
Exploiting Configurations of MaxSAT Solvers
Josep Alòs #

Logic & Optimization Group (LOG), University of Lleida, Spain

Carlos Ansótegui #

Logic & Optimization Group (LOG), University of Lleida, Spain

Josep M. Salvia #

Logic & Optimization Group (LOG), University of Lleida, Spain

Eduard Torres #

Logic & Optimization Group (LOG), University of Lleida, Spain

Abstract
In this paper, we describe how we can effectively exploit alternative parameter configurations to a
MaxSAT solver. We describe how these configurations can be computed in the context of MaxSAT.
In particular, we experimentally show how to easily combine configurations of a non-competitive
solver to obtain a better solving approach.

2012 ACM Subject Classification Theory of computation → Constraint and logic programming

Keywords and phrases maximum satisfiability, maxsat evaluation, automatic configuration

Digital Object Identifier 10.4230/LIPIcs.CP.2023.7

Funding This work was supported by MCIN/AEI/10.13039/501100011033 (Grant: PID2019-
109137GB-C21), Agencia de Gestio d’Ajuts Universitaris i de Recerca (AGAUR), Departament
d’Empresa i Coneixement de la Generalitat de Catalunya (Grant: 2022 FI_B 00010)

Acknowledgements We want to thank Alexander Nadel for sharing the solver TT-Open-WBO with
the configurable parameters exposed.

1 Introduction

Since 2006, the MaxSAT Evaluation (MSE) [5] has been held annually with the primary
objective of advancing MaxSAT technology and assessing its current state-of-the-art. The
evaluation consists of multiple solvers being tested on various benchmarks across different
evaluation tracks. This event has undeniably spurred the MaxSAT community to create
more cutting-edge solvers and enhance their competitiveness.

It is not surprising that solver performance depends on several factors, including the
power of the algorithm implemented by the solver, proper configuration of solver parameters
to unleash its full potential, and implementation issues. Therefore, we must interpret the
MaxSAT Evaluation ranking results carefully and derive conclusions according to the goal of
our analysis. For example, a similar or weaker algorithm could outperform other approaches
thanks to better implementation of data structures or a previous tuning process of its input
parameters.

From an industrial point of view, we mainly care about obtaining an effective solving
approach that is ready for deployment for a particular problem subject to available resources
(computing power, environment restrictions, licenses available, etc). From a research point of
view, we are more interested in identifying the potential of new solving approaches that lead
to further promising research avenues.

© Josep Alòs, Carlos Ansótegui, Josep M. Salvia, and Eduard Torres;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:josep.alos@udl.cat
https://orcid.org/0000-0002-7342-2701
mailto:carlos.ansotegui@udl.cat
https://orcid.org/0000-0001-7727-2766
mailto:josh.salvia@gmail.com
https://orcid.org/0000-0003-3387-2094
mailto:eduard.torres@udl.cat
https://orcid.org/0000-0002-3136-7513
https://doi.org/10.4230/LIPIcs.CP.2023.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Exploiting Configurations of MaxSAT Solvers

Our aim is to satisfy both industrial and research perspectives by identifying the best
possible solving approach that can be achieved from a single solver while adhering to certain
restrictions. In particular, we treat the solver as a black box, meaning that we cannot access
its source code, nor do we have any domain knowledge of the problem to be solved, meaning
that we cannot utilize any specific structure feature.

Despite these constraints, our approach enables us to unleash the hidden potential of the
solver and avoid incorrect rankings of better algorithms that have not been appropriately
configured or restarted. Additionally, our study emphasizes the importance of being cautious
when interpreting rankings based on the MaxSAT Evaluation, as we mentioned previously.

In this paper, we first show how to effectively configure MaxSAT solvers using Automatic
Configuration (AC) tools (tuners), specifically GGA [4] and SMAC [14]. Then, we show
that we can take advantage of not only the best configuration returned by the tuners but
also a selection of the configurations seen by the tuner during the AC process. With these
configurations, we can then build a simple portfolio that runs in parallel these configurations
if enough computational resources are available.

We also demonstrate how to create a sequential portfolio that schedules the execution of
different parametrizations of a single MaxSAT solver on a given number of cores within a
specified timeout. This approach can be thought of as a restarting strategy, where a different
configuration of the solver parameters is selected at each restart.

It is worth mentioning that all these approaches are agnostic of the structure of the
instances. Otherwise, we should explore extending other approaches available in the literature
such as ISAC++ [13].

Finally, we integrate all these building processes in the OptiLog framework [1]. With the
new APIs, the user can provide an input MaxSAT solver and its parameters through the
BlackBox Module, and OptiLog automatically generates a new solving approach for a given
number of cores.

We conducted an extensive experimental investigation on the Weighted Incomplete track
of the MaxSAT Evaluation 2022, with a particular focus on the highly configurable MaxSAT
solver Loandra [6]. In this track, Loandra ranked sixth when restricted to a timeout of 60
seconds. Our approach involves the construction of parallel and sequential portfolios based
solely on Loandra, which significantly improves its performance.

2 Preliminaries

MaxSAT is the optimization variant of the SAT decision problem. While for SAT the goal
is to find an assignment to the Boolean variables (solution) that satisfies all the clauses
in the input CNF formula, in MaxSAT we look for a solution that satisfies the maximum
possible number of clauses. Since some of these clauses can be falsified we refer to them
as soft clauses. Within the MaxSAT community, it is typical to reformulate the problem
from a minimization perspective aiming to find a solution that falsifies the minimum possible
number of soft clauses.

There are several variants of the MaxSAT problem. We can add weights to the soft
clauses that represent the cost of falsifying the clause. In this case, we want to look for a
solution that minimizes the aggregated cost of the Weighted soft clauses. Additionally, we
can have hard clauses, i.e., clauses that cannot be falsified by the solution.

MaxSAT solvers have experimented a great success in the last decade. Among these
solvers, we find complete (or exact) solvers and incomplete solvers. Complete solvers provide
optimal solutions while incomplete solvers report solutions as good as possible, but are not

J. Alòs, C. Ansótegui, J. M. Salvia, and E. Torres 7:3

required to guarantee their optimality. These solvers can either refine a lower bound (lb) on
the cost of the optimal solutions or an upper bound (ub), or both. In particular, incomplete
solvers iteratively report (whenever possible) a better (smaller) upper bound on the optimal
solution.

3 The MaxSAT Evaluation

The MaxSAT Evaluation 2022 was structured into three tracks: main track complete
(unweighted and weighted variants), main track incomplete (unweighted and weighted
variants), and the special incremental MaxSAT track. In this paper, we focus on the
incomplete track for weighted MaxSAT instances with a timeout of 60 seconds.

The term incomplete refers to the type of MaxSAT solvers which are not required to
be exact, i.e., they do not need to certify the optimum. Their goal is to report the best
possible solution within a given timeout. The term weighted refers to the variant of MaxSAT
instances. The weighted MaxSAT variant allows integer weights for the soft clauses plus the
hard clauses.

We consider the timeout of 60 seconds useful for our study since it is a realistic scenario
of industrial applications where we require a suboptimal solution in a short time window
and because our automatic configuration process, given the computational resources we have
available, can be restricted to two days (see Section 5).

The MaxSAT Evaluation 2022 incomplete (weighted) track involved 197 MaxSAT instances
and 10 incomplete solvers: DT-HyWalk [18], noSAT-MaxSAT [15], NuWLS-c [7], Exact [8, 11],
Loandra [6], Open-WBO-inc (two variants) [12], and TT-Open-WBO-Inc (three variants) [16].

Each solver s was ranked according to the scoring function score(s) shown in Equation 1.

score(s) =
∑i=n

i=1 score(s, i)
n

(1)

Given a set of n instances, the score(s) of a MaxSAT solver s is the average of the scores
for each instance, computed by score(s, i) in Equation 2.

score(s, i) = 1 + best-known ub for instance i

1 + ub for i found by s
(2)

The score(s, i) function computes the ratio between the best-known upper bound of an
instance i and the bound reported by the solver s on the same instance. Assuming that
(best-known ub) ≤ ub (which is the case for the MaxSAT Evaluation), the computed value
ranges between 0 and 1, where higher values correspond to better upper bounds.

The competition has some specific rules about what is and is not allowed in the im-
plementation of the solvers. In particular, the solvers are not allowed to employ triggers
to modify their behavior, which is deemed to be specific to particular instances. However,
solvers can concatenate the usage of different solving techniques.

In the most recent competition, the MaxSAT solvers used a variety of strategies and
solvers. Some of these solvers are outlined below, along with the various approaches they
employ in order to find improved solutions.

1. NuWLS-c: This solver adopts two solvers, the NuWLS solver, which is an improvement
of SATLike, and the integration of TT-Open-WBO-Inc.

2. TT-Open-WBO-Inc: This solver uses four different strategies, including SATLike for
inprocessing, a modified version of Mrs. Beaver for unweighted instances, BMO-clustering
for weighted instances, and Polosat, a SAT-based local search method. This MaxSAT
solver has three different distributions:

CP 2023

7:4 Exploiting Configurations of MaxSAT Solvers

(g) Which incorporates the Glucose 4.1 SAT Solver.
(i) Which incorporates the new Intel SAT Solver.
(is) Which incorporates the new Intel SAT Solver and is tuned for short invocations.

3. DT-HyWalk: This solver employs three distinct strategies, including a direct call to a
SatSolver, the SATLike solver for local search, and the use of another MaxSAT solver,
TT-Open-WBO-Inc.

4. Loandra: This solver utilizes two core algorithms, namely a Core-Based algorithm and
a Linear algorithm.

Table 1, column “MSE”, shows the results of the MaxSAT Evaluation 2022 for the top
six solvers at the incomplete weighted track with 60 seconds timeout. As we can see, the
MaxSAT solver Loandra was not competitive within this category. In this paper, we propose
an approach that is agnostic of the structure of instances and only allows the usage of
alternative configurations of the same input MaxSAT solver. We experimentally show the
goodness of our approach on the MaxSAT solver Loandra.

3.1 Reproducing the MaxSAT Evaluation for the Incomplete track
All of our executions of the MaxSAT solvers are run on a computation cluster composed of
nodes with two AMD 7402 processors (each with 24 cores at 2.8 GHz) and 21 GB of RAM
per core, managed by Sun Grid Engine (SGE). All the experiments are managed using the
Running Module of the OptiLog framework.

Each execution is given 60s of CPU time and 32 GB of memory. As the memory
requirements exceed the memory per core available, two slots are reserved and an affinity
mask is set by SGE to restrict the execution to only one of the two cores. In contrast to the
MaxSAT evaluation, each solver was evaluated with 50 different random seeds and we report
results on the average score, and in some of the experiments, we also show the minimum and
maximum scores, and the standard deviation.

In the course of developing our experiments, we detected two problems with some
executions of the solvers: 1) some executions report a bound that does not correspond to the
real cost of the solution reported, and 2) some executions report a solution that does not
satisfy the hard clauses.

To address these issues we conduct a validation step executed after the solver exhausts
the 60s of CPU time. In particular:

For 1), we trust the cost we compute from the solution reported, ignoring the bound
reported by the solver.

For 2), we consider the solver was not able to find any solution at all.
This validation step is also conducted during the automatic configuration process when

we evaluate a particular configuration of the solver on a given instance (see Section 5).
The score for each solver is computed using the MaxSAT evaluation rules. In particular, it

is important to define which is the set of best-known upper bounds that we use to compute the
score. Table 1 shows in column “MSE 2022”, the scores reported in the MaxSAT Evaluation
2022.

The rest of the columns present the results of the experimentation we conducted (in our
cluster) using different sets of best-known upper bounds. “V BSb” uses the upper bounds found
by the Virtual Best Solver of the solvers we executed, “MSEb” uses the set of best-known
upper bounds provided by the MaxSAT Evaluation, and “LRUNSb” (Long Runs) uses a
set of new best-known upper bounds we computed by running Loandra and NuWLS-c (both
with the default parameters) with a timeout of 12 hours. We recall that the score presented

J. Alòs, C. Ansótegui, J. M. Salvia, and E. Torres 7:5

is the average score on 50 seeds in contrast to the MSE results where only 1 seed is used.
As we can observe in Table 1, the relative ranking of the solvers is preserved although we
can observe variations in the scores reported. We will use in the rest of the paper the best
bounds from MSEb + V BSb + LRUNSb.

Table 1 Results of the MaxSAT Evaluation 2022 on the incomplete weighted track (60 seconds
timeout) and reproduction of the Evaluation in our system with different sets of Best-Known Upper
Bounds.

MSE 2022 MSE 2022 on our system

Best-known UBs MSEb V BSb V BSb + MSEb V BSb + MSEb + LRUNSb

Solvers

NuWLS-c 0.759 0.7831 0.7590 0.7524
DT-Hywalk 0.732 0.7625 0.7414 0.7351
TT-Open-WBO-inc (g) 0.728 0.7412 0.7221 0.7164
TT-Open-WBO-inc (is) 0.726 0.7354 0.7201 0.7141
TT-Open-WBO-inc (i) 0.720 0.7354 0.7178 0.7118
Loandra 0.693 0.7107 0.7003 0.6953

4 Automatic Configurators (AC)

In this section, we review the Automatic Configuration Problem and two state-of-the-art
automatic configuration algorithms or tuners.

4.1 The Automatic Configuration Problem

Given a target algorithm A with parameters {p1, . . . , pn} of domain d(pi). We define the
parameter space Θ of A as the subset d(p1) × . . . × d(pn) of valid parameter combinations.
Depending on the parameter, d(pi) can be categorical, a discrete domain of fixed values with
no predefined order, or numerical, which represent integer or real values. Then, we define
the Automatic Algorithm Configuration (AAC) problem as the optimization problem that
consists of exploring Θ to find a configuration θ ∈ Θ of A, which given a set of problem
instances Π, minimizes a cost metric ĉ : Θ × Π → R, without exceeding a configuration
budget B.

It is common for A to be a black box (target algorithm), meaning it accepts some
inputs (the parameters) and provides some output (e.g., ĉ), but we cannot see its internal
functionality. This allows AAC to generalize to any type of algorithm but makes it more
challenging for algorithm tuners since they cannot use A to infer additional information
about Θ. In practice, A is implemented as a binary file that outputs its results in a format
suitable for its domain but may not be suitable for the AAC tool. Moreover, it may be
necessary to limit the resources that A can use to solve an instance, such as memory or CPU
time. The standard way of addressing these issues in AAC tools is for the user to replace A

with a wrapper script that handles these and any other necessary aspects. Figure 1 describes
the automatic configuration process where the tuner is a solver for the AAC problem.

CP 2023

7:6 Exploiting Configurations of MaxSAT Solvers

Tuner

Target
Algorithm

Calls with different
parameters
settings
and instances

Returns solution cost

Best
configuration

Parameter
Space

Problem
Instances

Figure 1 Visualization of the Automatic Configuration process.

4.2 The GGA Automatic Configurator
The Gender-Based Genetic Automatic Algorithm Configuration (GGA) is a genetic algorithm
that was introduced in [4] to search for high-quality configurations. It was one of the pioneering
algorithms that supported continuous parameters and introduced the novel concept of gender
to apply diverse selection pressures to the population’s individuals.

Algorithm 1 GGA.
Input: Target Algorithm A, Parameter Space Θ, Instances Π, Performance Metric ĉ, # MiniTour-

naments N , Configuration Budget B

1: function GGA(A, Θ, Π, ĉ, N, B)
2: pop ← initPopulation(Θ)
3: j = 0
4: while B not exhausted and threshold not achieved do
5: j = j + 1
6: Πj ← selectInstances(Π, j)
7: <w1, ..., wN > ← runMiniTournaments(A, pop.comp, Πj , ĉ, pop.comp/N)
8: offspring ← applyCrossoverAndMutate(pop.noncomp, <w1, ..., wN >, Θ)
9: pop ← agingAndDeath(w1, pop) ∪ offspring

return w1

Algorithm 1 shows the pseudocode of the GGA algorithm, which takes as input the target
algorithm A, its parameter space Θ, a set of training instances Π, a performance metric ĉ to
optimize (e.g., time, accuracy, quality within a fixed timeout, etc), the number N of GGA
mini-tournaments (which will be explained shortly), and a configuration time budget B.

GGA starts by initializing a population (pop) of configurations (named genomes) as a
subset of Θ in line 2. This population is partitioned into a competitive group (pop.comp,
which is directly evaluated on the target algorithm) and non-competitive group (pop.noncomp,
which simply acts as a source of diversity).

The algorithm proceeds in a main loop that finishes when GGA reaches the configuration
budget B or a threshold on the performance (line 4). At each iteration (which we call
generation), GGA selects a subset of the instances Πj to evaluate the genomes in line 61.
Then, in line 7, GGA evaluates the competitive genomes of the population over the selected
instances Πj using a parallel racing scheme called mini-tournament. This procedure returns

1 There are different policies that can be applied to select the instances at each generation, see [4].

J. Alòs, C. Ansótegui, J. M. Salvia, and E. Torres 7:7

a set of N winners, <w1, ..., wN >, which will be the only competitive genomes that will
generate new offspring in this generation (line 8). Finally, GGA applies an ageing policy
in line 9 that is used to prevent population growth. The only exception is the overall
best competitive genome (w1), which survives as long as it performs better than the other
mini-tournament winners. At the end of the main loop, GGA returns the best competitive
genome w1 of the last generation.

For more details on the GGA algorithm, we refer the reader to [4].

4.3 The SMAC Automatic Configurator
Sequential Model-Based Algorithm Configuration (SMAC) is an automatic configuration
algorithm based on Bayesian optimization [10, 14]. In Bayesian optimization, we use a few
evaluations of the target algorithm to train a surrogate model that predicts the performance
of the algorithm for a given configuration. This fast-to-evaluate surrogate model is used to
search for promising new configurations that will be executed on the training instances.

Algorithm 2 SMAC.
Input: Target Algorithm A, Parameter Space Θ, Instances Π, Performance Metric ĉ, Configuration

Budget B

1: function SMAC(A, Θ, Π, ĉ, B)
2: [R, θinc] ← initialize(Θ, Π)
3: while B not exhausted do
4: [M , tfit] ← fitModel(R)
5: [Θ⃗new, tselect] ← selectConfigurations(M , θinc, Θ)
6: [R, θinc] ← intensify(A, Θ⃗new, θinc, R, Π, ĉ)

return θinc

Algorithm 2 shows the pseudocode of SMAC. This algorithm receives as input the target
algorithm A, its parameter space Θ, a set of training instances Π, a performance metric ĉ to
optimize and a configuration time budget B. First, SMAC initializes a best candidate config-
uration θinc and the history of conducted evaluations of different (configuration, instance)
pairs R (which might be empty) in line 2.

As in GGA (see Section 4.2), SMAC has a main loop defined in line 3 that proceeds
until the configuration budget B is reached. At each iteration, it fits a surrogate model
M using the information in R in line 4. Then, it uses M to select a new set of promising
candidate configurations Θ⃗new in line 5. Finally, it evaluates Θ⃗new and θinc on instances
from Π to determine the next best candidate θinc, according to ĉ in line 6. Similar to the
GGA algorithm, SMAC returns the best candidate configuration θinc .

4.4 Support for Tuning into the OptiLog framework
In this section, we present an excerpt of the code that uses the OptiLog framework to
generate the configuration environment (from now on Tuning Scenario) of the solver Loandra
for GGA and SMAC tuners.

1 # example_ac . py
2
3 from optilog.blackbox import ∗
4 from optilog.running import ParsingInfo
5 from optilog.tuning import ∗
6

CP 2023

7:8 Exploiting Configurations of MaxSAT Solvers

7 class LoandraBB(SystemBlackBox):
8 config = {

9 "weight−strategy": Int(0, 2, default=2),
10 "preprocess": Bool(default=True),

11 (...)

12 }

13 (...)

Listing 1 Sample code to wrap the solver Loandra into an OptiLog BlackBox.

Listing 1 defines a custom BlackBox class named LoandraBB that inherits from System-
BlackBox. This class represents the binary that we want to optimize. The config dictionary
defines the parameters of this binary that can be tuned by the optimization algorithm. We
show the parameters “weight-strategy” and “preprocess”, with their respective types and
default values. In particular, we need 18 lines of code to wrap Loandra, with 40 additional
lines defining the parameters.

1 # scenario_gga . py
2
3 from optilog.tuning.configurators import ∗
4 from example_ac import LoandraBB
5
6 i f __name__ == "__main__":
7 configurator = GGAConfigurator(

8 LoandraBB(),

9 input_data="/path/to/instances/∗",
10 ...

11)

12 configurator.generate_scenario("./scenario")

Listing 2 Sample code to create a Tuning Scenario for the solver defined in Listing 1.

Listing 2 is a definition of a Tuning Scenario for the solver Loandra. It imports the
custom LoandraBB class defined in Listing 1, and sets up a tuner (in this case GGA) to
optimize the parameters of LoandraBB. The input_data parameter specifies the path to the
instances used during the optimization process. Lastly, the generate_scenario method is
called with the desired output path for the scenario that is being created.

Similar code to Listing 2 could be used to define a Tuning Scenario to be used with the
SMAC AC tool, as OptiLog supports both GGA and SMAC.

5 Configuring MaxSAT Solvers

Although the AC tools (tuners) presented in the previous section have also parameters that
impact the effectiveness of the configuration process, tuning the tuner is out of reach in this
paper and we focus on providing a good cost function to be used during the tuning process.

Ideally, we would use the score(s, i) function from the MaxSAT Evaluation (Equation 2).
Notice though that in the MaxSAT Evaluation we are trying to maximize this scoring
function, whereas tuners minimize a cost (see Section 4). Therefore, we have to convert
the score function to a cost function. Additionally, it is not guaranteed that the bounds
found are equal or worse than the previously best-known upper bounds (see Section 3), and
we cannot update the best-known upper bounds sets during the tuning process (otherwise
previous results computed in the same tuning process would not be comparable).

J. Alòs, C. Ansótegui, J. M. Salvia, and E. Torres 7:9

We define the costac(s, i) function, shown in Equation 3, as follows. First, we split the
function in two cases: 1) the reported bound is worse (or equal) than the previous best-known
upper bound, and 2) the bound reported is better.

For 1), we compute 1 − score(s, i) to obtain a value in the range [0, 1), where better
bounds are closer to 0.

For 2), notice that we are breaking the assumption (best-known ub) ≤ ub, which may
lead to unbounded values that tend to ∞. To restrict the values to the range (−1, 0), we use
the inverse of the score(s, i) function, and then subtract 1.

The costac(s, i) function returns values between (−1, 1), where better bounds correspond
to values closer to −1.

costac(s, i) =
{

1 − score(s, i), if ub for i found by s ≥ best-known ub for i
1

score(s,i) − 1, otherwise
(3)

As stated in Section 3.1, some executions might report a bound that does not match the
reported solution. Thus, we integrate a validation step (see Figure 2) that certifies the real
cost of the solution returned by the solver and reports it to the tuner.

Regarding the tuning environment, all experiments are conducted on the same computation
cluster. Each tuning process is given a wall-time tuning budget of 48 hours, a memory limit
of 32G per worker, and is allowed to use up to 50 parallel workers unless otherwise specified.
Each configuration instance is given a CPU time limit of 60 seconds for the solver, and then
a validation step is executed. As training instances for the tuning process, we will use the
197 instances from the MaxSAT Evaluation 2021 (incomplete weighted track, 60 seconds)
and we will test the best configuration returned by GGA and SMAC (see Section 4) on the
151 instances from the MaxSAT Evaluation 2022.

GGA allows for the selection of how many instances are used in each generation. Incre-
mentally increasing the training set across generations till including the whole set of available
instances is often recommended, as it facilitates discarding bad configurations with less effort,
therefore more generations can be reached within the tuning budget. However, as discussed
in Section 6, prioritizing the evaluation of more configurations on the whole training set
within the same tuning budget may be preferable over having more generations. GGA also
can preserve a set of elite configurations that are run at every generation. We define as an
elite the default configuration of Loandra. Finally, we use the PyDGGA [2] (version 1.7.0)
distribution of GGA which has support for distributed execution. The following non-default
parameters were used for GGA: cost tolerance set to 0, population set to 100, generations
set to 300, and minimum generations set to 50.

Regarding SMAC, although it can be executed in parallel, it does not report an overall
winner in contrast to GGA. Instead, it reports as many winners as computation cores
were used since it basically runs several sequential SMACs in parallel. Thus, after SMAC
completes, we have to take all the winners from each SMAC sequential execution, which
may not have been evaluated on all training instances, and perform the missing evaluations.
Then, the winner with the best performance on the training set is selected to be the overall
winner. We use the SMAC3 [14] (version 1.4.0) implementation of the algorithm.

As we have described earlier, the cost function used during the tuning process is not
strictly the minimization version of the score we maximize according to the MSE 2022 (see
Section 3). Therefore, one may argue that it would be better to return a winner for the
training set with respect to the score function computed by the MSE. This is easy to do if
the tuner provides the logs of each evaluation so, in the case of incomplete MaxSAT solvers,
we can retrieve the best bound found by the solver on a given instance.

CP 2023

7:10 Exploiting Configurations of MaxSAT Solvers

Therefore, we add a selection phase (see Figure 2) after the tuning phase that recomputes
the scores (according to the MSE) of the configurations traversed by the tool during the
tuning process.

Validator

Explored
Configurations

Tuner

Target
Algorithm

Calls with different
parameters
settings
and instances

Returns validated solution cost

Selected
configuration

Parameter
Space

Problem
Instances

Selection
phase

Figure 2 Visualization of the Automatic Configuration process extended with the validator and
a selection phase over the explored configurations.

In particular, for SMAC, we compute the MSE score of the 50 winners reported by the
tuner on the training set and select the one with the highest score. Even though we have
access to the logs of the evaluations of SMAC and could use those scores to select the winning
configuration, we need to make sure that all the configurations are evaluated with all the
instances.

For GGA, we order the configurations first by their ranking in a generation (according to
the cost function in Equation 5), and within the same rank, we order by the most recent
generation. Then, we select the first 50 distinct configurations. We look into their logs,
recompute their MSE score according to Section 3, and report the winner2.

Table 2 Comparison using GGA and SMAC to tune the Loandra solver (using V BSb + MSEb +
LRUNSb bounds).

Mean Median Min Max Std

NuWLS-c 0.7524 0.7522 0.7484 0.7560 0.0017
Loa (GGA, all-i) 0.7393 0.7391 0.7313 0.7475 0.0037
Loa (GGA, incremental) 0.7353 0.7354 0.7275 0.7433 0.0038
DT-Hywalk 0.7351 0.7355 0.7288 0.7415 0.0030
Loa (SMAC) 0.7237 0.7234 0.7149 0.7355 0.0048
TT-Open-WBO-inc (g) 0.7164 0.7165 0.7128 0.7194 0.0015
TT-Open-WBO-inc (i) 0.7141 0.7142 0.7093 0.7188 0.0020
TT-Open-WBO-inc (is) 0.7118 0.7117 0.7098 0.7145 0.0008
Loandra 0.6953 0.6957 0.6872 0.7036 0.0037

Table 2 shows the result of the best configurations provided by GGA using all the
instances from the first generation (“Loa (GGA, all-i)”), or adding them incrementally at
each step (“Loa (GGA, incremental)”) and the best configuration provided by SMAC (see

2 In our experiments, the winner reported by GGA was the same configuration as the best one found in
the selection phase.

J. Alòs, C. Ansótegui, J. M. Salvia, and E. Torres 7:11

“Loa (SMAC)”) after the additional selections process described in the paragraph above.
For the incremental approach of GGA, we use 20% of instances at the first generation and
instruct GGA to use all the instances on generation 25. Those values were selected based
on preliminary experiments taking into account the number of generations that GGA can
do in the given time. It is clear by the results that the usage of all the instances from the
beginning benefits GGA, allowing it to lift Loandra from the sixth position to the second
one. In the next section, we will focus on the variant of GGA “Loa (GGA, all-i)”.

We also ran the variants “Loa (GGA, all-i)” and “Loandra” on another set of benchmarks,
the MSE 2020 instances. The default parameters variant achieves a score of 0.755, and the
tuned version a score of 0.777.

6 Exploiting Configurations Discarded by the Tuner

As it has been shown in the literature [9, 17], from the most pragmatic point of view, we can
obtain an efficient parallel approach by just running the same non-deterministic solver with
different seeds in parallel, or we can also run in parallel different configurations of the same
solver.

In case resources are limited, we can also schedule the execution of different configurations
of the same solver. In this section, we concrete and study these different approaches. We use
OptiLog [1] to generate all the portfolios, as we explain in Section 6.3.

6.1 Parallel Portfolios of seeds and configurations
As we have already explained, tuners report the best configuration they have found. However,
many other potentially good configurations are also explored and discarded during the
automatic configuration process with respect to their performance on the particular training
set. These configurations may exhibit good performance in different kinds of instances. As
observed in [3] on SAT benchmarks, superior performance can be achieved by combining
these complementary configurations.

The first approach we explored is the parallel execution of N different random seeds over
a given MaxSAT solver. This approach can be applied to both the default MaxSAT solver
and the best configuration obtained in the tuner.

Another approach is to extract N configurations of a MaxSAT solver from the ones
traversed by the tuner and execute them in parallel. There are many strategies that we
could follow to extract these configurations from the tuner. In particular, we use the set
of configurations considered during the selection phase (after the tuning phase) process as
explained in Section 5. Notice that we do not analyze any structure of the instances and we
only incorporate configurations of the same solver.

Table 3 shows the results of the parallel portfolios that we explained. We tested parallel
portfolios with 25, 30, 35, 40, 45, and 50 parallel executions. Each row shows the results of a
parallel portfolio (rows marked with (Seeds) refer to a parallel portfolio of seeds, whereas the
row marked with (Configs) refer to a parallel portfolio of configurations). We show the score
as computed in the MaxSAT evaluation using the V BSb + MSEb + LRUNSb upper bounds
and the rank of each portfolio with respect to the others.

As we can observe, the portfolio over different seeds for the default Loandra (“(Seeds)
Loandra” in Table 3) is not competitive while the portfolio of different seeds for the best
configuration of Loandra computed by GGA (column “(Seeds) Loa (GGA, all-i)”) already
outperforms NuWLS-c. Additionally, a portfolio of the best configurations provided by the
selection phase (column “(Configs) Loa (GGA, all-i)”) systematically outperforms the rest
of the approaches. These observations hold almost for any number of parallel executions.

CP 2023

7:12 Exploiting Configurations of MaxSAT Solvers

Table 3 Score and rank (#) for each parallel portfolio, given N parallel processes (using
V BSb + MSEb + LRUNSb bounds).

N 25 30 35 40 45 50
score # score # score # score # score # score

(Configs) Loa (GGA, all-i) 1 0.813592 1 0.818663 1 0.823986 1 0.825208 1 0.826448 1 0.827105
(Seeds) Loa (GGA, all-i) 2 0.806889 2 0.808078 2 0.809922 2 0.812589 2 0.813007 2 0.815263
(Seeds) NuWLS-c 3 0.768409 3 0.769302 3 0.769785 3 0.770293 3 0.771219 3 0.771263
(Seeds) DT-Hywalk 4 0.759271 4 0.764688 4 0.765736 4 0.765764 4 0.765862 4 0.766397
(Seeds) TT-Open-WBO-inc (g) 5 0.728901 5 0.728903 5 0.729766 5 0.729902 5 0.730165 5 0.730235
(Seeds) TT-Open-WBO-inc (i) 6 0.725971 6 0.726171 6 0.726253 6 0.726315 6 0.726510 6 0.727468
(Seeds) Loandra 8 0.717788 8 0.722663 7 0.723954 7 0.723996 7 0.724521 7 0.724648
(Seeds) TT-Open-WBO-inc (is) 7 0.722672 7 0.722704 8 0.722918 8 0.723174 8 0.723324 8 0.723489

6.2 Sequential Portfolios of configurations
In some settings, we will not have enough resources to run a parallel portfolio as described
in Section 6.1. Potentially, we can have just one computation core available. In this case, we
can schedule the sequential execution of different configurations of Loandra within the given
timeout.

Let us describe how we construct this sequential portfolio. We assume we have a sequence
of solvers (or configurations of a solver) (S) that iteratively report better solutions, a time
budget (TO), and a maximum time budget a solver can exhaust between two consecutive
reported solutions (MTBS). The solvers are executed according to their order in the sequence
until the time consumed globally by all the solvers exceeds TO.

Each solver is run as follows: first, we wait for the first solution reported by the solver.
Once this first solution is reported, we start a timer of MTBS seconds. If the solver reports
a new solution before this timer expires, we reset the timer and wait for a new solution. This
is repeated until the solver is unable to report a new solution before the timer is consumed.
At that point in time, the solver is stopped and the next one in the ordered list of solvers is
executed. Note that, at any point in this process, a solver can also be stopped if the global
time budget of TO seconds gets exhausted. A special case is the last solver of the sequence,
which is allowed to run until the time budget expires (i.e. it is not stopped even if it took
more than MTBS seconds to find a new solution). Obviously, we keep track of the best
overall solution seen so far.

To identify which sequence of solvers S and MTBS value the portfolio should use, we
carry out a simulation of sequential portfolios with the configurations provided by the
selection phase (see Section 5) and their respective logs on the training instances computed
during the tuning phase. In particular, we explore all sequences of up to size 3 and MTBS

values of {2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} seconds. Once we identify the best virtual
sequential portfolio for the training instances, we simulate again the execution of this virtual
sequential portfolio on the test set. In Table 4 we present the results of this simulation.

To implement this virtual sequential portfolio we would need to take into account an
additional thread that keeps track of the evolution of the solvers in the sequence, which may
decrease the overall performance. Therefore, we see this virtual sequential portfolio as a
restarting policy that MaxSAT developers could integrate into their solvers, with the added
benefit that they may be able to reuse information computed by each solver in the sequence.

Table 4 shows the results of the virtual sequential portfolios (rows prefixed with “Virtual
portfolio”), compared to the results that obtained the solvers from the competition with the
default parameters, and with the best approach obtained using a tuner (“Loa (GGA, all-i)”).
As in the MSE we run each solver with the same seed, except for NuWLS-c for which we also

J. Alòs, C. Ansótegui, J. M. Salvia, and E. Torres 7:13

Table 4 Score of the virtual sequential portfolio compared with the single-execution approach
(using V BSb + MSEb + LRUNSb bounds).

Score

Virtual sequential portfolio (N=2) - Loa (gga, all-i) 0.7642
Virtual sequential portfolio (N=3) - Loa (gga, all-i) 0.7642
NuWLS-c (max score on 50 seeds) 0.7560
NuWLS-c 0.7554
Loa (gga, all-i) 0.7513
DT-Hywalk 0.7432
TT-Open-WBO-inc (g) 0.7214
TT-Open-WBO-inc (i) 0.7180
TT-Open-WBO-inc (is) 0.7180
Loandra 0.6965

report on the best score value from 50 seeds. The N value shown in the virtual sequential
portfolios rows indicates the length of the solvers’ sequence. The portfolios are built on top
of the configurations obtained after the selection phase with (“Loa (GGA, all-i)”).

We notice that virtual sequential portfolios do perform better than NuWLS-c, and a
selection of two configurations suffices to that end. Interestingly, if we build the virtual
sequential portfolio on the test instances from the MSE 2022, then we get a better portfolio
using three configurations that achieves a score of 0.7689, however, we cannot predict this
portfolio based on the analysis we perform on the training instances from the MSE 2021.

Additionally, we conducted experiments to analyze the potential of combining solvers. In
particular, we used the solver TT-Open-WBO3. We tuned this solver, and generated a virtual
sequential portfolio combining the best configurations of TT-Open-WBO and Loandra. The
virtual sequential portfolio (based on the analysis of the performance on the MSE 2021)
obtained a score of 0.779 on the MSE 2022, which is the best score obtained for single-core
evaluations. In comparison, the individual performance of Loandra and TT-Open-WBO
after tuning is 0.747 and 0.751 respectively.

6.3 OptiLog Portfolio Generator

To facilitate the creation of the parallel and virtual sequential portfolios, we added support
to compute them using the OptiLog framework.

1 from optilog.portfolio import get_parallel_portfolio
2
3 get_parallel_portfolio(
4 gga_scenario=’./tuning−scenario’,
5 n_solvers=10,

6 save_to=’./parallel−portfolio’
7)

Listing 3 Computing a parallel portfolio with OptiLog.

3 A version provided by the author of the solver with the parameters exposed.

CP 2023

7:14 Exploiting Configurations of MaxSAT Solvers

Listing 3 shows how we can generate and save a parallel portfolio with OptiLog. This
portfolio is built by selecting N configurations as explained in Section 5, thus requir-
ing a Tuning Scenario (generated with OptiLog as seen in Section 6.3). The function
get_parallel_portfolio receives as parameters the Tuning Scenario that contains the
results of the tuning process (gga_scenario), the number of solvers that will compose the
parallel portfolio (n_solvers), and the directory where the scripts to launch each individual
solver that composes the portfolio will be saved (save_to).

1 from optilog.portfolio import get_sequential_portfolio
2
3 get_sequential_portfolio(
4 path_scenario="./running−scenario",
5 n_solvers=2,

6 solution_regex=r"^o\s(\d+)",

7 save_to="./sequential−portfolio",
8 score_fn=maxsat_score_fn ,

9 max_time_between_solutions=[5, 15, 25, 35]

10)

Listing 4 Computing a sequential portfolio with OptiLog.

Listing 4 shows how we are generating a sequential portfolio with the results of a Running
Scenario. Note that to generate the virtual sequential portfolio we require the full trace of
the solvers (in particular for the incomplete MaxSAT case, we need the evolution of the best
bound over time), so we cannot build it from a Tuning Scenario directly. The parameters
gga_scenario, save_to, and n_solvers mean the same as in the function to compute a
parallel portfolio. Additionally, we have to specify the following parameters: score_fn is
used to transform the lines matched by solution_regex to a score that the portfolio will
try to maximize (in this example the score function is score(s) defined in Section 3), and
max_time_between_solutions contains the possible values that the portfolio can choose
from when selecting the parameter MTBS.

7 Conclusions

Given a target solver, we have presented an approach to easily generate a potentially much
better solving approach. To this end, we exploit a set of alternative configurations of the
same target solver coming from the residues of a tuning process. It is important to notice
that we do not exploit any structure feature of the input problem or instance since in some
domains these features are not easy to compute. In particular, we have shown how from a
MaxSAT solver with a low ranking in one of the tracks of the MSE 2022 we can obtain a
more competitive approach.

Our sequential portfolio generation approach can be seen as a first attempt to come up
with effective restarting policies for MaxSAT solvers, something that has not been studied in
depth in the literature.

Finally, the approach described has been integrated into the OptiLog framework avoiding
the tedious process of setting up tuning environments and generating portfolios. Moreover,
the API is general enough to be applied not only to MaxSAT solvers but to other solving
approaches.

J. Alòs, C. Ansótegui, J. M. Salvia, and E. Torres 7:15

References
1 Josep Alòs, Carlos Ansótegui, Josep M. Salvia, and Eduard Torres. OptiLog V2: Model,

Solve, Tune and Run. In Kuldeep S. Meel and Ofer Strichman, editors, 25th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2022), volume 236
of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1–25:16, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISSN: 1868-8969. doi:
10.4230/LIPIcs.SAT.2022.25.

2 Carlos Ansótegui, Josep Pon, and Meinolf Sellmann. Boosting evolutionary algorithm
configuration. Annals of Mathematics and Artificial Intelligence, 2021. doi:10.1007/
s10472-020-09726-y.

3 Carlos Ansótegui, Josep Pon, and Meinolf Sellmann. Boosting evolutionary algorithm config-
uration. Annals of Mathematics and Artificial Intelligence, 90(7-9):715–734, 2022. Publisher:
Springer.

4 Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. A Gender-based Genetic Algorithm
for the Automatic Configuration of Algorithms. In Proceedings of the 15th International
Conference on Principles and Practice of Constraint Programming, CP’09, pages 142–157.
Springer-Verlag, 2009. tex.acmid: 1789011 tex.numpages: 16 tex.year: 2009 event-place:
Lisbon, Portugal. URL: http://dl.acm.org/citation.cfm?id=1788994.1789011.

5 Fahiem Bacchus, Jeremias Berg, Matti Järvisalo, Ruben Martins, and Andreas Niskanen.
MaxSAT Evaluation 2022 : Solver and Benchmark Descriptions. Department of Computer
Science Series of Publications B, B-2022-2, 2022. Accepted: 2022-08-25T10:09:01Z Publisher:
Department of Computer Science, University of Helsinki. URL: https://helda.helsinki.
fi/handle/10138/347396.

6 Jeremias Berg, Emir Demirovic, and Peter Stuckey. Core-boosted linear search for incom-
plete maxsat. Integration of Constraint Programming, Artificial Intelligence, and Operations
Research: 16th International Conference, CPAIOR 2019, 2019.

7 Yi Chu, Shaowei Cai, Zhendong Lei, and Xiang He. Nuwls-c: Solver description. MaxSAT
Evaluation 2022, page 28, 2022.

8 Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-boolean solving.
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
pages 1291–1299, 2018. URL: https://www.ijcai.org/Proceedings/2018/180.

9 Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: a parallel SAT solver. JSAT,
6:245–262, June 2009. doi:10.3233/SAT190070.

10 Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential Model-Based Optimization
for General Algorithm Configuration (extended version). International Conference on Learning
and Intelligent Optimization, 2011.

11 Jo Devriendt. Exact Solver Repository, April 2023. URL: https://gitlab.com/JoD/exact.
12 Saurabh Joshi, Prateek Kumar, Sukrut Rao, and Ruben Martins. Open-wbo-inc: Approxima-

tion strategies for incomplete weighted maxsat. J. Satisf. Boolean Model. Comput., 11(1):73–97,
2019. doi:10.3233/SAT190118.

13 Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. ISAC – Instance-
Specific Algorithm Configuration. In ECAI 2010, pages 751–756. IOS Press, 2010. doi:
10.3233/978-1-60750-606-5-751.

14 Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng,
Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. SMAC3: A Versatile Bayesian
Optimization Package for Hyperparameter Optimization. In ArXiv: 2109.09831, 2021. URL:
https://arxiv.org/abs/2109.09831.

15 Ole Lübke and Sibylle Schupp. nosat-maxsat. In MaxSAT Evaluation 2022, pages 29–30.
Department of Computer Science, University of Helsinki, 2022.

16 Alexander Nadel. Polarity and Variable Selection Heuristics for SAT-Based Anytime MaxSAT:
System Description. Journal on Satisfiability, Boolean Modeling and Computation, 12(1):17–22,
September 2020. doi:10.3233/SAT-200126.

CP 2023

https://doi.org/10.4230/LIPIcs.SAT.2022.25
https://doi.org/10.4230/LIPIcs.SAT.2022.25
https://doi.org/10.1007/s10472-020-09726-y
https://doi.org/10.1007/s10472-020-09726-y
http://dl.acm.org/citation.cfm?id=1788994.1789011
https://helda.helsinki.fi/handle/10138/347396
https://helda.helsinki.fi/handle/10138/347396
https://www.ijcai.org/Proceedings/2018/180
https://doi.org/10.3233/SAT190070
https://gitlab.com/JoD/exact
https://doi.org/10.3233/SAT190118
https://doi.org/10.3233/978-1-60750-606-5-751
https://doi.org/10.3233/978-1-60750-606-5-751
https://arxiv.org/abs/2109.09831
https://doi.org/10.3233/SAT-200126

7:16 Exploiting Configurations of MaxSAT Solvers

17 Olivier Roussel. Description of ppfolio 2012. In Proceedings of SAT Challenge 2012: Solver
and Benchmark Descriptions, 2012.

18 Jiongzhi Zheng, Kun He, Zhuo Chen, Jianrong Zhou, and Chu-Min Li. Decision tree based
hybrid walking strategies. MaxSAT Evaluation 2022, page 24, 2022.

	1 Introduction
	2 Preliminaries
	3 The MaxSAT Evaluation
	3.1 Reproducing the MaxSAT Evaluation for the Incomplete track

	4 Automatic Configurators (AC)
	4.1 The Automatic Configuration Problem
	4.2 The GGA Automatic Configurator
	4.3 The SMAC Automatic Configurator
	4.4 Support for Tuning into the OptiLog framework

	5 Configuring MaxSAT Solvers
	6 Exploiting Configurations Discarded by the Tuner
	6.1 Parallel Portfolios of seeds and configurations
	6.2 Sequential Portfolios of configurations
	6.3 OptiLog Portfolio Generator

	7 Conclusions

