face

Charging Anfo loader Charging drilled holes with explosives

Loading Scooptram Removing broken rocks after blasting

Bolting Bolter Stabilizing drifts by installing bolts into the rock mass

Cleaning Scooptram Removing small rocks from the site (the gallery)

Cabling Cabling machine | Reinforcing stope by installing steel cables into rock mass
Slot raising Raise borer Creating a vertical or inclined hole into the rock

There are several underground mining methods for extracting deep mineral deposits. The
Meliadine mine uses the long-hole stoping method, which is one of the most commonly-used
underground mining techniques that involve extracting a significant amount of material from
each stope (Figure 2). This method is particularly suitable for large-scale and steeply dipping
ore deposits with preferably tabular shapes. The long-hole stoping method begins with the
development of main shafts or declines for transportation and ventilation purposes. Next,
drill drives are excavated to access the intended location of the ore body and to create stopes.
In each stope, production holes are drilled and charged with explosives. Once the blasting is
completed, the fragmented rock is accessed through draw points developed at the bottom
level of the stope. Scoop trams and trucks are used to collect the broken ore and transport
it to the surface or other underground locations via drifts or ramps. In the final stage, the
evacuated space in the stope is filled with a mixture of waste rocks and concrete to provide
sufficient stability for the subsequent adjacent opening stopes [16].

At Meliadine work is organized into a succession of day and night shifts, each lasting 55
time units. Blasting activities are performed only during designated blast windows. A blast
window corresponds to the period between shifts in the morning, during which resources
cannot be used by operators due to safety regulations. The team rotation takes approximately
1 hour and 30 minutes, and the blast window requires roughly 4 hours and 30 minutes,
including the time needed for team rotation and gas clearance (18 working hours for both
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Figure 2 Typical representation of the long-hole stoping operation [8].

day and night shifts + 1 hour 30 minutes for team rotation at the end of day shift + 4 hours
30 minutes for blast window at the end of night shift = 24 hours). The shift at the end of
which team rotation occurs is referred to as the day shift, while the subsequent shift, which
includes the blasting window at the end, is known as the night shift. Figure 3 illustrates the
shift organization in the studied underground mine. Mining activities are preemptive as they
can be interrupted at the end of each shift and continue in the next shift.

Shift Organization
Team rotation Blast window
€ > e »]
‘ Day shift Night shift
110 time units --- Blast Window

(0 time unit)

Figure 3 Timeline of alternating day and night shifts including time to rotate the teams and to
perform blasting (above). Its representation in the CP model (below).

Short-term planning at the Meliadine mine incorporates several key performance indicators
(KPI) such as progress of development rounds in the drift, total length of production holes
drilled in the stope, and total amount of material mucked from the stope to meet the
medium-term planning goals. The KPI values vary monthly and are updated every three
months by the medium-term mine planner. Development and production constraints will be
introduced in our CP model to consider the defined KPIs in short-term scheduling.
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3 How our Problem is Modeled in CP

An optimization model is developed using Constraint Programming (CP) for short-term
underground mine scheduling, taking into account operational requirements of underground
mining operations. Additional constraints are introduced to ensure that the mine planning
development and production targets are met and that practical and reliable short-term
schedules are generated. In other words, the produced schedule determines the detailed
execution of mining activities in underground operations considering the required daily
rates of development and production. It is important to note that the same model can be
used for both development and production activities in underground mining, which ensures
consistency and accuracy in short-term scheduling.

CP Optimizer (CPO) from IBM ILOG Optimization Studio [9] was used to create
the model presented in this article. In this CPO model, interval variables are used to
represent activities, each with several related optional interval variables depicting the choice
of resource. Optional interval variables include a Boolean status reflecting the fact that the
corresponding activity is present or absent from the solution (i.e. not considered by the
constraints). The ordering of resources can be represented by a set of interval variables,
known as a sequence variable. This sequence variable is used in the scheduling model to
prevent activities in the sequence from overlapping in time. More formally, an interval
variable a is defined by a start time s and an end time e, which are non-negative integer
values, such that a € {[s,e) | s,e € N,e > s}. Optional interval variable b is presented such
that b € {0} U{[s,e) | s,e € N,e > s}. Additionally the developed CPO model uses various
functions and constraints that are described as follows [9]:

end0f: A function that provides the end value of an interval variable if it exists, or else
returns zero.

alternative: This constraint ensures that if a given interval variable is present, then
only one related optional interval variable is chosen with the same start and end values.

noOverlap: This constraint is used to ensure that a set of interval variables defined by a
sequence variable do not overlap, while maintaining a minimum distance between them
as specified by a transition distance matrix.

endBeforeStart: This constraint guarantees that if two interval variables are present,
then the first ends before the second starts, with an optional minimum delay between
them.

forbidExtent: This constraint makes sure that an interval variable cannot overlap with
a forbidden region where the value of the step function is zero. As a result, the interval
variable must either end before the forbidden region or start after it.

stepAtEnd: This step function returns an elementary cumulative function with a non-
negative integer value at the end of an interval variable. Such functions model a known
function of time, such as the resources used during a particular time period, by returning
a non-negative integer value (height of the elementary function) within the range of the
interval variable and zero outside of it.

cumulFunction: This expression models a known function of time, such as the cumulative
amount of resources used by an activity during a specific time period.

alwaysIn: This constraint restricts the potential values of a cumulative function to a
specific range during a time interval.
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Tables 2 and 3 present lists of sets, parameters, and variables used in the CP model,
along with their corresponding descriptions.

Table 2 Sets and parameters of the CP model.

Set Description
J Index set of activities
M Index set of all available equipment
M; Index set of eligible machines to perform activity j
Aj Index set of activities that must occur after activity j
B Index set of blast activities
T Index set of time windows (starting at 1)
Parameter Description
D Processing time of activity j
D Matrix of transition time between sites where the value of its
element is equal to 0 for the same site and greater than 0 otherwise
d; Development (meter) of activity j
h; Production hole drilling (meter) of activity j
0j Stope ore mucking (ton) of activity j
St Starting time of time window ¢
et Ending time of time window ¢
d Lower bound for daily development
d Upper bound for daily development
h Lower bound for daily hole drilling
h Upper bound for daily hole drilling
o) Lower bound for daily ore mucking
2 Upper bound for daily ore mucking
Blast__calendar The time periods during which only blasting activities are permitted (all
activities except blasting are forbidden to be performed during these periods

Table 3 Decision variables of the CP model.

Variable Description
Y; Interval variable for activity j
X; Optional interval variable to perform activity j using machine m
Sm Sequence variable for machine m (Sy, = {Xjm | j € J})
Q¢ Integer variable for total development in drifts
Q" Integer variable for total amount of production hole drilling in stopes
Q° Integer variable for total amount of ore material mucked from stopes
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The CP model is given as (1)-(11):

Objective function

Minimize mgj((endOf(Yj)) (1)
J
Constraints

alternative(Yj, X;,, | m € M;) Vied (2)

noOverlap(Sy,, D) VmeM (3)

endBeforeStart(Y},Y;) Vied i€ A (4)

forbidExtent (Y}, Blast_calendar) VjeJ\B (5)

cumulFunction(Q?) = Z stepAtEnd (Y}, d;) (6)
JjeJ

alwaysIn(Q?, sy, et x d,t x d) VteT (7)

cumulFunction(Q") = Z stepAtEnd (Y}, h;) (8)
JjeJ

alwaysIn(Q", s, e;,t X h,t X h) VteT (9)

cumulFunction(Q’) = Z stepAtEnd (Y}, 0;) (10)
jeJ

alwaysIn(Q°, s, e, t X 0,1 X 0) vteT (11)

Objective (1) of the CP model is to minimize the makespan. Constraint (2) ensures that
only one optional variable is chosen for an interval variable i.e. only one machine (with the
appropriate type) is used to perform a given activity. Constraint (3) prevents machines
from being used simultaneously, meaning that each machine can only be assigned to one
activity at a time. Constraint (4) takes into account the order in which activities must be

performed at a site, with most activities having only one predecessor and some having none.

It is important to note that the site where each activity must be carried out is predefined in
the input data. Therefore, all activities can be executed in their respective predetermined
sites.

Constraint (5) is used to ensure that only blasting activities occur during designated
blast windows. In order to model the blasting constraint in the CP model, the day and night
work shifts are compressed into a 110-time unit period (each shift consists of 55 time units),
where each time unit represents 10 minutes in the real world. This compression allows for
blasting activities with a length of zero time units to occur only at the end of compressed
periods, every 110 time units (see Figure 3). Multiple blasting activities can be performed at
the same time during each blasting window.

Constraints (6) and (7) are introduced to ensure that the progress of development
rounds each day (measured in meters per day) is maintained within specific limits based
on the defined development target. To model these development constraints, we define
time windows [s¢,e;) each representing a day in the schedule. For each time window, we
establish cumulative upper and lower bounds (based on daily bounds) for total development
in drifts (in meters) that must be achieved. Next, we use the cumulFunction to model the
cumulative amount of development per meter and apply the alwaysIn constraint to ensure
that the cumulative function stays within the target value bounds for each time window. The
function stepAtEnd(i,j) returns an elementary cumulative function with a step of height j
(a non-negative integer value) at the end of interval variable i. The presented development
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constraints aim to achieve the desired daily development target in the generated schedule.
Furthermore, by using the cumulFunction in this constraint, the model is able to flexibly
compensate in the following days for any shortfall in achieving the daily development goal
(see e.g. Figure 6a). This feature of the constraints closely resembles what is taken into
account in actual short-term underground mine planning, making the model more practical
for real-world operations.

Constraints (8) and (9) model the production drilling constraint to ensure that the
amount of production holes drilled in the stope per day (measured in meters per day)
is restricted within certain bounds, defined based on the production drilling objectives.
Furthermore, Constraints (10) and (11) are used to model the stope mucking constraint,
which ensures that the amount of ore material mucked from stopes each day (measured in
tons per day) is maintained within specific limits determined based on the production target.
These constraints (Constraints (8)-(11)) aim to achieve the production plan in the produced
schedule by controlling the daily amount of production holes drilled and ore mucked. Similar
to the development constraints, the production constraints also allow for making up for
shortfalls in meeting the daily production goal. An activity can perform either development
or production depending on the type of cycle. If the activity is part of a development cycle,
it can have development (d;), and if it is involved in a production cycle, it can have either
production hole drilling (k) or stope mucking (o;). The development cycle includes activities
that are performed in waste rocks lacking financial value to access economically valuable
deposits, while the production cycle is conducted in valuable rocks to extract ore material
from the stope.

In the presented short-term mine planning model, operational development and production
targets (KPIs) are considered to achieve the tactical decisions made at the medium-term
planning level. Specifically, tactical decisions in underground mine planning are typically
associated with defining the extraction sequence over a planning horizon of one to three
months [7].

4 Implementation and Results

The experiments were conducted on a computer featuring an Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz and 16 GB of RAM. The CP models were solved using the Constraint
Programming Optimizer in IBM ILOG CPLEX Optimization Studio version 12.8.0.

The model was tested on two real data sets collected from the Meliadine underground
gold mine in Nunavut, Canada. Both data sets involve scheduling activities for a roughly
one-week planning horizon. The first data set (Instance 1) relates to development operations,
which consist of 15 machines and 291 activities to be performed across 18 sites. The total
advancement achieved by all available development rounds in this instance is equal to 188
meters. Specifically, each round (cycle) results in approximately 4 meters of advancement in
the development drift. The second data set (Instance 2) concerns production operations and
includes 27 machines, 185 activities, and 27 sites. In this instance, a total of 1500 meters of
production holes have been drilled across all accessible stopes, resulting in the extraction of
27,000 tons of ore material. The available resources are categorized into different equipment
types, and the number of each type is reported in Table 4. Although the developed CP
model takes into account both development and production activities, there was no data
available (in the mine) that included both activities together. Therefore, we applied our
model separately to two different datasets: one for development and another for production.
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Table 4 Number of machines per equipment type for Instances 1 and 2.

Equipment type Instance 1 | Instance 2
Scooptram 2 7
Bolter 6 -
Scooptram clean face 1
Jumbo 3 -
Anfo loader 3

Truck _
Raise borer -
Production drill rig -

T = 3 W

Cabling machine -

The results obtained by implementing the CP model on Instances 1 and 2 are presented
in the following subsections.

4.1 Instance 1

Table 5 presents the results of schedules generated for Instance 1 with different daily
development upper bounds (3) in the development constraint. All the models in the table are
solved to optimality in a short amount of time. As the primary objective of the scheduling
model is to minimize the makespan, the lower bound on daily development specified in
the development constraint is readily satisfied. Therefore to evaluate the effect of different
development targets on the resulting schedule, we only modify the upper bound value for

the total amount of development to be accomplished per day.

Table 5 Results of different CP models on Instance 1.

Model Development upper Makespan Solving time

bound (d)
1 24 882 12 sec
2 28 772 13 sec
3 32 678 12 sec
4 36 635 13 sec
5 40 600 11 sec
6 44 600 10 sec
7 00 600 10 sec

As can be seen from Table 5, increasing the upper bound in the development constraint
results in lower makespans in the produced schedule. Furthermore, the schedule makespan
remains unchanged for bounds greater than 40. Therefore, d = 40 can be considered a suitable
daily development target for generating a short-term schedule on Instance 1. Interestingly,
this value coincides with the daily development target employed by the human planner at
the mine — our model confirms this empirical choice. Figure 4 displays the location-based
Gantt chart for the short-term schedule generated on Instance 1 with d = 40.

The daily and cumulative development resulting from the schedule produced using Model
3 on Instance 1 with d = 32 are displayed in Figures 5a and 5b. As seen in Figure 5a, the
maximum daily development limit of 30 meters is respected, resulting in a total cumulative
development of 188 meters in six days (Figure 5b).
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Location-based Gantt chart
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Figure 4 Location-based Gantt chart for the generated schedule on Instance 1.

Development per day (m) Cumulative Development (m)
188 188
35 32 32 32 32 R g 20
30 28 g 175 160
5 2 £ 150 128
g 2 125
2 96
g 2 100
E 15 o 75 64
Q1o T 50 32
5 0 E
0 S 0
Dayl Day2 Day3 Day4 Day5 Day6 Day7 0 1 2 3 4 5 6 7
Period (Day) Period (Day)
(a) (b)

Figure 5 Daily (a) and cumulative (b) development in Model 3 (d = 32) on Instance 1.

Figures 6a and 6b show the daily and cumulative development obtained from Model 6 on
Instance 1 with d = 44. According to Figure 6a, 36 meters of development are achieved on
Day 2, which is lower than the maximum daily target of 44 meters. However, this shortfall is
made up on Day 3 by completing 48 meters of development, above the maximum daily target.
In other words, 48 meters of development are completed on Day 3 to compensate for the
shortfall on Day 2. After Day 3, it is not possible to meet the maximum daily goal due to the
limited number of drifts available. As shown in Figure 6b, the total cumulative development
of 188 meters is reached in five days. This feature of the development constraints in the CP
model can be practical for short-term planning in underground mines, where operational
restrictions or a relatively small number of accessible drifts (sites) prevent the achievement
of the development target on certain days.

Figure 7 shows the comparison of the average utilization rate of several machine types
in schedules produced using CP models on Instance 1 with different d for the development
constraint. The utilization rate of a machine is the total amount of time units during which
the machine was actively operating at the site relative to the total amount of time for which
it was available for use. As can be seen from this figure, increasing d results in a higher
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Development per day (m) Cumulative Development (m)

48 = 200 188 188
50 =
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Period (Day) Period (Day)
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Figure 6 Daily (a) and cumulative (b) development in Model 6 (d = 44) on Instance 1.

average utilization rate of machines in the schedule. This is due to the fact that larger d
values lead to more compact schedules with lower makespans, which in turn, reduces waiting
time for machines.

Average Utilization Rate (%)

md=24 md=28 nd=32 d=36 md=40 ud=44
70 65.3365.33
61.73 62.6662.66
59.21
60 56.1356.14 782 55.46
3
< 53.04
o 49.68 50.77 48.705
= 50
& 43.63 44.44 263
g 38.18 75 40 40
540 354
<
N 31.09
= 30 2721
=] 5y 22222222
17271966 21
) ul I I I
0 ]
Bolter Jumbo Scooptram_ Cleanface Scooptram Anfo loader

Figure 7 Average utilization rate of machines in schedules with different development bounds (d)
on Instance 1.

4.2 Instance 2

Table 6 displays the makespan of schedules generated by implementing different models on
Instance 2, with distinct upper bounds for the daily production drilling (E) and stope mucking
(0) in production constraints. According to Table 6, reducing the upper bound values in
production constraints leads to longer makespans in the generated schedule. Specifically, for
the production drilling constraint, the suitable h value is 400 meters, as it leads to the lowest
makespan value that remains unchanged for larger upper bounds. Similarly, for the stope
mucking constraint, 6 = 6,000 appears to be an appropriate stope mucking target for the
schedule generated on Instance 2. Figure 8 shows the location-based Gantt chart for the
created schedule on Instance 2 with o = 6, 000.

Figures 9a and 9b present the daily and cumulative production drilling rates in the
schedule generated using Model 5 with k = 500 on Instance 2. Figure 9a demonstrates that
the drilling rate exceeds the daily limit by reaching 600 meters on Day 2 to compensate for
the shortfall on Day 1. As depicted in Figure 9b, the total production drilling of 1500 meters
is achieved within four days.
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Table 6 Results of different CP models on Instance 2.

Model Production drilling Stope mucking Makespan Solving time
upper bound (h) upper bound (3)

1 00 o0 730 16 sec

2 200 - 1060 17 sec

3 300 - 840 16 sec

4 400 — 730 16 sec

5 500 - 730 16 sec

6 - 4000 881 17 sec

7 - 5000 771 16 sec

8 — 6000 730 17 sec

9 - 7000 730 17 sec

Location-based Gantt chart
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Figure 8 Location-based Gantt chart for the generated schedule on Instance 2.

Drilling per day (m) Cumulative drilling (m)
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= 21200 1000
= 400 = o0
200 E 000 409
100 S 400
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Day 1 Day2 Day3 Day4 Day5s 0 1 2 3 4 5
Period (Day) Period (Day)
(a) (b)

Figure 9 Daily (a) and cumulative (b) drilling in Model 5 (h = 500) on Instance 2.

Figures 10 and 11 compare the average utilization rate of several machine types in
schedules produced using CP models on Instance 2, with different values for h and o,
respectively. According to these figures, the average utilization rate of machines increases for
schedules with higher upper bounds in production constraints.
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Average Utilization Rate (%)
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Figure 10 Average utilization rates of machines in schedules with different production drilling

bounds (h) on Instance 2.

Average Utilization Rate (%)
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Figure 11 Average utilization rates of machines in schedules with different stope mucking bounds
(o) on Instance 2.

5 Added Value of CP

Constraint Programming allowed us to efficiently address short-term underground mine
planning by quickly producing optimal schedules minimizing the makespan. Moreover the
model identifies d = 40 as the appropriate daily development target, which aligns with the
value selected by the mine planner and confirms the practice of setting the development upper
bound at 40. Additionally, the model can explore what-if scenarios by varying parameter
values, such as the impact of changing daily development or production targets in the
model on machine utilization rates in the generated schedule. These results demonstrate
the practicality and efficiency of using the CP model for short-term scheduling in real-world
underground mining operations.

5.1 Comparison of CP model and manual approach

In order to demonstrate the effectiveness of our optimization model, we compared the short-
term schedules produced by the CP model with those manually created by the mine planner
for the same instance. Since a detailed schedule of activities with similar time fidelity to
the schedule produced using the CP model was not provided in the studied mine, we only
compared the schedule makespan. In particular, we compared the number of shifts required
to complete all activities in the generated short-term schedule using the CP model and
manual approach for both Instances 1 and 2, as shown in Table 7. The development KPI
considered for scheduling activities in Instance 1 is 40 meters per day (m/day). In Instance
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2, the production drilling KPI is 400 m/day, and the stope mucking KPI is 6,000 tons per
day. As previously mentioned, each day consists of two working shifts, where each shift is
equivalent to 55 time units in the CP model.

Table 7 Comparison of schedule makespan between CP model and manual approach for Instances
1 and 2.

Instance | CP model | Manual approach
1 11 Shifts 14 Shifts
2 14 Shifts 16 Shifts

Table 7 shows that the CP approach outperforms the manual scheduling method on both
Instances 1 and 2 by creating more compact schedules with lower makespans (based on the
number of shifts) while satisfying the daily development and production targets (KPIs).
Additionally, the CP models are quickly solved to optimality, making it an efficient tool for
mine planners to rapidly generate updated short-term schedules whenever changes occur in
the underground mine plan.

The results of this study demonstrate advantages of the developed CP model for optimizing
short-term planning in underground mines and reducing the reliance on manual scheduling,
which is highly dependent on the planner’s experience. Moreover, the CP model can be
easily adjusted to accommodate or exclude additional activity types and related constraints
based on the specific requirements of underground mining operations.

6 Literature review

Short-term underground mine planning models are often difficult to solve (NP-hard) due to
various operational constraints to consider and to the large number of variables involved.
However there has been notable research interest in developing new mathematical models
and algorithms to optimize short-term scheduling in underground mines.

Nehring et al. (2010) designed a MIP model to optimize the short-term scheduling and
allocation of loader-trucks in sublevel stoping mines. The model allows for the reallocation
of equipment in response to changes in underground operations. The proposed model was
applied to a copper mine, demonstrating satisfactory results in terms of tonnage deviations
from predetermined amounts throughout the planning period [11]. O’Sullivan and Newman
(2015) introduced an Integer Programming (IP) model for scheduling activities in an Irish
lead and zinc underground mine to maximize the discounted amount of produced metal.
Both exact and heuristic solutions were used to reduce the number of variables in the model.
Additionally, an optimization-based decomposition heuristic was developed to generate feasible
schedules in less computation time for complicated problem instances [12]. Song et al. (2015)
developed a decision support tool to determine the scheduling of activities in underground
mines. The tool was tested on a real mine dataset in Finland and significantly decreased
the makespan compared to manual scheduling methods, thereby improving operational
performance. However, the proposed method did not take into account uncertainty related
to unexpected activities in underground operations [15].

Schulze and Zimmermann (2017) introduced a solution approach for short-term production
scheduling in underground mining. The developed approach assigns staff and machines to
mining activities while considering operational constraints with the goal of minimizing
deviations from targeted production in a potash mine. The method was tested on various
instances and demonstrated superior performance when compared to manual scheduling [13].
Seifi et al. (2019) proposed a two-stage solution approach for scheduling machines and staff
in an underground potash mine in Germany. The first step involves solving the relaxation
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of the MIP model, and in the second step, a heuristic algorithm is used to modify the
solutions obtained from the relaxation model to achieve feasible schedules. The experiments
conducted on real-word datasets show that the developed approach outperforms the heuristic
procedure presented by Schulze and Zimmermann (2017)[14]. Wang et al. (2020) utilized
a genetic algorithm (GA) for optimizing the scheduling of equipment used in underground
mining. A Non-Linear Programming (NLP) model is presented with a significant number of
decision variables associated with multiple mining sites and equipment types [17]. A MIP
model was presented by Campeau and Gamache (2020) to optimize short-term planning in
underground mines. The goal was to maximize material extraction while ensuring a minimum
ore production rate to keep the mill active. The model considers operational and resource
constraints to generate feasible schedules. When applied to a gold mine data set, the model
produced an optimal short-term schedule [5]. Campeau et al. (2022) introduced a novel
MIP model to address short- and medium-term planning in underground mines. The model
integrated continuous variables for time discretization, resulting in realistic schedules. The
effectiveness of the model was demonstrated by applying it to a dataset from a Canadian
gold mine, which produced promising results [7].

Over the last few years, several CP approaches have been proposed to tackle the short-
term underground mine planning problem. A model using CP was suggested by Astrand et al.
(2018) for scheduling a mobile fleet in underground operations, which was tested on data from
an actual underground mine [2]. Astrand et al. (2020) extended the previously developed CP
model by incorporating the time it takes for mobile machinery to travel between different sites
in an underground cut-and-fill mine. They also proposed a revised CP model with compressed
blasting time and post-processed solutions to obtain schedules for the primary problem.
In order to improve the quality of schedules and reduce computation time, a specialized
neighborhood definition was implemented in a Large Neighborhood Search (LNS) algorithm.
The effectiveness of this algorithm was assessed using several instances of an underground
mine in Sweden. The outcome showed that the suggested method successfully enhanced the
initial feasible solution and generated high-quality schedules [3]. Campeau and Gamache
(2022) presented a CP model for short- and medium-term planning in underground mining.
They evaluated the model’s ability to address long-term production planning objectives by
testing it on five data sets from a Canadian underground gold mine, considering a planning
horizon of up to one year. The outcomes revealed that the CP model was superior to the
equivalent MIP model in terms of computational efficiency and application [6].

These previous CP approaches for short-term underground mine planning exhibit a
limited ability to incorporate daily mine planning development and operational goals during
the short-term scheduling process. To overcome this limitation, this paper introduced a
CP model for the short-term scheduling of activities in underground mining that takes into
consideration operational constraints and the development and production targets of the
mine plan to generate more practical and reliable schedules.

7 Conclusion

This paper presented a CP model that takes into account various operational constraints
and daily development and production targets for short-term scheduling optimization in
underground mines. The model was tested on two data sets from the Meliadine gold mine
using the long-hole stoping mining method. We conducted a comparative analysis of the
schedules generated by our CP model and those created manually by the mine planner.
The experiments showed that the CP model outperforms the manual approach, resulting
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in more efficient schedules with lower makespans. Results highlight the potential benefits
of implementing the CP model in actual underground mining operations to improve both
development and production through optimized short-term mine planning. Underground
mines are somewhat unpredictable environments which may affect how long an activity

actually takes. For future work, it could be beneficial to incorporate uncertainty in activity

durations which would improve the robustness of the short-term schedule.
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