
Conditionally Optimal Parallel Coloring of Forests
Christoph Grunau #

ETH Zürich, Switzerland

Rustam Latypov #

Aalto University, Finland

Yannic Maus #

TU Graz, Austria

Shreyas Pai #

Aalto University, Finland

Jara Uitto #

Aalto University, Finland

Abstract
We show the first conditionally optimal deterministic algorithm for 3-coloring forests in the low-space
massively parallel computation (MPC) model. Our algorithm runs in O(log log n) rounds and uses
optimal global space. The best previous algorithm requires 4 colors [Ghaffari, Grunau, Jin, DISC’20]
and is randomized, while our algorithm are inherently deterministic.

Our main technical contribution is an O(log log n)-round algorithm to compute a partition of
the forest into O(log n) ordered layers such that every node has at most two neighbors in the same
or higher layers. Similar decompositions are often used in the area and we believe that this result
is of independent interest. Our results also immediately yield conditionally optimal deterministic
algorithms for maximal independent set and maximal matching for forests, matching the state of
the art [Giliberti, Fischer, Grunau, SPAA’23]. In contrast to their solution, our algorithms are not
based on derandomization, and are arguably simpler.

2012 ACM Subject Classification Theory of computation → Massively parallel algorithms

Keywords and phrases massively parallel computation, coloring, forests, optimal

Digital Object Identifier 10.4230/LIPIcs.DISC.2023.23

Related Version Full Version: https://arxiv.org/abs/2308.00355

Funding Rustam Latypov: Academy of Finland, Grant 334238.
Yannic Maus: Austrian Science Fund (FWF), Grant P36280-N.
Shreyas Pai: Academy of Finland, Grant 334238.

1 Introduction

A recent sequence of papers investigates fundamental symmetry-breaking problems such as
coloring, maximal independent set and maximal matching on trees [9, 7, 32, 22, 26]. We
conclude, simplify and unify this line of work by giving a conceptually simple algorithm for
3-coloring, maximal independent set and maximal matching. We solve the three problems in
a unified way by computing a so-called H-decomposition (we discuss these in more detail
in Section 1.2). Even though such decompositions are the natural tool for solving the
aforementioned problems on trees, computing them efficiently in the MPC model remained
outside the reach of previous techniques.

▶ Theorem 1. There are deterministic O(log log n)-round low-space MPC algorithms for 3-
coloring, maximal matching and maximal independent set (MIS) on forests. These algorithms
use O(n) global space.

© Christoph Grunau, Rustam Latypov, Yannic Maus, Shreyas Pai, and Jara Uitto;
licensed under Creative Commons License CC-BY 4.0

37th International Symposium on Distributed Computing (DISC 2023).
Editor: Rotem Oshman; Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cgrunau@inf.ethz.ch
https://orcid.org/0000-0002-1057-9429
mailto:rustam.latypov@aalto.fi
https://orcid.org/0000-0001-7124-3067
mailto:yannic.maus@ist.tugraz.at
https://orcid.org/0000-0003-4062-6991
mailto:shreyas.pai@aalto.fi
https://orcid.org/0000-0003-2409-7807
mailto:jara.uitto@aalto.fi
https://orcid.org/0000-0002-5179-5056
https://doi.org/10.4230/LIPIcs.DISC.2023.23
https://arxiv.org/abs/2308.00355
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Conditionally Optimal Parallel Coloring of Forests

The runtimes of our algorithms are conditionally optimal, conditioned on the 1 vs 2 cycle
conjecture, at least if one restricts to so-called component stable algorithms [23, 15, 35, 41]
(see Section 1.4 for a brief discussion about component-stability).

We note that algorithms for maximal matching and maximal independent set matching
our guarantees are known from a very recent work [26]. However, their algorithms are quite
complicated and technical, and use sophisticated derandomization techniques. Moreover,
their techniques inherently cannot be used to color a tree with a small number of colors.
Indeed, the 3-coloring problem is considered to be the hardest of the three problems, e.g.,
once such a coloring is known one can compute an MIS in O(1) rounds. Additionally, a
crucial property used in previous MPC algorithms for MIS and maximal matching is that
any partial solution can be extended to a solution of the whole graph; a property that does
not hold for 3-coloring. The best previous algorithm for coloring trees uses 4 colors and
is randomized [22]. If one allows for randomization the single additional color makes the
problem significantly easier by the following divide and conquer approach: if one partitions
the tree into two parts by letting each node join one of the parts uniformly at random, the
connected components induced by each part have logarithmic diameter. Once the diameter
is small, one can use O(log log n) MPC rounds to color each component independently with
two colors in a brute force manner. In the next section we zoom out and present the bigger
picture of our work.

1.1 MPC Model and Exponential Speed-Up Over LOCAL Algorithms

The Massively Parallel Computation (MPC) model [30] is a mathematical abstraction of
modern frameworks of parallel computing such as Hadoop [43], Spark [44], MapReduce [18],
and Dryad [29]. In the MPC model, we have M machines that communicate in all-to-all
fashion, in synchronous rounds. In each round, every machine receives the messages sent
in the previous round, performs (arbitrary) local computations, and is allowed to send
messages to any other machine. Initially, an input graph of n nodes and m edges is arbitrarily
distributed among the machines. At the end of the computation, each machine needs to
know the output of each node it holds, e.g., their color in the vertex-coloring problem.

The MPC model is typically divided into 3 regimes according to the local space S. The
superlinear and the linear regimes allow for S = n1+Ω(1) and S = Õ(n) words1 of space
(memory) per machine. A word is O(log n) bits and is enough to store a node or a machine
identifier from a polynomial (in n) domain. The local space restricts the amount of data
a machine initially holds and is allowed to send and receive per round. Both linear and
superlinear regimes allow for very efficient algorithms because machines can get a “global
view” of the graph in the sense that it can store information for each node of the graph
[31, 20, 24]. However, the growing size of most real-world graphs makes it impossible to get
such a global view on a single machine and hence research in recent years has focused on
the most challenging low-space (or sublinear) regime with S = nδ, for some constant δ < 1,
where we cannot even store the whole neighborhood of a single node in a single machine. As
each machine can only get a local view there are close connections to the LOCAL model of
distributed computing that we further elaborate on below.

Furthermore, we focus on the most restricted case of linear global space, i.e., S ·M =
Θ(n + m). Notice that Ω(n + m) words are required to store the input graph.

1 The Õ notation hides polylogarithmic factors.

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:3

The LOCAL Model and Graph Exponentiation. The LOCAL model is a classic model of
distributed message passing. Each node of an input graph hosts a processor and the nodes
communicate along the edges of the graph in synchronous rounds. The local computation,
local space, and message sizes are unbounded in this model. Most research in the LOCAL
model has focused on symmetry breaking problems like graph colorings, MIS, and maximal
matchings. For most of these classic problems O(log n)-round randomized algorithms are
known [36, 1, 38] which can directly be translated to the MPC model. A major focus on recent
and current research is to develop sublogarithmic MPC algorithms that beat the logarithmic
baseline.

In fact, the strong connection between the models also shows up in faster algorithms, as
almost all recent MPC algorithms for such problems are MPC-optimized implementations
of algorithms that were originally developed for the LOCAL model. The main technique to
obtain this speedup is the graph exponentiation technique [33]. It allows to gather the T -hop
radius neighborhood of a node in O(log T) MPC rounds. So, as long as these neighborhoods
fit the space constraints, after gathering them one can simulate T -round LOCAL algorithms
locally to compute the output for each node. Furthermore, for component-stable algorithms,
the connection also goes the other way around, that is, an Ω(T) lower bound on the round
complexity in the LOCAL model implies an exponentially lower Ω(log T) conditional lower
bound in the MPC model. Thus, the holy grail is to obtain this exponential speedup over
the LOCAL model. A central open problem in the area is to find an O(log log n) round MPC
algorithm for the classic MIS problem on general graphs, which enjoys a matching conditional
Ω(log log n)-round lower bound.

Unfortunately, we are very far from answering this question. The current state of the
art is an Õ(

√
log ∆ + log log log n)-round randomized MPC algorithm [25]. We note that we

take into account the new results on network decomposition, which reduce the dependency
on n [42, 21]. This result is obtained by combining the graph exponentiation technique with
sparsification methods [33, 25]. The exponentiation technique is used to simulate Ghaffari’s
O(log ∆ + poly log log n)-round MIS algorithm for the LOCAL model [19].

From a high-level perspective they break the LOCAL algorithm into O(
√

log ∆) phases
each of length T = O(

√
log ∆). In the beginning of each phase, the graph is subsampled

so that the maximum degree of any node is at most 2
√

log ∆. Then, we can gather the
T -hop neighborhood of each node in O(log log ∆) MPC rounds and simulate T rounds of
the LOCAL algorithm in a single MPC round. The main benefit of simulating (shorter)
phases and subsampling to smaller degree graphs is to reduce the memory resources needed
during the exponentiation technique. Unfortunately, this phase-based approach seems to
hit a fundamental barrier at

√
log ∆ rounds, and it is unclear how to reduce memory usage

without it. Due to little progress in improving on this result, recent research has focused on
special graph classes such as trees and bounded arboricity graphs.

Symmetry Breaking on Trees and Bounded Arboricity Graphs. Studying low-space MPC
algorithms for MIS on trees and forests has been fruitful. This line of work started with a
randomized O(log3 log n) round low-space MPC algorithm for MIS and maximal matching
on trees [9]. Later, the round complexity was first improved to O(log2 log n) [7] and finally
to O(log log n) [22], where both algorithms extend to low-arboricity graphs. The O(log log n)
algorithm is conditionally optimal, at least if one restricts oneself to component-stable
algorithms. Finally, a recent work derandomized the O(log log n) round algorithm using
MPC specific derandomization techniques and thus obtained a deterministic O(log log n)
round MIS and Maximal Matching algorithm for trees and more generally low-arboricity
graphs [26].

DISC 2023

23:4 Conditionally Optimal Parallel Coloring of Forests

While especially the O(log log n) round algorithms are quite technical and involved, all
of the aforementioned previous algorithms rely on the same fundamental idea. Namely, to
interleave graph exponentiation with the computation of partial solutions to rapidly decrease
the maximum degree of the remaining graph. Unfortunately, it seems unlikely that such a
rapid degree reduction is possible in general graphs; thus it seems that new approaches are
necessary in order to get an O(log log n) round algorithm for general graphs.

Also, their approach does not work for coloring a forest with a constant number of colors.
The main reason is that they critically rely on the fact that any partial solution can be
extended to a full solution, which is not the case for coloring a forest with a fixed number of
colors.

1.2 Our Technical Contribution
We present a unified solution for 3-coloring, MIS, maximal matching that takes O(log log n)
rounds. The core technical contribution that unifies these is an efficient algorithm to compute
H-decompositions.

▶ Theorem 2. There is a deterministic O(log log n)-rounds low-space MPC algorithm that
computes a strict H-decomposition with O(log n) layers on forests in O(n) global space.

H-decompositions were introduced to the area of distributed computing by Barenboim
and Elkin [5]. An H-decomposition (of a forest) partitions the vertices of the graph into layers
such that every node has at most two neighbors2 in higher or equal layers. For forests an
H-partition with O(log n) layers always exist. In the LOCAL model, such an H-decomposition
immediately implies an algorithm for 3-coloring in O(log n) rounds. Essentially, one can
iterate through the layers in a reverse order and color all nodes in a layer while avoiding
conflicts with the already colored neighbors in higher layers.

The novelty of our approach is not that we use such decompositions to compute a 3-
coloring of a forest, in fact, this straightforward approach has made it into the classrooms
of many graduate programs of universities, but in the way how we compute it. We detail
on our solution in more detail in the nutshell, but the main take-away is as follows. We
steer every machine to learn some parts of the graph (to large extent in an uncoordinated
fashion) such that every machine can compute a partial H-decomposition locally, which we
can later unify to a global decomposition. We are not aware of any other MPC algorithm for
H-decompositions with a similar approach.

Balanced Exponentiation. In order to achieve exponential speedup, our algorithms rely on
graph exponentiation. However, there are no known sparsification techniques that can cope
with the memory resources that are needed for the classic graph exponentiation technique.
Instead, we provide a self-contained exponentiation procedure whose memory overhead is
very mild on forests. To explain our procedure, we first need to define a subtree. A subtree is
a subgraph of a tree, such that if it is removed, the rest of the tree stays connected. A node
is important if it is contained in a subtree of size nδ/8. We present the following result (the
formal statement appears in the full version).

2 There are generalizations to higher number of neighbors that are important when dealing with bounded
arboricity graphs [37, 6].

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:5

Let 0 < k ≤ nδ/8 be a parameter. There is a deterministic low-space MPC algorithm that,
given an n-node forest F , uses O(log k) rounds in which every important node v ∈ F discovers
its k-hop neighborhood in every direction of the graph, except for at most one.

Given a node v ∈ F , we refer to each of its neighbors x ∈ N(v) as a direction with regard
to v. Informally, what node v can discover in direction x is simply the subgraph of F that is
connected to v via x, which is uniquely defined, since F is a forest.

This result above may be of independent interest and may be useful to design algorithms
for other graph problems. We obtain it by extending the exponentiation technique of a recent
work by [3]. Their work designs an exponentiation technique which (almost) equals ours in
the special case when k equals the maximum diameter of a component of the forest. In their
work it is used in an O(log diam)-round algorithm to compute the connected components
of a forest. Later it has also been used to solve certain dynamic programming tasks on
tree-structured data [28], also in time that is logarithmic in the diameter. In the full version
we present a more detailed discussion on the similarities and the difference between the
exponentiation result in this work and the one in their work, and why our result requires
a different analysis. The main benefit of our result is that a flexible choice of k allows the
runtime and space to be small, if the required “view” for the nodes is small, which we heavily
utilize in our algorithm to compute H-decompositions.

1.3 Our Method in a Nutshell
As mentioned in the previous section, our key technical contribution is to compute a so-called
H-decomposition of the input forest F . In particular, the goal is to compute a partition
V (F) = V1 ⊔ V2 ⊔ . . . ⊔ VL of the vertices into L = O(log n) layers such that each node in
Vi has at most two neighbors in

⋃
j≥i Vj . There exists a simple peeling algorithm which

computes such a partition; iteratively peel off all nodes of degree at most 2 and define Vi as
the set of nodes that got peeled off in the i-th iteration. A simple calculation shows that
at least half of all the remaining nodes get peeled off in each iteration, and hence we get a
decomposition into O(log n) layers. Moreover, one can determine the iteration in which a
node gets peeled off by only looking at its O(log n)-hop neighborhood. Thus, if we could
compute for a given node its entire O(log n)-neighborhood and store it in a single machine,
then we could locally determine the layer of that node with no further communication.

One way to compute the O(log n)-neighborhood of each node in the MPC model is
the well-known graph exponentiation technique. Generally speaking, graph exponentiation
allows to learn the 2i-hop neighborhood of each node in O(i) MPC rounds. Thus, we could
in principle hope to learn the O(log n)-hop neighborhood of each node in just O(log log n)
rounds. However, one obviously necessary precondition of the graph exponentiation technique
is that the O(log n)-hop neighborhood of each node has size nδ, as otherwise we cannot
possibly store the neighborhood in one machine. This is quite a limiting condition. If the
input is for example a star, even the two-hop neighborhood of each node contains Ω(n)
vertices. Moreover, even if each local neighborhood would fit into one machine, the global
space required to store all the neighborhoods might still be prohibitively large, especially if
one aims for near-linear global space.

Thus, we cannot use the vanilla graph exponentiation technique. Instead, we use the
balanced graph exponentiation technique for forests mentioned in the previous section. The
output guarantee of the balanced exponentiation algorithm, running in O(log log n) rounds,
weakens the guarantee that each node sees its O(log n)-hop in two ways. First, it only gives a
guarantee for nodes that are contained in a sufficiently small subtree, namely of size at most
nδ. Second, for each node v in a small subtree, it computes all nodes of distance O(log n),
except for nodes in one direction.

DISC 2023

23:6 Conditionally Optimal Parallel Coloring of Forests

We start by briefly discussing how one can deal with the first shortcoming. If one
iteratively removes all nodes that are contained in a subtree of size at most x from F and all
nodes of degree at most 2, then all nodes are removed within O(logx(n)) iterations. This
fact was used in similar forms in previous results and for completeness we give a standalone
proof (see Lemma 7). Thus, if we repeatedly assign nodes in subtrees of size at most nδ and
nodes of degree at most 2 to one of O(log n) layers, then after O(1/δ) iterations, we assigned
each node to one of O((1/δ) log n) layers. Thus, it intuitively suffices to focus on nodes in
subtrees of size at most nδ. Section 4 gives a formal treatment of this argument.

The more severe difficulty stems from the fact that there might not be a single node in the
forest for which we have stored its entire O(log n)-neighborhood in one machine. This makes
it impossible to locally determine the layer of each node, or even a single one, assigned by
the simple peeling process described in the beginning. Instead, each node v locally simulates
a conservative variant of the peeling algorithm described above; in each iteration not all the
nodes of degree at most 2 are removed, but only those that v has stored in its machine. Note
that if v has strictly more than 2 neighbors not stored in its machine, then the conservative
peeling algorithm would never peel off v. Moreover, even if v would eventually be peeled
off, then there is no guarantee that it happens within the first O(log n) iterations. However,
the fact that v has stored all the nodes in its O(log n)-hop neighborhood except for nodes in
one direction in its machine suffices to show that v gets peeled off within the first O(log n)
iterations (see Lemma 21). Thus, each node v locally computes a layering V v = V v

1 ⊔ . . . V v
L

for some L = O(log n) such that v ∈ V v and each node in V v
i has at most two neighbors

contained in
(⋃

j≥i V v
j

)
∪ (V (F) \ V v). As some nodes might not be assigned to any layer,

we refer to such a decomposition as a partial H-decomposition. Note that a node might get
assigned to different layers from different nodes. Fortunately, this is not a problem because
of the following nice structural property about (partial) H-decompositions: if we are given
multiple (partial) H-decompositions, then we can get another (partial) H-decomposition
by assigning each node to the smallest layer assigned by any of the H-decompositions.
This structural observation allows us to combine the different locally computed (partial)
H-decompositions into a single partial H-decomposition where each node in a small subtree
is assigned to one of the O(log n) layers.

Rooted vs. Unrooted Forests. Our results are for unrooted forests, which are indeed more
difficult than rooted forests. In fact, the fastest known MPC algorithm to root a forest takes
O(log diam) rounds (and at least on general forests this runtime is conditionally tight) [3];
so rooting the forest does not fit our time budget of O(log log n) rounds. Many steps of our
algorithm would simplify (or maybe even allow for alternative solutions) if the forest was
rooted. For example, in a directed forests, we would not need our balanced exponentiation
procedure. One can show that nodes can just exponentiate towards their children until the
local memory is full without breaking any global memory bounds. However we would still
need our combinatorial algorithm for creating a (global) H-partition. Observe that [3] also
contains a O(log diam)-round 2-coloring algorithm for rooted constant-degree forests, which
can be generalized to rooted unbounded-degree forests.

1.4 Further Related Work

Component Stability. Roughly speaking, an MPC algorithm is component-stable, if the
outputs of nodes in different components are independent of each other. Low-space component-
stable MPC algorithms are closely connected to algorithms in the LOCAL model and this
connection was used to lift (unconditional) lower bounds from the LOCAL model into

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:7

conditional lower bounds in the MPC model [23]. Under the 1 vs 2 cycle conjecture, this
technique turns an Ω(T)-round lower bound in LOCAL into an Ω(log T) lower bound in low-
space MPC. This approach was used to establish, among others, Ω(log log n) randomized lower
bounds for MIS and maximal matching. Later, the technique was extended to deterministic
component-stable algorithms as well [15]. While the assumption of component-stability
might seem very natural to MPC algorithms, it is known that component-instability can
help. For example, any component-stable algorithm for finding an independent set of size
Ω(n/∆) requires Ω(log log∗ n) rounds, while there is an O(1)-round algorithm that is not
component-stable [15].

log(diam) Algorithms on Forests. There are surprisingly few works with a strict log(diam)
runtime for any graph families in any MPC regimes, where diam refers to the diameter. To
our knowledge, the only existing ones are low-space algorithms for forests [3, 28]. The authors
of [3] show that connectivity, rooting, and all LCL (locally checkable labeling) problems can
be solved on forests in O(log diam) using optimal global space O(n). The authors of [28] build
on top of the works of [3] by introducing a framework to solve dynamic programming tasks
and optimization problems, all in time log(diam) and global space O(n). We note that given
a double-logarithmic dependency on n, the connectivity problem can be solved on general
graphs (even deterministically) in O(log diam + log log n) time using linear total space [8, 13].
Also, the 1 vs 2 cycle conjecture directly rules out an o(log diam) for connectivity.

Symmetry-Breaking on General Graphs. In general graphs, (∆ + 1)-vertex coloring is
an intensively studied symmetry breaking problem, where ∆ is the maximum degree of
the graph. A series of works [39, 4, 40, 11] for Congested Clique model which is similar
to the MPC model with linear local memory has culminated in a deterministic O(1)-round
algorithm [17].

In the low-space MPC model, the first algorithm for the problem was randomized and used
O(log log log n) rounds with almost linear Õ(m) global space [11]3. By derandomizing the
classic logarithmic-time algorithms, one can obtain an O(log ∆ + log log n)-round algorithm
for (∆ + 1)-coloring, MIS, and maximal matching [14, 17]. For coloring, this was improved
to O(log log log n) through derandomizing a tailor-made algorithm [16]. The deterministic
algorithms require n1+Ω(1) global space.

1.5 Outline

We define strict H-decompositions in Section 3, and then we show how to compute them in
O(log log n) low-space MPC rounds using O(n ·poly(log n)) global space in Section 4. The key
subroutine for the algorithm in Section 4 is discussed in Appendix A. In Section 5 we show
how to use these decompositions to compute a coloring, MIS, and matching. In Appendix B
we show how to reduce the global memory usage of our algorithms from O(n · poly(log n))
to O(n). Due to space constraints, the balanced exponentiation procedure and the missing
proofs of Section 4 appear in the full version. Many of the proofs are omitted due to the
page limit and deferred to the full version.

3 The O(
√

log log n) runtime stated in the paper is automatically improved to O(log log log n) through
developments in network decomposition [42].

DISC 2023

23:8 Conditionally Optimal Parallel Coloring of Forests

2 Preliminaries and Notation

The input graph is an undirected, finite, simple forest F = (V, E) with n = |V | nodes and
m = |E| edges such that E ⊆ [V]2 and V ∩ E = ∅. For a subset S ⊆ V , we use G[S] to
denote the subgraph of G induced by nodes in S.

Let degF (v) denote the degree of a node v in F and let ∆ denote the maximum degree
of F . For node set S ⊆ V (F) and a node v ∈ S we write degS(v) for the degree of v in F [S].
The distance dF (v, u) between two vertices v, u in F is the number of edges in the shortest
v − u path in F ; if no such path exists, we set dF (v, u) :=∞. Sometimes we simply write
deg(v) and d(v, u) if it is clear from context that we refer to the degree and distance in graph
F . The greatest distance between any two vertices in F is the diameter of F , denoted by
diam(F).

For each node v and for every k ∈ N, we denote the k-hop (or k-radius) neighborhood of
v as Nk(v) = {u ∈ V : d(v, u) ≤ k}. Set N1(v) is simply the set of neighbors of v, to which
often refer to as N(v). We often consider sets of nodes S from which we need to remove a
single node u. Hence, we use the notation S \ u as a shorthand for S \ {u}.

3 Strict H-decompositions

We begin with the formal definition of an H-decomposition, that is, a partition of the graph
into layers such that every node has at most two neighbors in higher or equal layers. We
also extend the definition to the setting where some nodes remain without a layer.

▶ Definition 3 ((Partial) H-Decomposition). Let F be a forest and layer : V (F) 7→ N ∪ {∞}.
For i ∈ N ∪ {∞} define Vi = {v ∈ V (F) | layer(v) = i}, V≥i =

⋃
j≥i Vj.

We say that layer is a partial H-decomposition if degV≥i
(v) ≤ 2 holds for every v with

layer(v) = i. We speak of an H-decomposition if V∞ = ∅, and L = max{layer(v) | v ∈
V (F), layer(v) ̸=∞} is the length of the decomposition.

We also refer to the Vi’s as the layers of the (partial) H-decomposition.

Why 3-coloring and strict H-decompositions? H-decompositions were introduced to the
area of distributed computing by Barenboim and Elkin [5]. Nowadays, they are a frequent
tool in the area and by increasing the degree bound 2 to (2 + ε)a the concept also extends
to graphs with arboricity at most a (this is the original setting considered in [5]). More
generally, it can be shown that H-decompositions with O(log n) layers exist. In the LOCAL
model, an H-decomposition of a tree with O(log n) layers can be computed by iteratively
removing nodes of degree 1 (rake) and nodes of degree 2 (compress).

In the LOCAL model, one can 3-color any graph with a given H-decomposition as in
Definition 3 with L layers in O(L+log∗ n) rounds. Each layer induces a graph with maximum
degree 2. First, use Linial’s algorithm to color each layer in parallel with C = O(1) colors.
This coloring may contain lots of monochromatic edges between different layers and is only
used as a schedule to compute the final 3-coloring. In order to compute that final coloring,
iterate through the layers in a decreasing order, and in each layer iterate through the C

colors. When processing one of the C color classes, every node picks one color in {1, 2, 3}
not used by any of its already colored neighbors (at most two).

Optimally, we would like to use the above LOCAL model algorithm as the base for our
exponentially faster MPC algorithm. However, even if we were given an H-decomposition
for free it is non-trivial to actually use it for 3-coloring a graph if the runtime is restricted

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:9

to O(log log n) rounds and you only allow for a polylogarithmic memory overhead. Going
through the layers in some sequential manner would be way too slow as it would require
logarithmically rounds. Still, as the LOCAL algorithm has locality T = Θ(log n) the output
of a node may depend on the topology in logarithmic distance. In order to achieve a fast
MPC algorithm, we want the nodes to use the graph exponentiation technique to learn
the part Gv of their T -hop neighborhood that is relevant to determine their output in
O(log T) = O(log log n) rounds. We refer to Gv as the predecessor graph of node v. The
challenge with the standard H-decomposition as given by Definition 3 is that, even though
Gv ⊆ V≥layer(v), it may be of size Θ(n). Hence, even if every node could learn its predecessor
graph and store it in its local memory Sv (formally, the memory of every node is stored on
some machine), the global space bound can only be upper bounded by

∑
v∈V |Gv| = O(n2),

drastically, violating the desired near-linear bound. In order to circumvent this issue we
introduce the concept of a strict H-decomposition which is optimized for its usage in the
MPC model. The bottom line of this decomposition is that besides the properties of a classic
H-decomposition, we also have a set V pivot. The set V pivot induces a graph with maximum
degree 2 and hence can be colored with 3 colors in O(log∗ n) rounds with Linial’s algorithm
[35]. The main gain compared to the classic H-decomposition is, that once we have colored
the nodes in V pivot, we can show that the predecessor graph of every node v ∈ V \ V pivot is
of logarithmic size (when considering the same LOCAL model algorithm that colors these
nodes layer by layer). Hence, each node can learn its predecessor graph in O(log log n)
rounds without violating global space constraints. We next present the definition of a strict
H-decomposition.

▶ Definition 4 ((Partial) Strict H-Decomposition). Let F be a forest and layer : V (F) 7→
N ∪ {∞} be a function. We define V<∞ = {v ∈ V (F) | layer(v) <∞} and

V pivot := {v ∈ V<∞ | layer(v) ≥ layer(w) for every w ∈ NF (v)}.

We refer to a (partial) H-decomposition layer as strict if for every v ∈ V<∞ \ V pivot, it
holds that

|{w ∈ NF (v) \ V pivot | layer(w) = layer(v)} ∪ {w ∈ NF (v) | layer(w) > layer(v)}| ≤ 1. (1)

That is, the total number of non-pivot neighbors with the same layer and of neighbors
with a strictly higher layer is at most 1.

There is some similarity between the definition of a strict H-decomposition and the H-
decompositions used in the theory of so called locally checkable labelings [12, 10, 2]. These
decompositions iteratively layer degree 1 nodes and paths of length at least ℓ. Our strict
H-decomposition is similar to the case when we remove paths of length at least ℓ = 3 (see
Lemma 10). The following lemma is one of the most crucial structural properties of partial
H-decompositions that we exploit in the core of our algorithm (see Appendix A).

▶ Lemma 5 (Partial Strict H-Decomposition, Closure under taking minimums). Let F be
a forest and layer1, layer2 : V (F) → N ∪ {∞} be two partial strict H-decompositions. Let
layer : V (F)→ N ∪ {∞} with

layer(v) = min(layer1(v), layer2(v))

for every v ∈ V (F). Then, layer is also a partial strict H-decomposition.

DISC 2023

23:10 Conditionally Optimal Parallel Coloring of Forests

From a high level point of view, Lemma 5 says that we can independently compute
two partial strict H-decompositions, and even though they might contain conflicting layer
assignments for certain nodes, we can obtain a unified decomposition, by assigning each
node to the smaller layer of the two choices. In fact, this insight also generalizes to more
than two (possibly conflicting) decompositions. At the core of our procedure in Appendix A,
many nodes (independently) learn large parts of the graph. Then, every node computes a
partial decomposition on the parts that it has learned, and in a second step all these partial
decompositions are combined, where each node takes the minimum layer that it got assigned
in any of the decompositions. Taking the minimum is a very efficient procedure in the MPC
model and only requires constant time. The remaining difficulty in Appendix A is to show
that nodes learn large enough parts in the graph in order to make very fast global progress,
that is, we show that the unified decomposition assigns a layer to a large fraction of the
nodes.

4 Strict H-decomposition in MPC

In this section, we present our O(log log n)-round MPC algorithm for computing a strict
H-decomposition. However, the hardest part of that algorithm, that is, assigning each node
that is contained in a small subtree (see definition below) to a layer is deferred to Appendix A.
The algorithm in this section uses n · poly log n global space. In Appendix B we explain how
to extend the algorithm to optimal space.

High Level Overview. For the sake of this high level overview let us first assume that we
compute an H-decomposition with O(log n) layers that may not be strict. Similar to the
classic rake & compress algorithm, our algorithm iteratively assigns nodes to layers. After
assigning a node to some layer we remove it from the graph and continue on the remaining
graph, which may actually become disconnected and turn into a forest. In order to present
the details of the high level intuition we require the definition of a subtree which is central
to our whole approach.

▶ Definition 6 (Subtree). Let T be a tree. A subtree T ′ ⊆ T is a connected induced subgraph
of T such that T \ T ′ contains at most one component.

A subtree T ′ ⊆ F of a forest F is a connected induced subgraph of F such that the number
of components of F \ T ′ is not larger than the number of connected components of F .

The definition of a subtree is best understood in a rooted tree, where the subtree rooted at a
node v is formed by all its descendants.

In order to assign a layer to all nodes of the graph, we iterate the following two steps
until all nodes have received a layer:
1. Assigns a layer to each node contained in a small subtree of size≤ nδ/10 (SubTreeRC(F)),
2. Assign a layer to each node of degree ≤ 2 in the remaining graph.

This process can be seen as a generalization of the classic rake and compress procedure,
in which one iteratively removes leaves, i.e., subtrees of size 1, and nodes of degree 2. The
rake and compress procedure requires O(log n) iterations to remove all nodes of the graph.
Our generalized process requires O(1/δ) = O(1) in order to assign a layer to every node
of the graph (see Lemma 7 for x = nδ/10). Note that the lemma statement considers a
slightly different process than the one presented in this overview; the difference lies in the
fact that we actually want to compute a strict H-decomposition. However, a similar lemma
holds for the process of this overview. The main contribution and the main difficulty of

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:11

our work lies in the procedure SubTreeRC(F) as nodes do not know whether they are
contained in a small subtree, but still these subtrees can have diameter up to nδ/10, so
conditioned on the 1 vs 2 cycle conjecture it is impossible that a single node can learn the
whole subtree in O(log log n) rounds (we don’t prove this formally, but it’s very unlikely that
such a result holds without breaking the conjecture). We explain the details of the procedure
SubTreeRC(F) in Appendix A.

We continue with our generalized rake and compress statement that shows that a constant
number of iterations of the aforementioned process suffice. As we want to compute a strict
H-decomposition (see Definition 4), we need to slightly modify Step 2 of the above outline,
for which we require further definitions; the details of why SubTreeRC(F) returns layers
that induce a strict H-decomposition are presented in Appendix A.

A path in a graph is a degree-2 path if all of its nodes, including its endpoints have
degree 2. The length of a path is the number of nodes in the path, e.g., a single node is a
path of length 1.

The following lemma is easiest to be understood when setting x = ℓ = 1 where the process
(almost) equals the classic rake & compress process – in fact it consists of a rake step, a
compress step, and another rake step – and the theorem shows that it removes 1/3 of the
nodes (2/3 of the nodes remain in the graph).

▶ Lemma 7 (Generalized rake and compress). Let x, ℓ ∈ Z. Consider a process on a tree T

that consists of the following steps:
1. Remove (at least) all subtrees of size ≤ x from T , resulting in T1,
2. Remove (at least) all nodes contained in a degree-2 path of length at least ℓ from T1,

resulting in T2,
3. Remove (at least) all nodes with degree ≤ 1 from T2.

The number of nodes remaining is at most a 1/(1 + (x + 1)/2ℓ) = O(ℓ/x) fraction of the
nodes from T . The degrees of nodes in Step 2) and 3) of the process are with respect to the
graph induced by remaining nodes at the respective step.

We now state a lemma for a key subroutine that we will use as black box in this section
and dedicate Appendix A to designing an algorithm that proves the lemma.

▶ Lemma 8 (SubTreeRC). Let F be a forest on n vertices. There exists a deterministic
MPC algorithm SubTreeRC with O(nδ) local space, 0 < δ < 1, and Õ(n) global space
which takes F as input and computes in O(log log n) rounds a partial strict H-decomposition
layer : V (F) 7→ [⌈log(|V (F)|+ 1)⌉] ∪ {∞} such that layer(v) <∞ for every node v ∈ V (F)
contained in a subtree of size nδ/10.

Our MPC algorithm for computing strict H-decomposition appears in Algorithm 1. We
will now prove the correctness and progress guarantees of our algorithm.

▶ Lemma 9. At the end of each iteration i, we have that layer is a partial strict H-
decomposition with at most (i + 1) · offset layers.

▶ Lemma 10. In iteration i, Algorithm 1 correspond to a generalized rake and compress step
with x = nδ/10 and ℓ = 3.

▶ Corollary 11. In iteration i, Algorithm 1 correspond to a generalized rake and compress
step with x = 1 and ℓ = 3.

DISC 2023

23:12 Conditionally Optimal Parallel Coloring of Forests

Algorithm 1 Strict H-decomposition.

1: Throughout V∞ = {v ∈ F | layer(v) =∞} denotes the set of nodes whose layer equals
∞.

2: function StrictHDecomp(Forest F)
3: Initialize: layer(v) =∞ for all v ∈ V (F); offset← ⌈log(|V (F)|+ 1)⌉+ 1
4: for i = 1, 2, . . . , ⌈10/δ⌉ do
5: Fi ← F [V∞]
6: layer← i · offset + SubTreeRC(Fi, x = nδ/10)
7: Let V pivot

i ← {v ∈ V∞ | dV∞(v) ≤ 2, dV∞(w) ≤ 2 for all w ∈ N(v)}
8: layer(v)← (i + 1) · offset for every node v ∈ V pivot

i

9: layer(v)← (i + 1) · offset for every node v ∈ V∞ with ≤ 1 in V∞

10: return layer

▶ Theorem 12. Algorithm StrictHDecomp(F) (Algorithm 1) applied to some forest F

computes a strict H-decomposition of F with O(log n) layers, uses O(log log n) low-space
MPC rounds and Õ(n) global space.

Proof. By Lemmas 7 and 10, in each iteration, the number of nodes in the forest shrinks by
a factor of O(nδ/10). Therefore, after O(1/δ) iterations of the for loop, the number of nodes
with layer ∞ will be zero.

By Lemma 9, in an iteration i, we produce a partial strict H-decomposition with at
most (i + 1) · offset layers and in the next iterations j > i, we compute a partial strict
H-decomposition of the nodes that received layer ∞ (V∞) in iteration i. The offset value
ensures that the nodes in V∞ get a higher layer than the nodes in V \ V∞. After i = O(1/δ)
iterations, each node has a layer at most O(log n) since (i + 1) · offset = O(log n), and hence
we produce a valid strict H-decomposition.

Lemma 8 ensures that implementing each iteration takes O(log log n) low-space MPC
rounds and Õ(n) global space. The theorem follows because there are just O(1/δ) iterations.

◀

5 Coloring, MIS, and Matching

The following theorem is proven at the end of the section.

▶ Theorem 13. There is a deterministic O(log log n) round algorithm for 3-coloring trees in
the low-space MPC model using Õ(n) words of global space.

For an input tree F , consider having a strict H-decomposition layer : V (F)→ N described
in Definition 4, which we get from Algorithm 1 in O(log log n) rounds and Õ(n) words of
global space. We first color the subgraph induced by the nodes in V pivot. Recall that V pivot

is the set of nodes that have no neighbor with a higher layer.

Coloring the Pivot Nodes. The subgraph F [V pivot] has maximum degree 2 each node
v ∈ V pivot has at most two neighbors in V pivot with the same layer, and no neighbors with
higher layer. In order to color F [V pivot], we first run Linial’s O(∆2)-coloring algorithm [34],
which requires O(log∗ n) rounds. Since ∆(F [V pivot]) ≤ 2, Linial’s algorithm results in an
O(1)-coloring which we can convert to a 3-coloring by performing the following: In each round,
all nodes with the highest color among their neighbors in V pivot recolor themselves with

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:13

the smallest color such that a proper coloring is preserved. Clearly, one color is eliminated
in each round and since each node v has at most 2 neighbors in F [V pivot], we achieve a
3-coloring of F [V pivot] in a constant number of rounds.

Coloring the Remaining Nodes. We will now compute a 3-coloring of the nodes in V \V pivot.
We first orient all edges e = {u, v} with u, v ∈ V \ V pivot from u to v if layer(u) < layer(v)
and arbitrarily if layer(u) = layer(v). The following lemma will help us to ensure that we do
not create conflicts with the 3-coloring computed on V pivot.

▶ Lemma 14. Each node in v ∈ V \ V pivot has at most two forbidden colors. If v has an
outgoing edge, then it can have at most one forbidden color.

Proof. Each node in v ∈ V \ V pivot has at most two neighbors in V pivot. This is because
nodes in V pivot do not have neighbors in higher layer, so v can only have neighbors in V pivot

at the same or higher layer. By Definition 4, v can have at most two such neighbors.
Nodes v with one outgoing edge can have at most one neighbor in V pivot, as otherwise v

has three neighbors with same or higher layer, and Definition 4 is violated. So if v has an
outgoing edge, it can have at most one forbidden color. ◀

In what follows, each node v ∈ V \ V pivot will remember its at most two forbidden colors
due to neighbors in V pivot. Definition 4 also guarantees that all nodes in V \ V pivot will
have at most one outgoing edge. So the nodes w ∈ V \ V pivot with no outgoing edge pick an
arbitrary color that is not forbidden as their final color.

In order to properly color the nodes with exactly one outgoing edge, consider the following
centralized procedure: Color the nodes one by one in a greedy manner starting from the
highest layer and with an arbitrary order within one layer. Here, greedy means, that a node
picks the smallest color that is not forbidden and not used by any of its already colored
neighbors. This process computes a proper 3-coloring as each node will have one color used
by the neighbor along its outgoing edge, and at most one forbidden color. The output of
a node v ∈ V \ V pivot in this centralized procedure only depends on the directed path of v

obtained by following outgoing edges starting at v. In the following lemma we show that
this directed path cannot be too long.

▶ Lemma 15. The directed path of a node v ∈ V \ V pivot obtained by following outgoing
edges starting at v has length at most O(log n).

Proof. Consider a directed edge (u, w) in the directed path of v. If layer(u) = layer(w), then
w cannot have an outgoing edge as it will have two neighbors in V \ V pivot with same or
higher layer, violating Definition 4. In other words, if layer(u) = layer(w), then the directed
path of v ends at w.

Therefore, if we go along the directed path, the layer of the nodes either strictly increases
or the path does not continue. Since there are O(log n) layers in the H-decomposition, the
length of a directed path is at most O(log n). ◀

In our MPC algorithm, the idea is for each node to learn its O(log n) length directed path
by performing graph exponentiation only along the directed edges. Since all nodes with no
outgoing edges are already colored with their final color, consider performing the following
MPC algorithm only for nodes with one outgoing edge: Each node computes its final color
after gathering its directed path by performing O(log log n) graph exponentiation steps along
directed edges.

DISC 2023

23:14 Conditionally Optimal Parallel Coloring of Forests

Proof of Theorem 13. Correctness follows from the fact that each node can recolor itself
with its final color when seeing its whole directed path. The runtime follows from the fact
that we only perform O(log log n) graph exponentiation steps and color the directed paths.

Let us analyze the space usage of our algorithm. Since the length of a directed path
stored by each node during the algorithm is at most O(log n), we do not violate global space.
Note that the sequential coloring of frozen layers does not require additional space. Notice
that even though each node v is the source of at most one request, multiple nodes may send
a request to v. Hence, during graph exponentiation, node v may have to communicate with
a large number of nodes in lower layers. To mitigate this issue, we perform a load balancing
process by sorting all the at most n requests by the ID of their destination. This can be done
deterministically in O(1) rounds. Now, all the requests with destination v lie in consecutive
machines, and therefore, we can broadcast the response of v to all these machines in O(1)
rounds by creating a constant depth broadcast tree on these machines. Therefore, each step
of graph exponentiation can be done in O(1) rounds, which leads to an overall running time
of O(log log n) rounds. ◀

MIS and Maximal Matching

The maximal independent set and maximal matching algorithms follow from Theorem 13.

▶ Theorem 16. There is a deterministic O(log log n) round MIS algorithm for trees in the
low-space MPC model using Õ(n) words of global space.

Proof. By Theorem 13, we can color the tree with 3 colors. For all colors i, perform the
following. Nodes colored i add themselves to the independent set, and all nodes adjacent
to nodes colored i remove themselves from the graph. Clearly this results in a maximal
independent set in O(1) rounds and the space requirements are satisfied. ◀

▶ Theorem 17. There is a deterministic O(log log n) round maximal matching algorithm
for trees in the low-space MPC model using Õ(n) words of global space.

Proof. By Theorem 13, we can color the tree with 3 colors using a H-decomposition. Recall
that in the decomposition, each node v with layer(v) = i has at most two neighbors with
layer at least i. Let us define the parent nodes of v. We orient an edge {u, v} from v to u if
(i) u belongs to a strictly higher layer than v or (ii) u belongs to the same layer and has a
higher ID. For all colors i, perform the following. Node v colored i proposes to its highest ID
outgoing neighbor u, and u accepts the proposal of the highest ID proposer. If u accepts
v’s proposal in which case the edge {u, v} joins the matching. If u rejects v’s proposal, it
means that u is matched with some other node and then we repeat the same procedure with
v’s other possible out-neighbor. Note that when a node joins the matching, it prevents all
other incident edges from joining the matching. As a result, all nodes colored i have either
joined the matching or they have no out-going edges. After iterating through all color classes,
all nodes have either joined the matching or they have no incident edges, implying that all
their original neighbors belong to the matching. This results in a maximal matching in O(1)
rounds and the space requirements are satisfied. ◀

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:15

References
1 Noga Alon, Lásló Babai, and Alon Itai. A Fast and Simple Randomized Parallel Algorithm

for the Maximal Independent Set Problem. Journal of Algorithms, 7(4):567–583, 1986.
doi:10.1016/0196-6774(86)90019-2.

2 Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela. Locally
Checkable Labelings with Small Messages. In the Proceedings of the International Symposium
on Distributed Computing (DISC), pages 8:1–8:18, 2021. doi:10.4230/LIPIcs.DISC.2021.8.

3 Alkida Balliu, Rustam Latypov, Yannic Maus, Dennis Olivetti, and Jara Uitto. Optimal
Deterministic Massively Parallel Connectivity on Forests. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2589–2631, 2023. doi:10.
1137/1.9781611977554.ch99.

4 Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient Deterministic Distributed
Coloring with Small Bandwidth. In PODC ’20: ACM Symposium on Principles of Distributed
Computing (PODC), pages 243–252, 2020. doi:10.1145/3382734.3404504.

5 Leonid Barenboim and Michael Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using nash-williams decomposition. Distributed Comput., 22(5-6):363–379, 2010. doi:
10.1007/s00446-009-0088-2.

6 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The Locality of
Distributed Symmetry Breaking. Journal of the ACM, 63(3):20:1–20:45, 2016.

7 Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, MohammadTaghi
Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively parallel computation of matching and
mis in sparse graphs. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC ’19, pages 481–490, New York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3293611.3331609.

8 Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Łącki, and Vahab Mirrokni.
Near-Optimal Massively Parallel Graph Connectivity. In FOCS, 2019. doi:10.1109/FOCS.
2019.00095.

9 Sebastian Brandt, Manuela Fischer, and Jara Uitto. Breaking the Linear-memory Barrier in
MPC: Fast MIS on Trees with Strongly Sublinear Memory. Theoretical Computer Science,
849:22–34, 2021. doi:10.1016/j.tcs.2020.10.007.

10 Yi-Jun Chang. The Complexity Landscape of Distributed Locally Checkable Problems on
Trees. In DISC, pages 18:1–18:17, 2020. doi:10.4230/LIPIcs.DISC.2020.18.

11 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
Complexity of (∆ + 1)-Coloring in Congested Clique, Massively Parallel Computation, and
Centralized Local Computation. In PODC, 2019. doi:10.1145/3293611.3331607.

12 Yi-Jun Chang and Seth Pettie. A Time Hierarchy Theorem for the LOCAL Model. SIAM J.
Comput., 48(1):33–69, 2019. doi:10.1137/17M1157957.

13 Sam Coy and Artur Czumaj. Deterministic Massively Parallel Connectivity. In Proceedings of
the ACM Symposium on Theory of Computing (STOC), 2022. doi:10.1145/3519935.3520055.

14 Artur Czumaj, Peter Davies, and Merav Parter. Graph Sparsification for Derandomizing
Massively Parallel Computation with Low Space. In the Proceedings of the Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 175–185, 2020. doi:10.1145/
3350755.3400282.

15 Artur Czumaj, Peter Davies, and Merav Parter. Component Stability in Low-Space Massively
Parallel Computation. In PODC, 2021. doi:10.1145/3465084.3467903.

16 Artur Czumaj, Peter Davies, and Merav Parter. Improved Deterministic (∆ + 1)-Coloring in
Low-Space MPC. In PODC, pages 469–479, 2021. doi:10.1145/3465084.3467937.

17 Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round
coloring in congested clique and MPC. SIAM Journal on Computing, 50(5):1603–1626, 2021.
doi:10.1137/20M1366502.

18 Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM, pages 107–113, 2008. doi:10.1145/1327452.1327492.

DISC 2023

https://doi.org/10.1016/0196-6774(86)90019-2
https://doi.org/10.4230/LIPIcs.DISC.2021.8
https://doi.org/10.1137/1.9781611977554.ch99
https://doi.org/10.1137/1.9781611977554.ch99
https://doi.org/10.1145/3382734.3404504
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1007/s00446-009-0088-2
https://doi.org/10.1145/3293611.3331609
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1109/FOCS.2019.00095
https://doi.org/10.1016/j.tcs.2020.10.007
https://doi.org/10.4230/LIPIcs.DISC.2020.18
https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1137/17M1157957
https://doi.org/10.1145/3519935.3520055
https://doi.org/10.1145/3350755.3400282
https://doi.org/10.1145/3350755.3400282
https://doi.org/10.1145/3465084.3467903
https://doi.org/10.1145/3465084.3467937
https://doi.org/10.1137/20M1366502
https://doi.org/10.1145/1327452.1327492

23:16 Conditionally Optimal Parallel Coloring of Forests

19 Mohsen Ghaffari. An Improved Distributed Algorithm for Maximal Independent Set. In
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 270–277, 2016.

20 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt Rubin-
feld. Improved Massively Parallel Computation Algorithms for MIS, Matching, and Vertex
Cover. In PODC, pages 129–138, 2018. doi:10.1145/3212734.3212743.

21 Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav Rozhoň. Im-
proved Distributed Network Decomposition, Hitting Sets, and Spanners, via Derandomization.
In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2532–2566, 2023. doi:10.1137/1.9781611977554.ch97.

22 Mohsen Ghaffari, Christoph Grunau, and Ce Jin. Improved MPC Algorithms for MIS, Matching,
and Coloring on Trees and Beyond. In DISC, 2020. doi:10.4230/LIPIcs.DISC.2020.34.

23 Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional Hardness Results for Massively
Parallel Computation from Distributed Lower Bounds. In FOCS, pages 1650–1663, 2019.
doi:10.1109/FOCS.2019.00097.

24 Mohsen Ghaffari and Ali Sayyadi. Distributed Arboricity-Dependent Graph Coloring via
All-to-All Communication. In ICALP, pages 142:1–142:14, 2019. doi:10.4230/LIPIcs.ICALP.
2019.142.

25 Mohsen Ghaffari and Jara Uitto. Sparsifying Distributed Algorithms with Ramifications
in Massively Parallel Computation and Centralized Local Computation. In SODA, 2019.
doi:10.1137/1.9781611975482.99.

26 Jeff Giliberti, Manuela Fischer, and Christoph Grunau. Deterministic massively parallel
symmetry breaking for sparse graphs. CoRR, abs/2301.11205, 2023. doi:10.48550/arXiv.
2301.11205.

27 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation in
the mapreduce framework. In Takao Asano, Shin-ichi Nakano, Yoshio Okamoto, and Osamu
Watanabe, editors, Algorithms and Computation, pages 374–383, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

28 Chetan Gupta, Rustam Latypov, Yannic Maus, Shreyas Pai, Simo Särkkä, Jan Studený, Jukka
Suomela, Jara Uitto, and Hossein Vahidi. Fast dynamic programming in trees in the mpc
model, 2023. arXiv:2305.03693.

29 Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. ACM SIGOPS Operating Systems
Review, pages 59–72, 2007. doi:10.1145/1272996.1273005.

30 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation for
MapReduce. In SODA, 2010. doi:10.1137/1.9781611973075.76.

31 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: A
Method for Solving Graph Problems in MapReduce. In SPAA, pages 85–94, 2011. doi:
10.1145/1989493.1989505.

32 Rustam Latypov and Jara Uitto. Deterministic 3-coloring of trees in the sublinear MPC model.
CoRR, abs/2105.13980, 2021. arXiv:2105.13980.

33 Christoph Lenzen and Roger Wattenhofer. Brief Announcement: Exponential Speed-Up of
Local Algorithms Using Non-Local Communication. In PODC, 2010. doi:10.1145/1835698.
1835772.

34 Nathan Linial. Distributive Graph Algorithms – Global Solutions from Local Data. In FOCS,
1987. doi:10.1109/SFCS.1987.20.

35 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM J. Comput., 21(1):193–201,
1992. doi:10.1137/0221015.

36 Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM
Journal on Computing, 15:1036–1053, 1986. doi:10.1137/0215074.

37 Crispin Nash-Williams. Decomposition of Finite Graphs Into Forests. Journal of the London
Mathematical Society, s1-39:12, 1964. doi:10.1112/jlms/s1-39.1.12.

https://doi.org/10.1145/3212734.3212743
https://doi.org/10.1137/1.9781611977554.ch97
https://doi.org/10.4230/LIPIcs.DISC.2020.34
https://doi.org/10.1109/FOCS.2019.00097
https://doi.org/10.4230/LIPIcs.ICALP.2019.142
https://doi.org/10.4230/LIPIcs.ICALP.2019.142
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.48550/arXiv.2301.11205
https://doi.org/10.48550/arXiv.2301.11205
https://arxiv.org/abs/2305.03693
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1145/1989493.1989505
https://doi.org/10.1145/1989493.1989505
https://arxiv.org/abs/2105.13980
https://doi.org/10.1145/1835698.1835772
https://doi.org/10.1145/1835698.1835772
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0215074
https://doi.org/10.1112/jlms/s1-39.1.12

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:17

38 Öjvind Johansson. Simple Distributed ∆ + 1-coloring of Graphs. Information Processing
Letters, pages 229–232, 1999. doi:10.1016/S0020-0190(99)00064-2.

39 Merav Parter. (δ + 1) coloring in the congested clique model. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, International Colloquium
on Automata, Languages, and Programming, (ICALP), volume 107, pages 160:1–160:14, 2018.
doi:10.4230/LIPIcs.ICALP.2018.160.

40 Merav Parter and Hsin-Hao Su. Randomized (δ + 1)-coloring in o(log∗ δ) congested clique
rounds. In 32nd International Symposium on Distributed Computing (DISC), volume 121,
pages 39:1–39:18, 2018. doi:10.4230/LIPIcs.DISC.2018.39.

41 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and Circuits (On Lower
Bounds for Modern Parallel Computation). Journal of the ACM, 2018. doi:10.1145/3232536.

42 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network de-
composition and distributed derandomization. In STOC, pages 350–363, 2020. doi:
10.1145/3357713.3384298.

43 Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.
44 Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.

Spark: Cluster Computing with Working Sets. In the Proceedings of the SENIX Conference
on Hot Topics in Cloud Computing (HotCloud), 2010. doi:10.5555/1863103.1863113.

A Massively Parallel Subtree Rake and Compress

This section is dedicated to designing an algorithm that proves Lemma 8, which states that
we can compute in O(log log n) rounds a partial strict H-decomposition that assigns each
node contained in a subtree of size O(nδ/10) to one of O(log n) layers. We restate the lemma.

▶ Lemma 8 (SubTreeRC). Let F be a forest on n vertices. There exists a deterministic
MPC algorithm SubTreeRC with O(nδ) local space, 0 < δ < 1, and Õ(n) global space
which takes F as input and computes in O(log log n) rounds a partial strict H-decomposition
layer : V (F) 7→ [⌈log(|V (F)|+ 1)⌉] ∪ {∞} such that layer(v) <∞ for every node v ∈ V (F)
contained in a subtree of size nδ/10.

Our algorithm critically relies on the balanced graph exponentiation technique mentioned
in Section 1.2 and explained in detail in the full version. In the following definition, you
should think about U as being the set of nodes that v has stored in its local memory after
the balanced graph exponentiation. We refer to U as good if it contains all nodes within
distance O(log n) of v, except for potentially one direction, for which no node is contained
in U .

▶ Definition 18 (U is a good subset for v). Let F be a forest, U ⊆ V (F) and v ∈ V (F). We
say that U is a good subset for v if
1. v ∈ U ,
2. |NF (v) \ U | ≤ 1, i.e., v has at most one neighbor in F not in U ,
3. NF (w) ⊆ U for every w ∈ U \ {v} with dF (v, w) ≤ 3L where L := ⌈log(|U |+ 1)⌉.

In Appendix A.1, we give a peeling algorithm that takes as input a set U and computes
a partial strict H-decomposition with O(log n) layers by repeatedly peeling off low-degree
vertices contained in U . Moreover, if U is good for v, then v gets assigned to one of
the O(log n) layers. This peeling algorithm will later be simulated without any further
communication on the machine that has stored the set U in its memory.

DISC 2023

https://doi.org/10.1016/S0020-0190(99)00064-2
https://doi.org/10.4230/LIPIcs.ICALP.2018.160
https://doi.org/10.4230/LIPIcs.DISC.2018.39
https://doi.org/10.1145/3232536
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.5555/1863103.1863113

23:18 Conditionally Optimal Parallel Coloring of Forests

Using the balanced graph exponentiation technique, we can compute a collection of sets
U1, U2, . . . , Uk such that for each node v contained in a subtree of size at most nδ/10 there
exists some subset Uj that is good for v. In particular, in the full version, we prove the
following statement.

▶ Lemma 19 (Lemma from Balanced Exponentiation). Let F be a forest on n vertices. There
exists a deterministic low-space MPC algorithm with O(nδ) local space, 0 < δ < 1, and
O(n · poly(log n)) global space which takes F as input and computes in O(log log n) rounds a
collection of non-empty sets U1, U2, . . . , Uk ⊆ V (F) such that
1. (Local Space) |Uj | = O(nδ) for every j ∈ [k],
2. (Global Space)

∑k
j=1 |Uj | = O(n · poly(log n)) and

3. for every v ∈ V (F) which is contained in a subtree of size at most nδ/10, there exists a
j ∈ [k] such that Uj is a good subset for v (see Definition 18).

Moreover, the algorithm also computes for each Uj the forest F [Uj] induced by vertices in
Uj and stores it on a single machine.

Our final MPC algorithm for proving Lemma 8 first computes a collection of sets
U1, U2, . . . , Uk using Lemma 19. Then, the machine storing Uj locally simulates the peel-
ing algorithm of Appendix A.1 with input Uj . As a result, we obtain one partial strict
H-decomposition for each set Uj . These partial strict H-decompositions are then combined
into one partial strict H-decomposition by assigning each node to the smallest layer assigned
by any of the partial strict H-decompositions. More details can be found in Appendix A.2.

A.1 The Conservative Peeling Algorithm
Algorithm 2 computes a partial strict H-decomposition by repeatedly removing low-degree
vertices contained in U .

Algorithm 2 Conservative Peeling Algorithm.

1: function ConservativePeeling(Forest F , Subset U ⊆ V (F))
2: V≥1 ← V (F), layer : V (F) 7→ N ∪ {∞}, L← ⌈log(|U |+ 1)⌉
3: for i = 1, 2, . . . , L do
4: We define N≥i(v) := NF [V≥i](v) for every v ∈ V≥i.
5: V pivot

i ← {v ∈ V≥i ∩ U | N≥i(v) ⊆ U and ∀ w ∈ N≥i(v) ∪ {v}: |N≥i(w)| ≤ 2}.
6: Vi ← V pivot

i ∪ {v ∈ V≥i ∩ U | |N≥i(v) \ V pivot
i | ≤ 1}

7: V≥i+1 ← V≥i \ Vi

8: layer(v)← i for every v ∈ Vi

9: layer(v)←∞ for every v ∈ V≥L+1
10: return layer

If we would just be interested in computing a partial H-decomposition instead of a strict
one, then we could replace Algorithm 2 with the single line Vi ← {v ∈ V≥i∩U | |N≥i(v)| ≤ 2}.

We first show that Algorithm 2 indeed computes a partial strict H-decomposition.

▶ Lemma 20. Let F be a forest and U ⊆ V (F). Let layer : V (F) 7→ N∪{∞} be the mapping
computed by Algorithm 2 when given F and U as input. Then, layer is a partial strict
H-decomposition as defined in Definition 4.

Next, we show that if U is a good subset for v, as defined in Definition 18, then v gets
assigned to one of the O(log n) layers.

C. Grunau, R. Latypov, Y. Maus, S. Pai, and J. Uitto 23:19

▶ Lemma 21. Let F be a forest, U ⊆ V (F) and v ∈ V (F). Let layer : V (F) 7→ N ∪ {∞} be
the mapping computed by Algorithm 2 when given Fand U as input. If U is a good subset
for v (see Definition 18), then layer(v) ≤ L := ⌈log(|U |+ 1)⌉.

Finally, we show that we can locally simulate Algorithm 2 by only knowing the forest
induced by vertices in U and the degree of each node U in the original forest.

▶ Lemma 22 (Local Sequential Simulation). Let F be an arbitrary forest and U ⊆ V (F) be
a non-empty subset. Let layer : V (F) 7→ N ∪ {∞} be the mapping computed by Algorithm 2
when given F and U as input. There exists a sequential algorithm running in O(|U |) space
with the following guarantee: The input of the algorithm is the forest F [U] and the degree
degF (u) of each node u ∈ U in the forest F . The algorithm outputs for each node v ∈ U its
layer layer(v).

A.2 Subtree Rake and Compress
Algorithm 3 computes a partial strict H-decomposition with O(log n) layers where each node
in a subtree of size at most x is assigned to one of the layers. We later set x = nδ/10. The
correctness follows from the key structural property that partial strict H-decompositions are
closed under taking minimums (Lemma 5).

Algorithm 3 SubTreeRC Algorithm.

1: function SubTreeRC(forest F , x ∈ N)
2: Let U1, U2, U3, . . . , Uk ⊆ V (F) such that for every node v ∈ V (F) contained in a

subtree of size at most x in F , there exists some j ∈ [k] such that Uj is a good subset for
v (see Definition 18)

3: layerj ← ConservativePeeling(F, Uj) for every j ∈ [k] ▷ layerj : V (F) 7→ N ∪ {∞}
4: layer(v) = minj∈[k] layerj(v) ▷ layer : V (F) 7→ N ∪ {∞}
5: return layer

▶ Lemma 23. The algorithm above computes a partial H decomposition layer : V (F) 7→
[⌈log(|V (F)|+ 1)⌉] ∪ {∞} such that layer(v) <∞ for every node v ∈ V (F) contained in a
subtree of size at most x.

Proof. Lemma 20 states that layerj is a strict partial H-decomposition for every j ∈ [k].
Hence, Lemma 5 implies that layer is also a strict H-decomposition. Moreover, for every
node v ∈ V (F) contained in a subtree of size at most x in F , there exists some j ∈ [k] such
that Uj is a good subset for v. Thus, Lemma 21 gives that layerj(v) < ∞ and therefore
layer(v) <∞. ◀

We are now ready to prove Lemma 8.

Proof of Lemma 8. We first run the balanced exponentiation algorithm of Lemma 19 which
runs in O(log log n) rounds and needs Õ(n) global space. As a result, we obtain a collection of
non-empty subsets U1, U2, . . . , Uk ⊆ V (F) satisfying the three properties stated in Lemma 19.
In particular, for each j ∈ [k], there exists one machine which has stored F [Uj]. As
|Uj | = O(nδ) and F is a forest, F [Uj] indeed fits into one machine. Moreover, one can
compute in O(1) rounds for each node v ∈ V (F) its degree degF (v) and store degF (v) for
every node v ∈ Uj in the same machine as we store F [Uj] using standard MPC primitives
[27]. Let layerj ← ConservativePeeling(F, Uj). Lemma 22 implies that we can compute

DISC 2023

23:20 Conditionally Optimal Parallel Coloring of Forests

layerj(u) for every node u ∈ Uj locally on the machine that stores F [Uj] without any further
communication. Then, in O(1) rounds we can compute layer(v) = minj∈[k] layerj(v) for
every v ∈ V using the fact that we can sort N items in O(1) rounds in the low-space MPC
model with Õ(N) global space [27]. In more detail, we create one tuple (v, layerj(v)) for
every j ∈ [k] and u ∈ Uj and one tuple (v,∞) for every node v ∈ V (F). Then, we sort the
tuples according to the lexicographic order. Given the sorted tuples, it is straightforward
to determine layer(v) for every v ∈ V . As

∑k
j=1 |Uj | = Õ(n), it follows that the algorithm

needs Õ(n) global space. It thus remains to argue about the correctness, which directly
follows from the third property of Lemma 19 and Lemma 23. ◀

B Coloring, MIS, Matching, and H-decomposition with Optimal
Space

In this section we show how to obtain optimal global space by equipping the algorithm from
Theorems 13, 16, and 17 with suitable pre- and processing steps that free additional space.

▶ Theorem 1. There are deterministic O(log log n)-round low-space MPC algorithms for 3-
coloring, maximal matching and maximal independent set (MIS) on forests. These algorithms
use O(n) global space.

Proof. We perform the standard procedure of iteratively putting in layer i nodes of degree
at most 2 for i = 1 to O(log log n). This removes O(poly log n) fraction of the nodes since
each iteration layers a constant fraction of the nodes. Therefore, the new number of nodes
is n′ = n/ poly log n, and an MPC algorithm using Õ(n′) global space uses O(n) words of
global space.

So we freeze these initial O(log log n) layers obtain G′ remaining graph with n′ =
n/ poly log n nodes. Then we apply Theorem 13 to compute a 3-coloring in G′ in O(log log n)
rounds and O(n) global space. Finally we complete the solution on the nodes in the frozen
layers one layer at a time taking an additional O(log log n) rounds.

The claim for MIS and maximal matching follows by the proofs of Theorem 16 and
Theorem 17 respectively after computing the H-decomposition and the 3-coloring. ◀

Using a similar preprocessing step, we can also show that a strict H-decomposition of
Theorem 12 can be computed with optimal global space.

▶ Theorem 2. There is a deterministic O(log log n)-rounds low-space MPC algorithm that
computes a strict H-decomposition with O(log n) layers on forests in O(n) global space.

Proof. Same as above, iteratively putting in layer i the pivot nodes and nodes of degree 1 as
in Algorithm 1 of Algorithm 1 for i = 1 to O(log log n). By Corollary 11 and using Lemma 7
with x = 1 and ℓ = 3, we get that each iteration layers a constant fraction of nodes, which
implies that O(poly log n) fraction of the nodes are removed after O(log log n) iterations.

Now we have a partial strict H-decomposition if we assign layer ∞ to the remaining
nodes. These nodes form a graph G′ with n′ = n/ poly log n nodes, and so we can compute
a strict H-decomposition on G′ using Algorithm 1 in O(log log n) rounds and Õ(n′) = O(n)
global space. Therefore, we have computed a strict H-decomposition of G in O(log log n)
rounds and in O(n) global space. ◀

	1 Introduction
	1.1 MPC Model and Exponential Speed-Up Over LOCAL Algorithms
	1.2 Our Technical Contribution
	1.3 Our Method in a Nutshell
	1.4 Further Related Work
	1.5 Outline

	2 Preliminaries and Notation
	3 Strict Lg-decompositions
	4 Strict Lg-decomposition in MPC
	5 Coloring, MIS, and Matching
	A Massively Parallel Subtree Rake and Compress
	A.1 The Conservative Peeling Algorithm
	A.2 Subtree Rake and Compress

	B Coloring, MIS, Matching, and Lg-decomposition with Optimal Space

