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—— Abstract

We revisit the A PRIORI TSP (with independent activation) and prove stronger approximation
guarantees than were previously known. In the A PRIORI TSP, we are given a metric space (V,¢)
and an activation probability p(v) for each customer v € V. We ask for a TSP tour T for V that
minimizes the expected length after cutting 7" short by skipping the inactive customers.

All known approximation algorithms select a nonempty subset S of the customers and construct
a master route solution, consisting of a TSP tour for S and two edges connecting every customer
v € V'\ S to a nearest customer in S.

We address the following questions. If we randomly sample the subset S, what should be the
sampling probabilities? How much worse than the optimum can the best master route solution
be? The answers to these questions (we provide almost matching lower and upper bounds) lead to
improved approximation guarantees: less than 3.1 with randomized sampling, and less than 5.9 with
a deterministic polynomial-time algorithm.
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1 Introduction

Many algorithms for stochastic discrete optimization problems sample a sub-instance, solve
the resulting deterministic problem (often by some approximation algorithm), and extend
this solution to the original instance [8, 11, 14, 15, 16, 25]. A nice and well-studied example
is the A PRIORI TRAVELING SALESPERSON PROBLEM (A PRIORI T'SP), which is the focus of
this paper. What guarantee can we obtain by such an approach, even if we take an optimal
sample? If we sample randomly, according to which distribution? What guarantee can we
obtain by a deterministic polynomial-time algorithm? These are the questions addressed in
this paper.

In the A PRIORI TSP (with independent activation), we are given a (semi-)metric space
(V,c); the elements of V' are called customers. Each customer v comes with an activation
probability 0 < p(v) < 1, so it will be active independently with probablity p(v). However,
we need to design a TSP tour T (visiting all of V') before knowing which customers will be
active. After we know which customers are active we can cut the tour 7" short by skipping
the inactive customers. The goal is to minimize the expected cost of the resulting tour
(visiting the active customers).
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Note that computing an optimum a priori tour is APX-hard as the metric TSP is
APX-hard [23], which is the special case where all activation probabilities are 1. We
study approximation algorithms. A p-approximation algorithm for the A PRIORI TSP is a
polynomial-time algorithm that computes a tour of expected cost at most p - OPT for any
given instance, where OPT denotes the expected cost of an optimum a priori tour.

Shmoys and Talwar [25] devised a randomized 4-approximation algorithm and a determin-
istic 8-approximation algorithm. A randomized constant-factor approximation algorithm was
discovered independently by Garg, Gupta, Leonardi and Sankowski [11]. The randomized
Shmoys—Talwar algorithm easily improves to a 3.5-approximation by using the Christofides—
Serdyukov algorithm instead of the double tree algorithm as a subroutine for TSP (as
noted by [7]), and slightly better using the new Karlin—Klein—Oveis Gharan algorithm [20].
The deterministic algorithm was improved to a 6.5-approximation by van Zuylen [28]; a
slight improvement of this guarantee follows from the recent deterministic version of the
Karlin—Klein—Oveis Gharan algorithm [21].

All known approximation algorithms for the A PRIORI TSP are of the following type.
Select a nonempty subset S of customers and find a TSP tour for S (the master tour).
Connect each other customer v € V' \ S with a pair of parallel edges to a nearest point u(v)
in the master tour. We call this a master route solution. Once we know the set of active
customers, we pay for the entire master tour (pretending to visit also its inactive customers!)
and pay 2¢(u(v),v) for each active customer v outside S to cover the round trip visiting v
from p(v). See Figure 1 for an example. Of course, we could cut the resulting tour shorter
(we visit some inactive customers, and we visit some customers several times), but we will
not account for this possible gain (unless fewer than two customers are active).

_/o o——9 'e)
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Figure 1 Left: A master route solution with a master tour (green, thick) and connections of the
other customers to that master tour (red, curved). Right: After knowing which customers are active
(filled), the master route solution reduces to a tour visiting all of the master tour and the other
active customers.

1.1 Motivating questions

We start by reviewing the randomized algorithm by Shmoys and Talwar [25]. If fewer than
two customers are active, any a priori tour can be cut short to a single point, resulting in cost
zero. The algorithm by Shmoys and Talwar [25] selects each customer v independently into
S with probability p(v): exactly the activation probability. Assuming that the resulting set
S is nonempty, there exists an associated master route solution with expected cost at most

MR(S) = Eavp [1A22 : (OPTTSP(S, c)+2- Z (v, S)>‘| .

vEA

Here OPTysp(5,¢) denotes the length of an optimum TSP tour for S, and ¢(v,S) =
min{c(v, s) : s € S} denotes the distance between v and a nearest customer in S (which is
zero if v € S); moreover, E 4., denotes the expectation when the set A of active customers is



J. Blauth, M. Neuwohner, L. Puhlmann, and J. Vygen

sampled with respect to the given activation probabilities. Later on, IP 4., is used analogously.
We multiply with 1|4;>2 (which is 1 if |[A] > 2 and 0 otherwise) because the cost of the
solution is zero if fewer than two customers are active.

If there is a customer d with p(d) =1 (a depot), then S is never empty and we can bound

MR(S) < OPTrp(S,0) +2-Eany | > 0,8\ {v})].
veA\{d}

Note that the above upper bound also accounts for connecting active customers in .S to
the nearest other customer in S, which is not necessary but will allow the following. Taking
the expectation over the random choice of S, an upper bound on the expected cost of that
master route solution is

Es~p MR(S)] < Esp [OPTrse(S,¢)] +2-Esey | D 0,5\ {v})
ves\{d}

as the probability distributions to choose S and A are identical and the vertices are sampled in-
dependently. Since }°, ¢\ (a3 €(v, S\{v}) < OPTrsp(S, ¢) for all S and Eg.p, [OPTrsp (S5, ¢)] <
OPT, where OPT again denotes the expected cost of an optimum a priori tour, this yields

Es-p [MR(S)] < 3-OPT. (1)

The work of Shmoys and Talwar [25] implies that (1) also holds when there is no
depot and when we take the conditional expectation under the condition that |S| > 2 (see
also [28]). The Shmoys-Talwar algorithm cannot find an optimum TSP tour for S but uses
the double tree algorithm with approximation guarantee 2. As noted by [7], one can as well
use the Christofides—Serdyukov algorithm with approximation guarantee %, or in fact any
a-approximation algorithm for TSP. Then the expected cost of the resulting master route
solution is at most (o + 2) - OPT.

This motivates the following questions:

(i) Is it optimal to sample S with exactly the activation probabilities (which is crucially
used in the above analysis), or can we improve on the factor o + 2 by sampling fewer
or more?

(ii) How bad can the best master route solution be? We will call this the master route
ratio: by the Shmoys—Talwar analysis, it is at most 3.

(iii) Can we obtain an approximation guarantee equal to the master route ratio by a master
route solution based on random sampling, assuming that we can find optimum TSP
tours? What is the best we can achieve with a %—approximation algorithm for TSP?

(iv) Can we obtain a better deterministic algorithm without a better TSP algorithm?

We give almost complete answers to all these questions.

1.2 Our results

The possibility that we sample the empty set or that no customer is active causes significant
complications. The previous works [25] and [28] gave ad hoc proofs that their algorithms
(which are also formulated with a depot) generalize to the non-depot case. We aim for a
general reduction, losing only an arbitrarily small constant: Fortunately, instances in which
the expected number of active customers is small can be solved easily with an approximation
factor 3+ ¢ (for any € > 0; similar to [8]), and hence much better than the known guarantees.
For instances with a large expected number of active customers, one can assume without
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loss of generality (with an arbitrarily small loss) that there is a customer d that is always
active, i.e., p(d) = 1 (see full version of this paper [4]). So we assume this henceforth and
call d the depot. We summarize (and refer to the full version [4] for the proof):

» Theorem 1. Let e > 0 and p > 3 be constants. If there exists a (randomized) polynomial-
time p-approzimation algorithm for instances (V,c,p) of the A PRIORI TSP that have a
depot (i.e., a customer d with p(d) = 1), then there is a (randomized) polynomial-time
(p + €)-approzimation algorithm for general instances of the A PRIORI TSP.

The Shmoys-Talwar algorithm [25] includes a customer v into S with probability p(v):
the sampling probability is exactly the activation probability. Although this is natural and
allows for the simple analysis in Section 1.1 (assuming a depot), we show that this is not
optimal. Decreasing the probability of including a customer into the master tour improves
the approximation guarantee. To be more precise, in Section 2, we analyze the following
sampling algorithm for A PRIORI TSP instances with depot. Let f: (0,1] — [0,1] with
f(1)y=1.

(i) Sample a subset S C V by including every customer v independently with probability
Fpw)).
(ii) Call an a-approximation algorithm for (metric) TSP in order to compute a TSP tour
for S, which serves as master tour.
(iii) Connect every customer outside S to the nearest customer in S by a pair of parallel
edges.
For a given instance this algorithm has expected approximation ratio at most

1
opT  Es~ror | OPTysp(S,¢) + 2 - ; p(v) - (v, ) (2)

(where 3 :=1). Shmoys and Talwar [25] used the identity function f(p) = p. It is easy to
construct examples where sampling less or more is better. For example, if ¢(v,w) =1 for all
v,w € V with v # w (and all activation probabilities except for the depot are tiny), it is best
to include only the depot in the master tour: this yields an approximation ratio of 2 instead
of 3. On the other hand, if V' = {vg,...,v,—1} and ¢(v;,v;) = min{j —i,n+1i—j} fori < j
(i.e., (V,¢) is the metric closure of a cycle), the more we sample, the better. However, even if
we choose f depending on the instance, there is a limit on what we can achieve:

» Theorem 2. No matter how f is chosen, even depending on the instance in an arbitrary
way, the sampling algorithm has no better approximation ratio than
2.655 even if it computes an optimum TSP tour on the sampled customers;
3.049 assuming that we never compute a TSP tour on the sampled customers of cost less
than 1.4999 times the cost of an optimum tour.

See the full version of our paper [4] for the proof. We do not have a matching upper
bound, but we come close. For a = 1.5 we prove (in Section 2):

» Theorem 3. For a = 1.5 and f(p) =1 — (1 — p)? with o = 0.663, the sampling algorithm
for A PRIORI TSP instances with depot has approximation guarantee less than 3.1.

Figure 2 shows this function f. Together with Theorem 1 this immediately implies one of
our main results:

» Corollary 4. There is a randomized 3.1-approximation algorithm for A PRIORI TSP.
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Figure 2 The function p — 1 — (1 — p)? with ¢ = 0.663 (blue, solid) defines the sampling
probability in Theorem 3, which is always at most the identity function (green, dotted), and for
small p approximately equal to p — o - p (red, dashed).

We conjecture that the bounds in Theorem 2 are actually attained by the sampling
algorithm with f(p) = 1 — (1 — p)?, independent of the instance, where o is a positive
constant that depends on « only. See Comment 17 for details.

Having explored the limits of the random sampling approach, one might ask what is the
limit of choosing an optimal master route solution. By van Zuylen’s work [28], the answer to
this question is the key to obtain a better deterministic approximation algorithm. Let us
define:

» Definition 5 (master route ratio). The master route ratio is defined to be the supremum of

min {MR(S) : 0 #S CV}
OoPT

taken over all A PRIORI TSP instances (where 3 :=1).

It is very easy to see that the master route ratio is at least 2 (for example, if ¢(v, w) =1
for all v,w € V with v # w). By the Shmoys-Talwar analysis, it is at most 3. We show in
the full version of our paper [4]:

» Theorem 6. The master route ratio for A PRIORI TSP instances with depot is at least
1_@%1/2 > 2.541 and less than 2.6.

We conjecture that the master route ratio is exactly 1_6%1/2

As van Zuylen’s [28] analysis reveals (cf. [4]), her algorithm is a (2 + ap)-approximation
algorithm if the master route ratio is p and we have an algorithm for TSP that guarantees
to produce a tour of cost at most « times the value of the subtour relaxation. So our new
upper bound on the master route ratio immediately implies a better guarantee (combining
Theorems 1 and 6 with o = 3 [27]):

» Corollary 7. There is a deterministic 5.9-approzimation algorithm for A PRIORI TSP. _

1.3 Our techniques

The lower bounds (Theorem 2 and the lower bound in Theorem 6) are obtained by analyzing
simple examples. The main technical difficulty is in proving the upper bounds.

14:5

ISAAC 2023



14:6

Improved Guarantees for the A Priori TSP

To prove Theorem 3 and the upper bound in Theorem 6, we will show that it suffices to
consider instances in which all customers (except the depot) have the same tiny activation
probability. We call these instances normalized.

» Definition 8. Let € > 0. An instance (V,c,p) of A PRIORI TSP is called e-normalized if
the instance contains a depot d € V' (with p(d) = 1), and p(v) = ¢ for allv € V' \ {d}.

Given an instance of A PRIORI TSP with a depot d, one can transform it to a normalized
instance by replacing each customer v € V'\ {d} by many copies, each with the same tiny
activation probability, such that the probability that at least one of these copies is active
is roughly p(v). This way, the master route ratio and the approximation guarantee of the
sampling algorithm can only get worse. More precisely, we show in the full version of this

paper [4]:

» Lemma 9. Let (g;)ien € (0,1]N with lim; o e; = 0. Let T be the class of all e-normalized
instances with € = €; for some i € N. Then
(i) The master route ratio is the same when restricting it to instances in I and when
restricting it to all instances with depot.
(i) Let o € (0,1). Every upper bound on (2) for f(p) = op Vp € (0,1) for all instances in
T implies the same upper bound on (2) for f(p) =1 — (1 — p)? for arbitrary instances
with depot.

On a high level, our proofs of Theorem 3 and Theorem 6 are similar. In both cases
we will design a linear program that encodes the metric ¢ by variables and minimizes the
expected cost of an optimum a priori tour subject to (a relaxation of) the constraint that
the expected cost of the output of the sampling algorithm is at least 1 (for Theorem 3) or
the expected cost of any master route solution is at least 1 (for Theorem 6), respectively.
Then the reciprocals of the LP values yield the desired upper bounds.

However, this approach has to overcome several obstacles. First, it is not obvious how
to encode the metric ¢ by finitely many variables, given that we need to consider arbitrary
instance sizes. We do this by fixing an optimum a priori tour T* (a cyclic order of the
customers) and carefully aggregating distances of customer pairs with the same number of
hops in between on T*. Of course we exploit the structure of normalized instances.

In the end, we will (almost) ignore variables that correspond to a very large number of
hops (where it is very unlikely that none of the customers “in between” is active). These
variables have negligible impact because the probability that these edges occur decreases
exponentially with increasing number of hops on 7%, whereas the average length of these
edges can only grow linearly due to the triangle inequality.

The next idea is to consider certain structured solutions only. Rather than connecting a
customer v that is not in the master tour to the nearest customer p(v) in the master tour, we
consider only two possible members of the master tour: we traverse 7™ from v in each of the
two possible directions, and consider the first customer that we meet and that is contained
in our master tour. None of these two may be a nearest one in the master tour, but we
still obtain an upper bound. For bounding the master route ratio, we will in addition only
consider master tours whose customers are equidistantly distributed on T* (except for the
depot).

In this way, we obtain an optimization problem for a fixed uniform activation probability
p (i-e., for p-normalized instances). However, we must let p — 0 according to Lemma 9
and hence need a description that is independent of p. This is another major obstacle. To
overcome it, we use a second level of aggregation (buckets, rounding the number of hops to
integer multiples of, say, ﬁ). However, this causes several difficulties. In the case of the
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sampling algorithm, describing the expected cost of the output of the sampling algorithm
in terms of the buckets is nontrivial. In case of the master route ratio, the same holds for
master route solutions and actually requires a third level of aggregation (bucket intervals).

In the end, we obtain (in both cases) a single, relatively compact, linear program that
yields an upper bound for all instance sizes and all activation probabilities from a sequence
that converges to zero. We solve the dual LP numerically and just need to check feasibility
to prove the desired upper bounds.

1.4 Further related work

The TSP has also been studied under the aspect of robust optimization, where the set of
customers that need to be visited is known in advance, but the edge lengths are chosen
probabilistically or even adversarially [10, 26]. The a priori optimization problem where the set
of customers is chosen adversarially is known as universal TSP [11, 13, 24]. The probabilistic
version that we consider was introduced by Jaillet [17] and Bertsimas [2]. Since then, various
aspects of the problem have been investigated, including the asymptotic behavior of random
instances [2, 3, 5, 17, 18], online variants [11], or exact algorithms [1]. Approximation
algorithms have also been studied for general probability distributions [6, 13, 24].

Other problems that have been considered in an a priori setting include vehicle routing,
traveling repairman, Steiner tree, and network design [7, 8, 9, 11, 14, 15, 16, 22]. However,
none of these works managed to determine the approximation guarantee of their algorithms
exactly.

Previous approaches to design a linear program that yields the approximation ratio of a
certain algorithm for some optimization problem (e.g., [12, 19]) typically required an infinite
family of linear programs and could not obtain a bound for general instances by just solving
a single linear program.

2 Upper bound on the approximation ratio of random sampling

In this section we will prove Theorem 3. As mentioned earlier, we will design a single
linear program such that the reciprocal of its optimum value is an upper bound on the
approximation ratio of the sampling algorithm for a certain class of normalized instances. For
this sake, let 8,b9 > 0 be constants that we will choose later. We will consider e-normalized
instances where ¢ is of the form ¢ = % for some odd integer b > by. The meaning of these
constants will become clear in Section 2.2. For such instances we will obtain an upper bound
on the approximation ratio of the sampling algorithm, when sampling each customer with
probability op for o = 0.663 (in addition to the depot). Combined with Lemma 9, this
immediately yields the same upper bound on the approximation guarantee of the sampling
algorithm that samples each customer v with probability 1 — (1 — p(v))? for arbitrary A
PRIORI TSP instances with depot.

2.1 An optimization problem to bound the approximation ratio

In this section, we first describe an upper bound for all p-normalized instances (for a fixed
uniform activation probability p) by a single optimization problem. We will consider the
algorithm that samples each customer with probability op. Let T* be a fixed optimum a

priori tour, with customers appearing in the order vg, v1,...,v,_1; here vg denotes the depot.

Let v; :=vg for i <0 or i >n— 1. For k € Z>; we define

Crp = pz'zc(vj,vj-i-k)-

JEL
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Observe that only finitely many summands are nonzero. See Figure 3 for an example.
Since ¢ is a metric, the numbers C}, are nonnegative and satisfy the triangle inequality, that
is, for all 4,5 > 1

CiJrj < G +Cj. (3)

Figure 3 The depot vg is the white circle at the top; the tour T™ is drawn in black. Adding up

the costs of the edges marked in red gives £2.
P

Moreover, we can express the expected cost of T in terms of the C;.

» Proposition 10. The expected cost of T* is exactly

oo

> (1=p) -G (4)

i=1

Proof. Let 1 <i<n—-2and 1< j<n-—i—1. Then v; and v;4; are consecutive active
customers with probability p? - (1 — p)*~!; note that the cost of the edge {v;,v;4,} is counted
with exactly the same coefficient in (4). Moreover, for 1 < j <n — 1, v; is the first active
customer after the depot with probability p- (1 —p)?~', and the cost of the edge {vo,v;}
is counted >37°p? - (1 =p)'~" = p- (1 —p)?~" times in (4). By symmetry, the terms also
match for the last active customer before the depot. <

We now consider the master route solution resulting from sampling each customer with
probability op (in addition to the depot). Let o again denote the approximation guarantee
of the TSP algorithm that we use. We will now show that the expected cost of this master
route solution is at most

00 k—1
0’22(1—Up)k_1 . <a~Ck—|—2p-Zmin {C’i, C’k_i}> ) (5)

k=1 i=1

By the same argumentation as in the proof of Proposition 10, the master tour has expected
cost at most

o0
o Esee(T*[S)] = a-0?- 3 (1—op)~" -,
k=1
where ¢(v) = op for all v € V'\ {d} and ¢(d) = 1.
Next we bound the expected cost of connecting the active customers to the master tour.
Instead of connecting v to the nearest customer in the master tour, we consider only two
options: the first sampled customer that we meet when traversing 7™ from v in either
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direction. Note that sampling vy with probability 1 is equivalent to sampling each v; with
j <0and j > n with probability op. Now, for j € Z and k > 2, the probability that v; and
v;+, are sampled, but none of the intermediate customers is, equals (op)? - (1 — op)k~1. In
this case, the total expected cost of connecting the intermediate active customers can be
bounded by 2p - Zi:ll min{c(vj, vj1:), ¢(vj1i, vj+x)}. Thus we can bound the expected cost
of connecting all active customers to the master tour by

e’} k—1
> o (1—op)* > 2p > min {e(v), v)44), (Vi vj1k)}
k=2 jez i=1
[e%S) k—1
< 20%p*- Y (1—op)* 1Y min ¢ > (v, 0540), Y (vggivj4k)
k=1 i=1 JEZ JEZL

oo k—1
= 20%p%. Z(l —op)kt. Z min Zc(vj,ijri), Zc(vj,vjﬂk,i))
k=1 i=1

JEZ JEZ
oS) k—1
= 20%p- Z(l — ap)k_1 . Zmin {CZ-, Ck,i} .
k=1 i=1

We conclude that the ratio of (5) to (4) is an upper bound on the approximation guarantee
of the sampling algorithm for that instance. Note that the number of customers appears
neither in (4) nor in (5). In other words, minimizing (4) subject to the constraints that (5)
is equal to 1 and the C; are nonnegative and satisfy the triangle inequality (3) yields the
reciprocal of an upper bound on the approximation guarantee of the sampling algorithm on
all p-normalized instances. We arrive at the following optimization problem:

min Z(l —p)~t.C; (Sampling-OP)
i=1
subject to Ci >0 forie N (6)
CZ‘—FC]' > Oi+j for 1,7 €N (7)
9] k—1
Z(l—op)k*1 . (a.0k+2p~2min{C’i, C’k_i}> > o2 (8)
k=1 i=1

Note that in (8) we only require that (5) is at least 1 instead of exactly 1. This does not
change the infimum because we can always scale all the C;’s. We have proved:

» Lemma 11. Let 0 < p < 1. The reciprocal of the value of (Sampling-OP) is an upper
bound on the approzimation guarantee for the sampling algorithm with f(p) = op for all
p-normalized instances. J

2.2 Obtaining a single linear program

Note that we have an infinite set of optimization problems (one for each choice of p), and, in
view of Lemma 9, we have to consider the limit for p — 0.

In the following, we require that p is of the form p = % for some odd integer b > by. Note
that p — 0 as b — oo. In order to obtain a single optimization problem for all such values of
p, we put subsequent C;’s into buckets of size b. More precisely, we define buckets

b 25t

B = > Cj 9)

j=max{1,ib— ble }
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for ¢ > 0. In the following, we show that we can use the constraints in (Sampling-OP) to
generate (slightly relaxed) constraints that only depend on these buckets. First, we note that
the buckets are chosen such that they still satisfy the triangle inequality.

» Proposition 12. For alli,j > 1,
Biy; < B+ B;.

Proof. Indeed, using (7), as illustrated in Figure 4,

LESS b1 b1
2 2 2
Biyj = E : Clitibrk = E :C(iﬂ)bJ*TlJrzk + E :C(iﬂ)bJ*TlJrqu
k—=—b=1 k=0 k=1
2
b—1 b—1

m‘l

(34

(Cibfb;—l+k + Ojb+k) + (Cib+k + Cij*Tchq)

k=0 k=1
bo1 b1
3 3
= E Ciprr + E Cip+r = B;+ Bj. |
b—1 b—1
k=—=% k=—=%
(a) Bog B, Bo B3 By Bs Bg By Bsg By Big
Co C18 Ca7 C36 Cas Cs4 Ce3 C72 Cg1 Cao
(b) . .
—_— —_— —_—

Figure 4 (a): The green dots stand for C1,Cy, ..., and the centers of the buckets (Cjp for i > 1)
are highlighted. Here the bucket size is b = 9, and the blue intervals show the buckets By, B1, Ba, . . .
(b): Combining the triangle inequalities for the C;’s leads to triangle inequalities for the B;’s; here
shown for B; = B3 and B; = Bs: We add up all triangle inequalities for C} from B3 and C} from
Bs where Cy and C, have the same color; illustrated with Cas + Cys < C74 and Cas + Cq1 < Coo.

Next we aim for an upper bound on the left-hand side of (8) that only depends on the
buckets. First we show:

» Lemma 13.

[M]8

k—1 [SSINeN)
(1—op)t. Zmin {Ci, Cr—i} < b- ZZe‘“"’j_l)“’bI’ -min{B;, B;}.
i=1

k=1 i=0 j=0

Proof. For i € Zso, let I; = {max{1,ib — %51},...,ib+ %51} be the set of indices in the
i-th bucket. Then

0 k-1
Z(l - Jp)k_l : Zmin {Ci, Ckfi}
= i=1

k=1

e i )

k=1 /=1
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(1 _ Jp)max{o,i-l-j—l}b X Z Z min{ck7 CZ}

ngt
K

i=0 j=0 kel Lcl;
o] (o]

< Zzef(zﬂrjfl)-gbp, Z Z min{Cy, C¢}.
i=0 j=0 keI, Lel;

In the last inequality we used 1 —x < e™* for all x € R. Now, for 4,j € Z>(, consider the
complete bipartite graph H where one bipartition consists of |I;| copies of every element of
I;, and the other bipartition consists of |I;| copies of every element of I;. Then

> min{Cr, G} = |L]-|L]- )Y min{Cy, Cr}.

(k,0)EE(H) kel Le;

We can partition E(H) into t := |I;| - |I;| perfect matchings M, ..., M;. Then

Z Inin{ck,Cg} = Z Z min{ck,Ce}

(k,0)EE(H) s=1 (k,0)EM,

t
Zmin Z Ck, Z Cy
s=1

(k,£)eM, (k,0)eM,

t
= Y min< |- > Cr |5l Ce
s=1

kel; Lel;

IA

= |L| - |I;| - min{|I;| - B;,|I;| - B;}.

Note that the second equality follows from the fact that V' (H) contains |I;| copies of each
element in I; and vice versa. Moreover, summing over the endpoints of the edges in a perfect
matching in M is the same as summing over V(H). Division by |I;| - |I;| yields

> min{Cx,C¢} < min{|[|- B, |L| - B;} < b-min{B;, B;}. <
kel; tel;
Using Lemma 13 and 8 = bp, the left-hand side of (8) can be upper bounded by

oo

a-Y (1—op)k=t-Cp + 2bp- Z Z e~ (HI=Do  min{B;, B;}
k=1 =0 j=0

a3 (1 opymOkt=S ot gy oy NN e DO min{ B, B;}
k=0 i=0 j=0

< a- Ze_(k_l)'aﬁ B + 28- Z Ze_(”j_l)"’ﬁ -min{B;, B, }. (10)
k=0 i=0 j=0

VAN

The last inequality follows from (1 — ap)’“b_b%l_1 < (1—op)**tand 1+ 2z < e for all
x € R. Note that we still sum over infinitely many variables. Hence, in order to get a finite
linear program, we aim for an upper bound on (10) that only depends on the buckets B;
with ¢ < N for some integer N that we will choose later. For this, we use the triangle
inequality (Proposition 12) to bound the terms depending on buckets B; with ¢ > N by some
term depending on Bj, ..., By only. For large N this will result in a negligible error as the
coefficients in (10) decrease exponentially. In Section 2.4 we prove the following bound on
the error term:

ISAAC 2023
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~Nog
» Lemma 14. Let 61 = Wiﬁil) and dg = (a + eNﬂff(2£IL1)>'(1ieljaﬁ)z (1+N—e"?PN).

Then
a- Z e~k=DeB B 4+ 23 Z e~ (HI=D98  min{B;, B;}
k=N+1 4,j€2>0imax{i,j}>N

N
< ooy e BBt 5, B
k=0

Therefore, we get a lower bound on (Sampling-OP) by minimizing Y -, (1 —p)"~! - C;
subject to (9) and B; > 0 for i > 0, Bitj <B;j+Bjfori,j >1withi+j <N, and

N N j
(a+01)- > e *=1oF. By 4 4p. Zze—“ﬂ Vo8 min{B;, B;} + 62 - By > o2, (11)
k=0 7=0 =0

Note that the objective still contains infinitely many variables and depends on p. The
first problem can easily be resolved by bounding

oo

Z(l _p)ifl Oy > i(l _p)bi+b;21—1 .B; >

1=1 1=0 =0

(1-p) 2. B, (12)

M=

It remains to get rid of the dependence on b and p (recall that p = g 5)- To this end, we
exploit that limp o (1 — 7)(“r b — e=(+3)8 for all i = 0,..., N, and that by Lemma 9,
we can choose bo arbitrarlly large. This will allow us to conclude that we can replace the
objective by Z —(i+2)8 . B, and still obtain an upper bound (see the proof of Lemma 15
for the technical detalls). Putting everything together, we arrive at the following LP.

N
min Z e (tD8 . p, (Sampling-LP)

N N
subject to (a+d1) - Ze_(k_l)'”’e B+ 2By + 48 - ZZe_(i+j_l>'Uﬁ M ; > o2 (13)

k=0 j=0 i=0
B;+ B; > B for 1<i<j< Nwithi+j<N (14)
B, > M;; for0<i<j<N (15)
B; > M;; for0<i<j<N (16)
B,M > 0. (17)

Recall that §; and d9 were defined in Lemma 14. We conclude:

» Lemma 15. Let N be an integer and > 0. The reciprocal of the optimum value of
(Sampling-LP) is an upper bound on the approximation guarantee of the sampling algorithm
for f(p) =1— (1 —p)? (using an a-approximation algorithm for TSP), for all A PRIORI
TSP instances with depot.

Proof. We compare the value of (Sampling-LP) to the value of (Sampling-OP). We showed
above that for any feasible solution C' to (Sampling-OP) we obtain a feasible solution (B, M)
to (Sampling-LP) via (9) and M, ; = min{B;, B;}.

Fix 6 > 0. Then there exists by € N such that for all odd integers b > bg

N N (H‘ )b o i
Y e @28 < (1+5)-Z(1—7) . B; (1+9)- 2(1—7) O
i=0

=0 =0

(12)
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Thus the value of (Sampling-LP) is at most (1 4 ) times the value of (Sampling-OP) with
p= % for all odd integers b > by. Hence, by Lemma 11, (1 + 0) times the reciprocal of the
optimum value of (Sampling-LP) is an upper bound on (2) for all f—normalized instances
for all odd integers b > by. By Lemma 9, the same bound then holds for all instances with
depot. Since this bound holds for all § > 0, it also holds for § = 0. <

2.3 The dual LP

In order to obtain a lower bound on the optimum value of (Sampling-LP), we provide a
feasible solution to the dual linear program. For the dual LP, we introduce variables x; ; for

the inequalities of type (14), variables v; ; and w; ; for the inequalities of type (15) and (16),

respectively, and a variable y for inequality (13). Using these variables, the dual LP looks as
follows:

max o 2.y (Dual-Sampling-LP)
subject to 44 - e (iHi—1)8 -y vij+ws; for 0<i<j <N (18)

IN

N k
(4 81)-e BBy y Z'Uk,j + Zwm +lp—1-62-y

j=k j=0
min{k,N—k} N—k
1
+1lk>o - Z Tik + Z Thyi — Z zij | < e (F+2)8 for 0 <k <N (19)
i=1 i=k 1<i<j<N,
i+i=k
z,y,v,w > 0. (20)

» Corollary 16. Let N be an integer and 8 > 0. For any feasible solution (z,y,v,w) to
(Dual-Sampling-LP), o*/y is an upper bound on the approzimation ratio of the sampling
algorithm with f(p) =1 — (1 — p)? restricted to A PRIORI TSP instances with depot. a

We have computed a dual solution using Gurobi 10.0.1 with o = 1.5, 5 = ﬁ, N = 2500,
and o = 0.663, yielding an upper bound of 3.094 and thus proving Theorem 3. The dual
solution and a Python script that verifies that this is a feasible solution to (Dual-Sampling-LP)
can be found at https://doi.org/10.60507/FK2/JCUIRI. For a = 1, we get an upper
bound of 2.694.

» Comment 17. Solving (Sampling-LP) with the same values for «, 3, N, and o yields an A
PRIORI T'SP instance of the same shape as the lower bound example provided in [4]. Hence
we conjecture that the upper bound given by (Dual-Sampling-LP) converges to the lower
bound given in Theorem 2 for § — 0 and N5 — oco.

2.4 Bounding the error term (Proof of Lemma 14)

We first prove the following auxiliary lemma:

» Lemma 18. Letn € N and g € (0,1). Then

Z kE-g" 1 = q72-(1+nfqn). (21)

k=n+1 (1-a)

Proof. By induction on n. For n = 0, the statement is equivalent to the well-known formula

ik (1-gq)- 1:L
k=1

14:13
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for the expected value of a geometrically distributed random variable. Next, assume that
(21) holds for some n € N. Then

n

- k—1 -1 _ n(2) 4 n
Z k-q Z k-q" (n+1)-q _m.(l—kn—qn)—(n—kl).q

k=n+42 k=n-+1
= Lz-(lenfqnf(nJrl)-(lfq)z) = L12-(n+27q(n+1)),
(1-19q) (1—q)
which is (21) for n + 1. <

Now we are ready to prove Lemma 14:

Proof of Lemma 14. We compute

23 - Z e (iti—1)ah min{B;, B;}
1,j€L>o:max{i,j} >N

N [eS) o0 9]
452 Z e~(iti-DoB . p. 4 93. Z Z e~ (iti-1)of  p.

<
1=0 j=N+1 i=N+1j5j=N+1
_ 4. Ze (108 .. Z 78 4 2. Z L I
j=N+1 i=N+1 j=N+1
— 5 .ie*(ifl)-aﬂ.g L2 i —(i-1)08 .
! ! eNoB(eoB — 1) ¢
=0 i=N+1

Bounding B; < i Bj for ¢ > N by using to the triangle inequality (Proposition 12), we

obtain
Q- Z e~k=Def B 4 23 Z e~ (HI=D98  min{B;, B;}
k=N+1 1,j€L>o:max{i,j} >N
al 2
. —(i—=1)-08 | . —(k—1)-08
< 5 Ze Bz+(a+ —GNUB(BUH ) Z e - B
i=0 E=N+1
N 23
. —(i=1)-08 . B. __“F ). —(k=1)08 I .
<8y Bz—i—(a—i— GNUBWD) 3 kB,
i=0 E=N+1
N
N e R
i=0
where we used Lemma 18 in the final equality with n = N and g = e~ 7. <

3 Discussion

We conjecture (but could not prove) that our lower bound examples (cf. [4]) are really
worst-case examples, and that the values of our linear programs converge to these bounds.

Another question is whether the master route ratio is 1_?%1/2 even for low-activity
instances. Currently we only know the upper bound of 3 from [25], but know no example
with master route ratio larger than H%l/z (and this value is attained by our example only
as the activity tends to infinity). The analogous question applies to the sampling algorithm:
whether we need to consider the low-activity case separately is an open question.
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Finally, we hope that our approach can also help for proving a better bound for related

problems where similar random sampling techniques are used, or for showing that known
bounds are best possible.
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