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Abstract
We study the problem of allocating indivisible goods among n agents with the objective of maximizing
Nash social welfare (NSW). This welfare function is defined as the geometric mean of the agents’
valuations and, hence, it strikes a balance between the extremes of social welfare (arithmetic mean)
and egalitarian welfare (max-min value). Nash social welfare has been extensively studied in recent
years for various valuation classes. In particular, a notable negative result is known when the
agents’ valuations are complement-free and are specified via value queries: for XOS valuations, one
necessarily requires exponentially many value queries to find any sublinear (in n) approximation for
NSW. Indeed, this lower bound implies that stronger query models are needed for finding better
approximations. Towards this, we utilize demand oracles and XOS oracles; both of these query
models are standard and have been used in prior work on social welfare maximization with XOS
valuations.

We develop the first sublinear approximation algorithm for maximizing Nash social welfare
under XOS valuations, specified via demand and XOS oracles. Hence, this work breaks the O(n)-
approximation barrier for NSW maximization under XOS valuations. We obtain this result by
developing a novel connection between NSW and social welfare under a capped version of the agents’
valuations. In addition to this insight, which might be of independent interest, this work relies
on an intricate combination of multiple technical ideas, including the use of repeated matchings
and the discrete moving knife method. In addition, we partially complement the algorithmic result
by showing that, under XOS valuations, an exponential number of demand and XOS queries are
necessarily required to approximate NSW within a factor of

(
1 − 1

e

)
.
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1 Introduction

The theory of fair division has been extensively studied over the past several decades in
mathematical economics [9, 27] and, more recently, in computer science [10]. At the core of
this vast body of work lies the question of finding fair and economically efficient allocations.
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8:2 Sublinear Approximation Algorithm for Nash Social Welfare with XOS Valuations

Through the years and for various settings, different notions of fairness and economic efficiency
have been defined [27]. In particular, social welfare (defined as the sum of the valuations
of the agents) is a standard measure of economic efficiency. On the other hand, egalitarian
welfare (defined as the minimum value across the agents) is a well-established fairness
criterion. Indeed, these two welfare objectives are not necessarily compatible; an allocation
with high social welfare can have very low egalitarian welfare, and vice versa. A meaningful
compromise between the extremes of economic efficiency and fairness is achieved through the
Nash social welfare (NSW). This welfare function is defined as the geometric mean of the
agents’ valuations and it strikes a balance between between the arithmetic mean (average
social welfare) and the minimum value (egalitarian welfare).

The Nash social welfare is known to satisfy fundamental axioms, including the Pigou-
Dalton transfer principle, Pareto dominance, symmetry, and independence of unconcerned
agents [27]. In fact, up to standard transformations, NSW is characteristically the unique
welfare function that satisfies scale invariance along with particular fairness axioms [27]. The
efficiency and fairness properties of NSW have been studied in context of both divisible and
indivisible goods [24, 23, 28, 11]. Specifically, in the context of indivisible goods and additive
valuations, [11] shows that any allocation that maximizes NSW is guaranteed to be envy-free
up to one good.

Significance of Approximating Nash Social Welfare. As mentioned previously, NSW
stands on axiomatic foundations. In particular, the Pigou-Dalton principle ensures that
NSW will increase by transferring, say, δ value from a well-off agent i to an agent j with
lower current value. At the same time, if the relative increase in j’s value is much less than
the drop experienced by agent i, then NSW will not favor such a transfer, i.e., this welfare
function also accommodates for collective efficiency. From a welfarist perspective, NSW
induces a cardinal ordering (ranking) among the allocations and a meaningful goal is to find
an allocation with as high a Nash social welfare as possible. This viewpoint is standard in
cardinal treatments: each agent prefers bundles with higher values, and the social planner
prefers allocations (valuation profiles) with higher welfare (be it social, Nash, or egalitarian).
Indeed, this objective pervades all welfare functions–approximating NSW (in fair division
contexts) is as well motivated as approximating social welfare (when economic efficiency is of
central concern). Furthermore, it is important to note that, while Nash optimal allocations
might satisfy additional fairness guarantees, this fact does not undermine the relevance of
finding allocations with as high an NSW as possible. Overall, computing allocations with
high NSW is a well-justified objective in and of itself. These observations, in particular,
motivate the study of approximation algorithms for NSW maximization.

The current work addresses the problem of allocating indivisible goods with the aim of
maximizing Nash social welfare. We focus on fair division instances wherein the agents’
valuations are XOS functions. Specifically, a set function v is said to be XOS (fractionally
subadditive) iff it is a pointwise maximizer of additive functions, i.e., iff there exists a family
of additive functions F such that v(S) = maxf∈F f(S), for all subsets S. XOS functions
constitute an encompassing class in the hierarchy of complement free valuations. This
hierarchy has been extensively studied in the context of social welfare maximization [29]
and includes, in order of containment, the following valuation classes: additive, submodular,
XOS, and subadditive. As detailed below, these function families have also been the focus of
recent works on Nash social welfare maximization.

Computational results for NSW maximization. In the indivisible-goods context and for
additive valuations, a series of notable works have developed constant-factor approximation
algorithms for the NSW maximization problem. The formative work of Cole and Gkatzelis [14]
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obtained the first constant-factor approximation (specifically, 2e
1/e) for maximizing NSW

under additive valuations. With an improved analysis, an approximation ratio of 2 for the
problem was obtained in [13]. Also, an e-approximation has been achieved [1]; this result
utilizes real stable polynomials. Currently, the best-known approximation ratio for additive
valuations is e1/e [6].

Complementary to these positive results, the work of Garg et al. [19] shows that, under
additive valuations, it is NP-hard to approximate NSW within a factor of 1.069; see also [25].
Furthermore, under submodular valuations, Garg et al. [22] showed that achieving an
approximation ratio better than e/(e− 1) for NSW maximization – in the value-oracle model
– is NP-hard. In the context of additive-like valuations, a (2.404+ ϵ)-approximation guarantee
is known for budgeted additive valuations [20] and a 2-approximation has been obtained for
separable piecewise linear concave (SPLC) valuations [2].

For the broader class of submodular valuations, an O(n log n) approximation guarantee
was achieved in [22]; we will, throughout, use n to denote the number of agents in the fair
division instance. Furthermore, the recent work of Li and Vondrák [26] develops a constant-
factor approximation algorithm for NSW maximization under submodular valuations. This
result builds upon the work of Garg et al. [21] that addresses Rado valuations.

An O(n)-approximation ratio was obtained, independently, in [4] and [12] for the two
most general valuation classes in above-mentioned hierarchy. That is, for NSW maximization
a linear approximation guarantee can be achieved under XOS and subadditive valuations.
Note that these algorithmic results hold under the standard value-oracle model, i.e., they
only require values of different subsets (say, via an oracle). In fact, the work of Barman
et al. [4] shows that, in the value-oracle model, this linear approximation guarantee is the
best possible: under XOS (and, hence, subadditive) valuations, one necessarily requires
exponentially many value queries to find any sublinear (in n) approximation for NSW. This
(unconditional) lower bound necessitates the use of stronger query models for breaking the
O(n)-approximation barrier. Towards this, the current work utilizes demand oracles and
XOS oracles. Both of these query models have been used in prior work on social welfare
maximization under XOS and subadditive valuations [17, 18, 16]. In particular, the work
of Feige [18] uses demand oracles and achieves an e/(e− 1)-approximation ratio for social
welfare maximization under XOS valuations.

Note that, for an XOS valuation v defined (implicitly) by a family of additive functions
F , an XOS oracle, when queried with a subset S, returns a maximizing additive function
f ∈ F , i.e., the oracle returns f ∈ arg maxf ′∈F f ′(S). Also, a demand oracle for valuation v

takes as input prices pg ∈ R, for all the goods g, and returns a set S ⊆ [m] that maximizes
v(S)−

∑
g∈S pg.

1.1 Our Results and Techniques
We develop the first sublinear approximation algorithm for maximizing Nash social welfare
under XOS valuations, specified via demand and XOS oracles.

Main Result. Given XOS and demand oracle access to the (XOS) valuations of n agents,
one can compute in polynomial-time (and with high probability) an O(n53/54) approximation
for the Nash social welfare maximization problem.

Our algorithm (Algorithm 1 in Section 3) first finds a linear (in n) approximation using
essentially half the goods (obtained via random selection). This linear guarantee is achieved
using intricate extensions of the idea of repeated matchings [22] and the discrete moving knife
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8:4 Sublinear Approximation Algorithm for Nash Social Welfare with XOS Valuations

method [4]. A key contribution of the work is to then develop a novel connection between
NSW and social welfare under a capped version of the agents’ valuations. In particular,
we use the linear guarantees as benchmarks and define capped valuations for the agents.
Subsequently, we partition the remaining goods to (approximately) maximize social welfare
under these capped valuations. We show that (for a relevant subset of agents) these steps
bootstrap the linear guarantee into a sublinear bound. Indeed, this connection between
social welfare, under the capped valuations, and NSW might be of independent interest. We
also note that maximizing social welfare under capped valuations (with oracle access to the
agents’ underlying valuations and not the capped ones) is an involved step in and of itself.
We use multiple other techniques to overcome such hurdles and overall obtain a sublinear
approximation ratio through a sophisticated analysis. Section 3 provides a detailed overview
of the algorithm and the main result is established in Section 5.

Furthermore, we complement, in part, the algorithmic result by showing that, under XOS
valuations, an exponential number of demand and XOS queries are necessarily required to
approximate NSW within a factor of

(
1− 1

e

)
; see Theorem 2 in Section 6 of the full version [5].

This unconditional lower bound is obtained by establishing a communication complexity
result: considering (for analysis) a setting wherein each agent holds her XOS valuation, we
show that exponential communication among the agents is required for approximating NSW
within a factor of

(
1− 1

e

)
. Therefore, the query bound here holds not only for demand, XOS,

and value queries, but applies to any (per-valuation) query model in which the queries and
the oracle responses are polynomially large.

1.2 Additional Related Work
Nash social welfare maximization – specifically in the context of indivisible goods – has been
prominently studied in recent years. Along with above-mentioned works, algorithmic results
have also been developed for various special cases. In particular, the NSW maximization
problem admits a polynomial-time (exact) algorithm for binary additive [15, 7] and binary
submodular (i.e., matroid-rank) valuations [3]. Considering the particular case of binary
XOS valuations, Barman and Verma [8] show that a constant-factor approximation for NSW
maximization can be efficiently computed in the value-oracle model. They also prove that,
by contrast, for binary subadditive valuations, any sublinear approximation requires an
exponential number of value queries. Nguyen and Rothe [28] study instances with identical,
additive valuations and develop a PTAS for maximizing NSW in such settings.

In contrast to the above-mentioned results, the current work addresses the entire class of
XOS valuations and obtains a nontrivial approximation guarantee.

2 Notation and Preliminaries

We study the problem of discrete fair division, wherein m indivisible goods have to be
partitioned among n agents in a fair manner. The cardinal preferences of the agents i ∈ [n]
(over a subset of goods) are specified via valuations vi : 2[m] 7→ R+, where vi(S) ∈ R+ is the
value that agent i has for subset of goods S ⊆ [m]. We denote an instance of a fair division
problem by the tuple ⟨[n], [m], {vi}i∈[n]⟩.

This work focuses on XOS valuations. A set function v : 2[m] 7→ R+ is said to be XOS
(or fractionally subadditive), iff there exists a family of additive set functions F such that,
for each subset S ⊆ [m], the value v(S) = maxf∈F f(S). Note that the cardinality of the
family F can be exponentially large in m. XOS valuations form a subclass of subadditive
valuations; in particular, they satisfy v(A ∪ B) ≤ v(A) + v(B), for all subsets A, B ⊆ [m].
We use vi(g) as a shorthand for vi({g}), i.e., for the value of good g ∈ [m] for agent i ∈ [n].
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Since explicitly representing valuations (set functions) may require exponential space,
prior works develop efficient algorithms assuming oracle access to the valuations. A basic
oracle access is obtained through value queries: a value oracle, when queried with a subset
S returns the value of S. The current work uses demand oracles and XOS oracles. For an
XOS valuation v defined (implicitly) by a family of additive functions F , an XOS oracle,
when queried with a subset S, returns a maximizing additive function f ∈ F , i.e., the oracle
returns f ∈ arg maxf ′∈F f ′(S). Note that such an additive function f can be completely
specified by listing the values {f(g)}g∈[m]. Also, given that v is XOS and f ∈ F , we have
v(T ) ≥ f(T ), for all subsets T ⊆ [m].

A demand oracle for valuation v takes as input a price vector p = (p1, p2, . . . , pm) ∈
Rm over the m goods (i.e., a demand query) and returns a set S ⊆ [m] that maximizes
v(S) −

∑
g∈S pg. It is known that a demand oracle can simulate a value oracle (via a

polynomial number of demand queries), but the converse is not true [29].
We will, throughout, assume that the agents’ valuations vis are normalized (vi(∅) = 0)

and monotone: vi(A) ≤ vi(B) for all A ⊆ B ⊆ [m].
An allocation A = (A1, A2, . . . , An) is an n-partition of the m indivisible goods, wherein

subset Ai is assigned to agent i ∈ [n]. Each such allocated subset Ai ⊆ [m] will be referred
to as a bundle. The goal of this work is to find allocations with as high a Nash social
welfare as possible. Specifically, for a fair division instance ⟨[n], [m], {vi}i∈[n]⟩, the Nash
social welfare, NSW(·), of an allocation A is the geometric mean of the agents’ valuations
under A, i.e., NSW(A) := (

∏n
i=1 vi(Ai))

1/n. Throughout, we will write N = (N1, . . . , Nn)
to denote an allocation that maximizes the Nash social welfare in the given instance and
will refer to such an allocation as a Nash optimal allocation. In addition, let g∗

i denote
the good most valued by agent i in the bundle Ni, i.e., g∗

i ∈ arg maxg∈Ni
vi(g). We will

assume, throughout, that NSW(N ) > 0 and, hence, vi(g∗
i ) > 0. For the complementary case,

wherein NSW(N ) = 0, returning an arbitrary allocation suffices. With parameter α ≥ 1,
an allocation A = (A1, . . . , An) is said to be an α-approximate solution for the problem of
maximizing Nash social welfare iff NSW(A) ≥ 1

α NSW(N ).
For subsets S, T ⊆ [m], we will use the shorthand S + T := S ∪ T and S − T := S \ T .

Furthermore, for good g ∈ [m], we will write S + g to denote S + {g}.

3 Algorithm and Technical Overview

Our main algorithm (Algorithm 1) consists of the following four phases:
(I) Keep aside a set of high-valued goods M (via the for-loop in Steps 2 to 5) and allocate

n goods via a matching, π between set of agents [n] and leftover goods, [m] \M (in
Step 6).

(II) Randomly partition the remaining goods into two parts, R and R′.
(III) Allocate the subset of goods R among the agents – as bundles X1, X2, . . . , Xn – via a

discrete moving knife procedure.
(IV) From the goods in R′, find an allocation (Y1, . . . , Yn) that (approximately) maximizes

social welfare under (judiciously defined) capped valuations.

Phase I. In the first phase, the algorithm identifies a subset of goods M that are kept
aside while executing the intermediate phases. The algorithm rematches within M before
termination (Step 12). The algorithm populates the set M by repeatedly finding matchings:
it initializes M = ∅, G = [m], and considers the complete weighted bipartite graph between
the set of agents [n] and the set of goods G. The edge between agent i and good g has weight

ITCS 2024



8:6 Sublinear Approximation Algorithm for Nash Social Welfare with XOS Valuations

Algorithm 1 Sublinear approximation for Nash social welfare under XOS valuations.
Input: Instance ⟨[n], [m], {vi}i∈[n]⟩ with demand and XOS oracle access to the (XOS)
valuations vis
Output: Allocation Q = (Q1, . . . , Qn)

1: Initialize M = ∅ and G = [m]
2: for t = 1 to log n do
3: Find matching τt : [n]→ G that maximizes

∏
i∈[n] vi (τt(i))

4: Update G ← G − {τt(i)}i∈[n] and M← M + {τt(i)}i∈[n]
5: end for
6: Find a matching π : [n]→ G that maximizes

∏
i∈[n] vi(π(i))

7: Update G ← G − {π(i)}i∈[n]
8: Randomly partition the set of goods G into R and R′, i.e., each good in G is included in

R, or R′, independently with probability 1/2.
9: Set allocation (X1, X2, . . . , Xn) = DiscreteMovingKnife

(
[n], R, {vi}i∈[n]

)
{This subroutine is detailed in Section 4.3}

10: For each i ∈ [n], set (scaling factor) βi := 1
n ·

1
vi(Xi+π(i))

11: Set allocation (Y1, Y2, . . . , Yn) = CappedSocialWelfare
(
[n], R′, {vi}i∈[n], (βi)i∈[n]

)
{This subroutine is detailed in Section 4.4}

12: Find matching µ : [n]→ M that maximizes
∏

i∈[n] vi (µ(i) + π(i) + Xi + Yi) {Note that
µ assigns to each agent a good from the set M, which was populated in the for-loop.}

13: return allocation (Qi = µ(i) + π(i) + Xi + Yi)i∈[n]

w(i, g) = log vi(g). The algorithm then computes a maximum-weight matching τ in this
bipartite graph and includes the matched goods {τ(i)}i∈[n] in M (i.e., M← M + {τ(i)}i∈[n]).
Removing the matched goods from consideration, G ← G − {τ(i)}i∈[n], the algorithm repeats
this procedure log n times.

We will show that the set M contains, for each agent i, a distinct good of value at least
vi(g∗

i ) (see Lemma 3); recall that g∗
i is the most-valued good in agent i’s optimal bundle,

g∗
i ∈ arg maxg∈Ni

vi(g). At a high level, this property will be used to establish approximation
guarantees for agents i that receive sufficiently high value via just the single good g∗

i .
The algorithm also seeds the allocation of each agent by finding a matching π (in Step

6) – between [n] and the goods [m] \M – that maximizes the product (equivalently, the
geometric mean) of the valuations. Each agent i is permanently assigned the good π(i).

Here, if the product of the values is zero (
∏n

i=1 vi(π(i)) = 0), we consider matchings
that maximize the number of agents who achieve a nonzero value (i.e., consider maximum-
cardinality matchings with nonzero values) and among them select the one that maximizes
the product.1 Furthermore, all agents z ∈ [n] with vz(π(z)) = 0 will be excluded from
consideration till Step 12 of the algorithm, i.e., such agents z will not participate in phases
three and four. For ease of presentation, we assume that there are no such agents (i.e.,
vi(π(i)) > 0 for all i). This assumption does not affect the approximation guarantee; see the
remark at the end of Section 5.1. Furthermore, the assumption ensures that parameters βis
considered in the fourth phase (Step 10) are well-defined.

1 Such a matching can be computed efficiently as a maximum-cardinality maximum-weight matching in
the agents-goods bipartite graph; here the edge weight between agent i and good g is set to be log vi(g),
for nonzero vi(g)s.
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Phase II. The remaining goods G = [m] \ (M + π([n])) are partitioned randomly into two
subsets R and R′. Intuitively, the first phase addresses agents i for whom good g∗

i ∈ Ni by
itself achieves a sublinear guarantee. Complementarily, the random partitioning and the
subsequent phases are essentially aimed at agents j for whom all the goods in Nj are of
sufficiently small value. This small-valued goods property (specifically, vj(g) ≤ 1√

n
vj(Nj),

for all g ∈ Nj) ensures that, with high probability and for relevant agents j, both the
values vj(Nj ∩ R) and vj(Nj ∩ R′) are within a constant factor of vj(Nj). We prove this
via concentration bounds (see Lemma 4). Phases III and IV utilize the subsets of goods R
and R′, respectively. The fact that, for relevant agents j, a near-optimal bundle exists in
both R and R′ enables us to (a) obtain a linear approximation for the concerned agents in
Phases III and (b) bootstrap the linear guarantee to a sublinear one in Phase IV. Notably,
the current bootstrapping method goes beyond the substantial collection of techniques that
have been recently developed for NSW maximization and it might be applicable in other
resource-allocation contexts.

Phase III. This phase partitions the subset of goods R. As mentioned above, our aim
here is to obtain a linear approximation for an appropriate set of agents. Towards that,
we consider agents i with the property that vi(g) ≲ 1

n vi(Ñi), for a near-optimal bundle Ñi

and all goods g ∈ Ñi; see Section 4.3 for details. Now, to achieve a linear approximation
guarantee for such agents i, we develop a discrete moving knife subroutine (Algorithm 2 in
Section 4.3). Moving knife methods, in general, start with agent-specific (value) thresholds
and then iteratively assign bundles (to the agents) that satisfy these thresholds. In the
current context and to address the relevant subset of agents, we first restrict the valuation
of each agent j to the subset of goods that are individually of small value (for j) and then
execute the moving knife method. This modification ensures that the developed subroutine
finds an allocation (X1, . . . , Xn) with the desired linear approximation guarantee.

Phase IV. A distinguishing idea in the current work is to use vi(Xi)s (which provide a
linear approximation for a relevant subset of agents) as a benchmark and bootstrap towards
the desired sublinear bound in this phase. In particular, we use the values achieved in the
allocation computed in Phase III – i.e., in (X1, . . . , Xn) – to define, for each agent i, a
scaling factor βi := 1

n ·
1

vi(Xi+π(i)) (Step 10). Furthermore, we consider (capped) valuation

v̂i(T ) := min
{

1√
n

, βivi(T )
}

, for all subsets T ⊆ R′.
The algorithm partitions the remaining subset of goods R′ in Step 11 by executing the

subroutine CappedSocialWelfare. The objective of the subroutine is to (approximately)
maximize social welfare under v̂is. Intuitively, the parameters βjs are set to ensure that, when
maximizing social welfare under v̂js, one prefers agents i for whom vi(Xi+π(i)) is much smaller
than their optimal value vi(Ni). In Section 4.4, we detail the CappedSocialWelfare
subroutine and show that its computed allocation (Y1, . . . , Yn) bootstraps the approximation
guarantee towards the desired sublinear bound.

Note that maximizing social welfare is usually not aligned with the goal of maximizing
NSW; an allocation with high social welfare can leave a small subset of agents with zero value
and, hence, such an allocation would have zero Nash social welfare. Hence, approximating
Nash social welfare by approximately maximizing social welfare (under capped valuations) is
an interesting connection. This connection builds on the intricate guarantees obtained in
the other phases and, in particular, it entails: (i) carefully defining the capped valuations
functions v̂is such that (a non-trivial fraction of) agents who have received low value in
previous phases receive a high value in this phase, and (ii) maximizing social welfare under
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8:8 Sublinear Approximation Algorithm for Nash Social Welfare with XOS Valuations

v̂is, with oracle access to the underlying valuations vis. Here, requirement (ii) is nontrivial,
since oracles for the valuations, vis, need to be appropriately modified to address v̂is. Such a
modification is simple for value oracles, but not for demand and XOS oracles. We develop
subroutine CappedSocialWelfare (detailed in Section 4.4) that overcomes these challenges
and returns the desired allocation (Y1, . . . , Yn).

After these four phases, the algorithm finds a matching µ into the set of goods M,
which was initially kept aside. The matching µ maximizes the product of the valuations
with offset Xi + Yi + π(i) (Step 12).2 Finally, each agent i ∈ [n] is assigned the bundle
Qi := π(i) + Xi + Yi + µ(i).

In Section 4, we detail the above-mentioned phases and establish relevant guarantees for
each. The phases work in close conjunction with each other; detailed guarantees from earlier
phases support the successful executions of the latter ones. Overall, an intricate analysis is
required to obtain the desired sublinear approximation guarantee. We accomplish this in
Section 5 and establish the approximation ratio for the returned allocation Q = (Q1, . . . , Qn).
Specifically, we prove the following theorem in Section 5.

▶ Theorem 1 (Main Result.). Given instance ⟨[n], [m], {vi}i∈[n]⟩, with XOS and demand
oracle access to (monotone and XOS) valuations vis, Algorithm 1 computes (with high
probability) an O(n53/54) approximation to the optimal Nash social welfare.

We complement our algorithmic result, in part, with a query complexity result. We prove that
exponential communication is required to approximate NSW within a factor of (1−1/e). This
lower bound on communication complexity directly provides a commensurate lower bound
under the considered query models, i.e., under value, demand, and XOS queries. To prove
the negative result we reduce the problem of MultiDisjointness to that of maximizing
Nash social welfare. MultiDisjointness is a well-studied problem in the communication
complexity literature. In this problem we have n players and each player i ∈ [n] holds a
subset Bi of a ground set of elements [t]. It is known that distinguishing between the cases
of totally intersecting (i.e., there is an element that is included in Bi for all i ∈ [n]) and
totally disjoint (i.e., Bi ∩Bj = ∅ for all i ̸= j) requires Ω (t/n) communication. We reduce
this problem to NSW maximization with each agent i holding her XOS valuation vi; in the
reduction t dictates the number of additive functions that define the XOS valuation of each
agent. The key idea here is to show that there exists XOS valuations such that in the totally
intersecting case the optimal NSW is sufficiently high and, complementarily, in the totally
disjoint case it is sufficiently low. That is, between the two underlying cases, the optimal
NSW bears a multiplicative gap of at least (1− 1/e). Therefore, the reduction shows that
approximating NSW within a factor of (1− 1/e) necessarily requires Ω (t/n) communication.
With an exponentially large t, we obtain the desired query lower bound. Formally, we
establish the following theorem (proof deferred to the full version [5].)

▶ Theorem 2. For fair division instances with XOS valuations and a fixed constant ε ∈ (0, 1],
exponentially many demand and XOS queries are necessarily required for finding an allocation
with NSW at least

(
1− 1

e + ε
)

times the optimal.

2 Note that the matchings in Steps 3, 6, and 12 can be efficiently computed by finding a maximum-weight
matching in a bipartite graph between the agents and the relevant goods; here, the weight of each edge
is set as the log of the appropriate value.
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4 Phases of Algorithm 1

4.1 Phase I: Isolating High-Valued Goods via Repeated Matching

Recall that M denotes the set of goods identified in Phase I of Algorithm 1 (see the for-
loop at Step 2). Also, N = (N1, . . . , Nn) denotes a Nash optimal allocation and g∗

i ∈
arg maxg∈Ni

vi(g), for all agents i ∈ [n]. As mentioned previously, Algorithm 1 keeps the
goods in M aside while executing intermediate phases and at the end rematches within M
(Step 12). The following lemma shows that M admits a matching h wherein each agent
receives a good with value at least that of g∗

i . At a high level, this lemma will be used to
establish an approximation guarantee for agents i that receive sufficiently high value via just
the single good g∗

i . The proof of this lemma is deferred to the full version [5].

▶ Lemma 3. There exists a matching h : [n] 7→ M such that vi(h(i)) ≥ vi(g∗
i ), for all agents

i ∈ [n].

4.2 Phase II: Randomly Partitioning Goods

The following lemma addresses (near-optimal) bundles N i ⊆ [m] with no high-valued goods.
For such bundles, the lemma shows that randomly partitioning the goods – into two subsets
R and R′ – preserves, with high probability, sufficient value of N i in both the parts, i.e.,
both vi(N i ∩ R) and vi(N i ∩ R′) are comparable to vi(N i). Hence, for bundles with no
high-valued goods, the lemma implies that one can obtain sufficiently high welfare (Nash
and social) in R as well as R′. The proof of the lemma is deferred to the full version [5].

▶ Lemma 4. Let G be a set of indivisible goods, vi be the XOS valuation of an agent i ∈ [n],
and N i ⊆ G be a subset with the property that maxg∈Ni

vi(g) ≤ 1√
n

vi(N i). Then, for a
random partition of G into sets R and R′, we have

Pr
{

vi(N i ∩ R) ≤ 1
3vi(N i)

}
≤ exp

(
−
√

n

18

)
and

Pr
{

vi(N i ∩ R′) ≤ 1
3vi(N i)

}
≤ exp

(
−
√

n

18

)
.

Here, random subset R ⊆ G is obtained by selecting each good in G independently with
probability 1/2, and R′ := G − R.

Applying union bound, we extend Lemma 4 for allocations (N1, . . . , Nn) to obtain:

▶ Lemma 5. Given a set of indivisible goods G along with XOS valuations vi for agents i ∈ [n],
and a partition (N1, . . . , Nn) of G, let subset T := {i ∈ [n] : maxg∈Ni

vi(g) ≤ 1√
n

vi(N i)}.
Then, for a random partition of G into sets R and R′, we have

Pr
{

vi(N i ∩ R) ≥ 1
3vi(N i), for all i ∈ T

}
≥ 1− n exp

(
−
√

n

18

)
and

Pr
{

vi(N i ∩ R′) ≥ 1
3vi(N i), for all i ∈ T

}
≥ 1− n exp

(
−
√

n

18

)
.

Here, random subset R ⊆ G is obtained by selecting each good in G independently with
probability 1/2, and R′ := G − R.

ITCS 2024
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4.3 Phase III: Discrete Moving Knife
This section presents the DiscreteMovingKnife subroutine (Algorithm 2). As mentioned
previously, the subroutine is designed to address agents i ∈ [n] for whom there exists (near-
optimal) bundles Ñi with the property that max

g∈Ñi
vi(g) ≤ 1

16n vi(Ñi). Specifically, the
subroutine obtains a linear approximation with respect to any allocation (Ñ1, . . . , Ñn) and for
the corresponding set of agents T := {j ∈ [n] : max

g∈Ñj
vj(g) ≤ 1

16n vj(Ñj)}. Indeed, the
DiscreteMovingKnife subroutine does not explicitly require as input an (near-optimal)
allocation (Ñ1, . . . , Ñn).

Given a set of indivisible goods R to partition, the subroutine (Algorithm 2) first finds, for
each agent j ∈ [n], a subset of goods Gj ⊆ R that solely consists of small-valued goods, i.e.,
Gj satisfies vj(g) < 1

16n vj(Gj) for all g ∈ Gj . The set Gj is computed by iteratively removing
goods that violate the small-value requirement (see the while-loop in Step 3 of Algorithm 2).
Observe that, by construction, for each j, when the while-loop (Step 5) terminates the set Gj

satisfies vj(g) < 1
16n vj(Gj) for all g ∈ Gj . Also, note that, as Gj shrinks in the while-loop,

the value vj(Gj) decreases. However we show that, for any allocation (Ñ1, . . . , Ñn) and any
agent i from the set T := {j ∈ [n] : max

g∈Ñj
vj(g) ≤ 1

16n vj(Ñj)}, the computed Gi still
satisfies Gi ⊇ Ñi.

That is, to obtain a linear approximation for agents in T , it suffices to find an allocation
(X1, . . . , Xn) with the property that vi(Xi) ≥ 1

16n vi(Gi) for all i ∈ T . The subsequent
steps of the DiscreteMovingKnife subroutine find such an allocation. In particular, for
each agent j ∈ [n], the subroutine restricts attention to the set Gj , i.e., considers valuation
v′

j(S) := vj(S ∩Gj), for all subsets S ⊆ R (Step 7). This construction ensures that for each
agent j ∈ [n] and all goods g ∈ R we have v′

j(g) ≤ 1
16n v′

j(Gj) = v′
j(R).

The subroutine then goes over all the goods in R in an arbitrary order and adds them
one by one into a bundle P , until an agent a calls out that her value (under v′

a) for P is
at least 1

16n v′
a(R). We assign these goods to agent a and remove them (along with agent

a) from consideration (Step 12). The subroutine iterates over the remaining set of agents
and goods. Note that the subroutine only requires value-oracle access to the valuations
vjs.3 The following lemma (proof in full version [5]) shows that the computed allocation
(X1, X2, . . . , Xn) achieves the desired linear approximation.

▶ Lemma 6. Let ⟨[n], R, {vi}i∈[n]⟩ be a fair division instance with XOS valuations vis. Also,
let (Ñ1, . . . , Ñn) be any allocation with T :=

{
i ∈ [n] : max

g∈Ñi
vi(g) < 1

16n vi(Ñi)
}

. Then,
given value-oracle access to vis, the DiscreteMovingKnife subroutine computes – in
polynomial time – an allocation (X1, . . . , Xn) with the property that vi(Xi) ≥ 1

16n vi(Ñi) for
all i ∈ T .

4.4 Phase IV : Maximizing Capped Social Welfare
The section presents the CappedSocialWelfare subroutine (Algorithm 3) that maximizes
social welfare under capped versions of the given valuations vis. Specifically, given a fair
division instance ⟨[n], R′, {vi}i∈[n]⟩ and parameters β1, . . . , βn ∈ R+, we define capped
valuations, for each agent i ∈ [n], as follows: v̂i(S) := min

{
1√
n

, βivi(S)
}

for all subsets S4.

3 We can efficiently simulate the value oracle for v′
j as follows: for any queried subset S, the value v′

j(S)
can be obtained by querying for vj(Gj ∩ S).

4 Algorithm 1 invokes the subroutine CappedSocialWelfare with βi = 1
n

1
vi(Xi+π(i)) . However, the

results obtained in this section hold for any positive βis.
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Algorithm 2 DiscreteMovingKnife.
Input: Instance ⟨[n], R, {vi}i∈[n]⟩ with value-oracle access to the valuations vis
Output: An allocation (X1, X2, . . . , Xn)

1: For each agent j ∈ [n], initialize set Gj = R
2: for j = 1 to n do
3: while there exists a good g ∈ Gj such that vj(g) ≥ 1

16n vj(Gj) do
4: Update Gj ← Gj − {g}
5: end while
6: end for
7: Define v′

j(S) := vj(S ∩Gj) for all agents j ∈ [n] and subsets S ⊆ R
8: Initialize set of goods Γ = R along with agents A = [n] and bundles Xj = ∅, for all

j ∈ [n]. Also, set P = ∅.
9: while Γ ̸= ∅ and A ̸= ∅ do

10: Pick an arbitrary good g ∈ Γ, and update P ← P + {g} along with Γ← Γ− {g}
11: if there exists an agent a ∈ A such that v′

a(P ) ≥ 1
16n v′

a(R) then
12: Assign Xa = P and update A← A− {a} along with P = ∅
13: end if
14: end while
15: If Γ ̸= ∅, update Xn ← Xn + Γ
16: return allocation (X1, X2, . . . , Xn).

Since the valuations vis are XOS, the functions v̂is are subadditive. Also, note that,
using the value oracle for vi, we can easily implement the value oracle for v̂i. However, a
key hurdle for the subroutine is that it does not have demand oracles for v̂is; otherwise, one
could directly invoke the approximation algorithm of Feige [18] to maximize social welfare.
We design the subroutine to overcome this hurdle and (approximately) maximize the social
welfare under v̂is, using (XOS and demand) oracle access to vis.

Our approximation guarantee (for social welfare under capped valuations) holds for
instances ⟨[n], R′, {vi}i⟩ wherein there exists an allocation (O1, . . . , On) and a subset of
agents A ⊆ [n] that satisfy
P1: The welfare

∑
i∈A v̂i(Oi) ≥ 26

27
√

n.
P2: For each agent i ∈ A and all goods g′ ∈ Oi, the value v̂i(g′) ≤ 1

2
√

n
.

When, in the analysis of the main algorithm (i.e., in Section 5), we invoke the guarantee
obtained here we will show that these two properties hold for the instance at hand. Also,
note that both the properties express conditions in terms of the capped valuations v̂is. In
particular, Property P2 states that, for each agent i in the designated set A, all the goods
in the bundle Oi are of sufficiently small value. Property P1 demands that we have high
enough welfare (under v̂i) among the bundles Oi assigned to agents i ∈ A.

For XOS valuation vi, let Fi denote the family of additive functions that define vi.
Throughout this section, we will write fi,S to denote the additive function in Fi that induces
vi(S), i.e., for any subset S,

fi,S := arg max
f∈Fi

f(S) (1)

The subroutine CappedSocialWelfare (Algorithm 3) starts with empty bundles,
Yi = ∅ for all agents i ∈ [n], and with the set of unallocated goods Y0 = R′. Throughout,
Y0 denotes the set of unallocated goods with the maintained allocations (Y1, . . . , Yn). The
subroutine iteratively transfers goods from Y0 and between bundles as long as an increase in

ITCS 2024
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Algorithm 3 CappedSocialWelfare.
Input: Instance I = ⟨[n], R′, {vi}i∈[n]⟩, with demand and XOS oracle access to the valuations
vis, and parameters {βi}i∈[n]
Output: Allocation (Y1, . . . , Yn)

1: Initialize Yi = ∅, for all i ∈ [n], and Y0 = R′ {Y0 is the set of unallocated goods}
2: Flag← true
3: while Flag do
4: For every good g ∈ Y0 set price pg = 0
5: For every agent j ∈ [n] and bundle Yj , query the XOS oracle for vj to find additive

function fj,Yj
(·). For each g ∈ Yj , set price pg = 2βj fj,Yj

(g)
6: for each agent j ∈ [n] do
7: For each good g ∈ R′ with v̂j(g) ≤ 1

2
√

n
, set price qj

g = pg

8: For each good g ∈ R′ with v̂j(g) > 1
2

√
n

, set price qj
g =∞

9: Let Dj = {g1, . . . , g|Dj |} be the demand set under valuation vj and prices qj
g/βj

{Set Dj is obtained via the given demand oracle for vj . The goods in this set,
g1, . . . , g|Dj |, are indexed in an arbitrary order.}

10: Let k be the minimum index such that v̂j({g1, . . . gk}) ≥ 92
225

1√
n

11: Set D̂j = {g1, . . . , gk}
{In case v̂j(Dj) < 92

225
√

n
, set D̂j = Dj}

12: end for
13: if there exists an agent a ∈ [n] such that v̂a(D̂a) +

∑
j∈[n]\{a} v̂j(Yj − D̂a) ≥∑n

j=1 v̂j(Yj) + 1
225

√
n

then
14: Assign Ya = D̂a

15: For all j ∈ [n] \ {a}, update Yj ← Yj − D̂a.
16: Also, update the set of unallocated goods Y0 = R′ \

(
∪n

j=1Yj

)
17: else
18: Flag← false
19: end if
20: end while
21: return Allocation (Y1, . . . , Yn).

social welfare (with respect to v̂is) is obtained. Throughout its execution, the subroutine
considers the efficacy of transferring a subset of goods D̂a, to agent a, based on the current
(social welfare) contribution of each good g ∈ D̂a. In particular, for each agent j, we consider
the contribution of the goods g ∈ Yj with respect to the additive function that induces vj(Yj).
Therefore, the sum of these contributions over g ∈ Yj is equal to vj(Yj). For every good g we
set the price pg to be 2βj times g’s contribution (see Step 5). The price of the unallocated
goods is set to be zero. Then, bearing in mind property P2, we set agent-specific prices
qj

gs to ensure that for agent j only goods with small-enough value are eligible for transfer
(Steps 7 and 8). Scaling qj

gs appropriately for each agent j, the algorithm finds a demand
set Dj under vj (Step 9). For each agent j, the candidate set D̂j is obtained by selecting
a cardinality-wise minimal subset of Dj of sufficiently high value (Steps 10 and 11). We
will prove that, until the social welfare (under v̂js) of the maintained allocation (Y1, . . . , Yn)
reaches a high-enough value, assigning D̂a to an agent a (and removing the goods in D̂a

from the other agents’ bundles) increases the welfare (Step 13). That is, for any considered
allocation (Y1, . . . , Yn) with social welfare less than a desired threshold, the if-condition in
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Step 13 necessarily holds; see Lemma 10. This lemma will establish the main result of this
section (Theorem 7 below) that lower bounds the social welfare – under v̂is – of the computed
allocation.

▶ Theorem 7. Let ⟨[n], R′, {vi}i∈[n]⟩ be a fair division instance in which there exists an
allocation (O1, . . . , On) and a subset of agents A ⊆ [n] that satisfy properties P1 and P2
mentioned above. Then, given XOS and demand oracle access to the (XOS) valuations vis,
Algorithm 3 computes (in polynomial time) an allocation (Y1, . . . , Yn) such that

n∑
j=1

v̂j(Yj) ≥ 2
25

∑
j∈A

v̂j(Oj).

Note that the welfare bound obtained in this theorem is with respect to the agents in A.
For our analysis, it suffices to have a guarantee of this form. It is, however, interesting to note
that (under property P1) we also obtain a 13-approximation for the optimal social welfare:∑n

j=1 v̂j(Yj) ≥ 2
25

∑
j∈A v̂j(Oj) ≥ 2

25
26

√
n

27 ≥
√

n
13 ; recall that, by definition, each function v̂j

is upper bounded by 1√
n

and, hence, the optimal social welfare under these functions is at
most

√
n.

To prove Theorem 7, we first establish the following lemmas.

▶ Lemma 8. Throughout its execution, Algorithm 3 maintains

v̂j(Yj) = βjvj(Yj) <
1√
n

for all agents j ∈ [n].

Proof. Fix any agent j ∈ [n] and consider any iteration in which j receives set D̂j

(i.e., Step 14 executes with a = j). We will first show that v̂j(D̂j) < 1√
n

. Note that
D̂j ⊆ Dj , where Dj is the demand set queried for agent j in Step 9; in particular,
Dj ∈ arg maxS

(
vj(S)−

∑
g∈S

qj
g

βj

)
. Hence, the goods in Dj have finite prices, qj

g < ∞.
Consequently, for each g ∈ Dj , we have v̂j(g) ≤ 1

2
√

n
; see Steps 7 and 8. Furthermore, given

that D̂j is a minimal set (within Dj) with value at least 92
225

√
n

(Steps 10 and 11) and v̂j is
subadditive, we obtain v̂j(D̂j) ≤ 92

225
√

n
+ 1

2
√

n
< 1√

n
.

This bound implies that throughout the subroutine’s execution agent j receives a bundle
Yj of value (under v̂j) less than 1√

n
: At the beginning of the subroutine Yj = ∅, i.e., v̂j(Yj) = 0.

Furthermore, between executions of Step 14 specifically for agent j, goods are only removed
from Yj . Therefore, monotonicity of the function v̂j ensures that v̂j(Yj) < 1/

√
n throughout

the execution Algorithm 3.
By definition, v̂j(Yj) = min

{
1√
n

, βjvj(Yj)
}

. Hence, the inequality v̂j(Yj) < 1√
n

gives us
v̂j(Yj) = βj vj(Yj) < 1√

n
. The lemma stands proved. ◀

The next lemma bounds the loss in welfare due to reassignment of goods in Step 15 of
the subroutine.

▶ Lemma 9. In any while-loop iteration of Algorithm 3, let Yj be the bundle assigned to any
agent j ∈ [n] and pgs be the prices at the start of the iteration (i.e., in Step 5). Then, for all
subsets X ⊆ Yj

v̂j (Yj \X) ≥ v̂j(Yj)− 1
2

∑
g∈X

pg.
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Proof. Note that fj,Yj denotes the additive function that induces vj(Yj) (see equation (1)).
Therefore,

v̂j(Yj) = βjvj(Yj) = βj

∑
g∈Yj

fj,Yj
(g) (via Lemma 8 and definition of fj,Yj

)

= 1
2

∑
g∈Yj

pg (2)

The last inequality follows from how the prices, pgs, were set in Step 5 of Algorithm 3.
Furthermore, using the fact that vj is XOS we obtain

βj vj(Yj \X) ≥ βj

∑
g∈Yj\X

fj,Yj
(g) = 1

2
∑

g∈Yj\X

pg = 1
2

∑
g∈Yj

pg −
1
2

∑
g∈X

pg

(by definition of pg in Step 5)

= v̂j(Yj)− 1
2

∑
g∈X

pg (via (2))

Since the function v̂j is monotone, for any subset X ⊆ Yj , we have v̂j(Yj \X) ≤ v̂j(Yj) <
1√
n

; here, the last inequality follows from Lemma 8. Therefore, v̂j(Yj \X) = βj vj(Yj \X).
These observations establish the desired inequality: v̂j(Yj \X) ≥ v̂j(Yj)− 1

2
∑

g∈X pg. ◀

The next lemma shows that, in Algorithm 3, the social welfare (under v̂js) of the
maintained allocation (Y1, . . . , Yn) keeps on increasing till it reaches 2

25
∑

j∈A v̂j(Oj). That
is, for any considered allocation (Y1, . . . , Yn) with social welfare less than 2

25
∑

j∈A v̂j(Oj),
the if-condition in Step 13 necessarily holds.

▶ Lemma 10. Let (Y1, . . . , Yn) be an allocation considered in any iteration of Algorithm 3
with the property that

n∑
j=1

v̂j(Yj) <
2
25

∑
j∈A

v̂j(Oj).

Then, there exists an agent a ∈ [n] such that

v̂a(D̂a) +
∑

j∈[n]\{a}

v̂j(Yj \ D̂a) ≥
n∑

j=1
v̂j(Yj) + 1

225
√

n
.

Here, set D̂a is as defined in Step 11 of the algorithm.

Proof. First, we express the social welfare of allocation (Y1, . . . , Yn) in terms of the prices
pgs (set in Step 5)

n∑
j=1

v̂j(Yj) =
n∑

j=1
βj vj(Yj) =

n∑
j=1

βj

∑
g∈Yj

fj,Yj
(g) (via Lemma 8 and definition of fj,Yj

)

=
n∑

j=1

∑
g∈Yj

pg

2 =
∑

g∈R′−Y0

pg

2 (considering Step 5)

=
∑
g∈R′

pg

2 (pg = 0, for all g ∈ Y0; Step 4)
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Therefore, the lemma assumption,
∑n

j=1 v̂j(Yj) < 2
25

∑
j∈A v̂j(Oj), reduces to 1

2
∑

g∈R′ pg <
2

25
∑

j∈A v̂j(Oj).
Multiplying both sides of this inequality by 2 gives us∑
g∈R′

pg <
4
25

∑
j∈A

v̂j(Oj) =
∑
j∈A

v̂j(Oj)− 21
25

∑
j∈A

v̂j(Oj) ≤
∑
j∈A

v̂j(Oj)− 21
25

(
26
√

n

27

)
(from property P1)

≤
∑
j∈A

v̂j(Oj)− 182
√

n

225 (3)

For any set S, write cumulative price p(S) :=
∑

g∈S pg. Applying this notation and
rearranging inequality (3) we get5

∑
j∈A

(v̂j(Oj)− p(Oj)) ≥ 182
√

n

225 (4)

Next, we define subset of agents H :=
{

h ∈ [n] : v̂h(Yh) ≥ 1
5

√
n

}
.

The lemma assumption
∑n

j=1 v̂j(Yj) < 2
25

∑
j∈A v̂j(Oj) implies that |H| < 2n

5 . Otherwise,
we would obtain a contradiction:

∑
h∈H v̂h(Yh) ≥ |H|

5
√

n
≥ 2

√
n

25 ≥
2

25
∑

j∈A v̂j(Oj). Recall
that, by definition, the valuations v̂js are upper bounded by 1√

n
.

Inequality (4) can be expressed as∑
j∈A\H

(v̂j(Oj)− p(Oj)) +
∑

h∈A∩H

(v̂h(Oh)− p(Oh)) ≥ 182
√

n

225 .

Therefore, the inequality v̂h(Oh) ≤ 1√
n

and the fact that prices are nonnegative, lead to∑
j∈A\H(v̂j(Oj)− p(Oj)) ≥ 182

√
n

225 − |A∩H|√
n
≥ 182

√
n

225 − |H|√
n
≥ 182

√
n

225 − 2
√

n
5 = 92

√
n

225 .
Hence, there exists an agent a ∈ A \H such that

v̂a(Oa)− p(Oa) ≥ 1
|A \H|

92
√

n

225 ≥ 92
225
√

n
(5)

We will complete the proof by showing that the lemma holds for this specific agent
a ∈ A \H. Towards this, we first bound v̂a(D̂a) and show that this value is at least the price
of the set D̂a.

Recall that set Da is obtained by the demand oracle for agent a (i.e., for valuation va)
under prices qa

g

βa
(Step 9). Furthermore, for the agent a ∈ A \H and all goods g′ ∈ Oa, we

have v̂a(g′) ≤ 1
2

√
n

(via property P2). Hence, all goods g′ ∈ Oa have finite prices that satisfy
qa

g′ = pg′ (Step 7). Hence, Oa a feasible set to be demanded and the demand optimality of
Da gives us va(Da) −

∑
g∈Da

(
pg

βa

)
≥ va(Oa) −

∑
g∈Oa

(
pg

βa

)
. Multiplying throughout by

βa > 0 we obtain

βava(Da)−
∑

g∈Da

pg ≥ βava(Oa)−
∑

g∈Oa

pg ≥ v̂a(Oa)−
∑

g∈Oa

pg (By definition of v̂a)

≥ 92
225
√

n
(via (5))

5 Recall that the prices pgs are nonnegative.
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Since the the prices are non-negative, βava(Da) ≥ 92
225

√
n

. That is, in Step 11 for agent a

the desired set D̂a ⊆ Da can be found with value v̂a(D̂a) ≥ 92
225

√
n

. In addition, the demand
optimality of Da implies that all the goods g ∈ Da have finite prices. Therefore, v̂a(g) ≤ 1

2
√

n

for all goods g ∈ Da ⊇ D̂a. This bound and the selection of Da gives us

v̂a(D̂a) ≤ 92
225
√

n
+ 1

2
√

n
<

1√
n

(6)

We will next show that v̂a(D̂a) is at least the price of the set D̂a. Write fa,Da
(·) to

denote the additive function that induces va(Da); in particular, va(Da) =
∑

g∈Da
fa,Da

(g).
The demand optimality of Da, under the prices qa

g

βa
, implies fa,Da

(g)− qa
g

βa
≥ 0 for all goods

g ∈ Da. Equivalently, βafa,Da(g)− qa
g ≥ 0 for all goods g ∈ Da ⊇ D̂a. Using the bound we

obtain

v̂a(D̂a)−
∑

g∈D̂a

pg = βava(D̂a)−
∑

g∈D̂a

pg (via (6) and the definition of v̂a)

≥
∑

g∈D̂a

βafa,Da
(g)−

∑
g∈D̂a

pg (since va is XOS)

=
∑

g∈D̂a

(βafa,Da(g)− pg) ≥ 0.

That is,

v̂a(D̂a) ≥
∑

g∈D̂a

pg (7)

Using 7 we can bound the change in social welfare when D̂a is assigned to agent a:

v̂a(D̂a)− v̂a(Ya)+
∑

j∈[n]\{a}

(
v̂j(Yj \ D̂a)− v̂j(Yj)

)

≥
(

v̂a(D̂a)− v̂a(Ya)
)
− 1

2
∑

g∈D̂a

pg ≥
(

v̂a(D̂a)− v̂a(Ya)
)
− v̂a(D̂a)

2

(via Lemma 9 and (7))

= 1
2 v̂a(D̂a)− v̂a(Ya) ≥ 92

450
√

n
− v̂a(Ya) (via (6))

≥ 92
450
√

n
− 1

5
√

n
= 1

225
√

n
. (since a ∈ A \H, i.e., a /∈ H)

Hence, for agent a we necessarily obtain the desired increase in social welfare:

v̂a(D̂a) +
∑

j∈[n]\{a}

v̂j(Yj \ D̂a) ≥
n∑

j=1
v̂j(Yj) + 1

225
√

n
.

This completes the proof. ◀

We now restate and prove Theorem 7.
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▶ Theorem 7. Let ⟨[n], R′, {vi}i∈[n]⟩ be a fair division instance in which there exists an
allocation (O1, . . . , On) and a subset of agents A ⊆ [n] that satisfy properties P1 and P2
mentioned above. Then, given XOS and demand oracle access to the (XOS) valuations vis,
Algorithm 3 computes (in polynomial time) an allocation (Y1, . . . , Yn) such that

n∑
j=1

v̂j(Yj) ≥ 2
25

∑
j∈A

v̂j(Oj).

Proof. The contrapositive of Lemma 10, implies that if there does not exist an agent a such
that v̂a(D̂a) +

∑
j ̸=a v̂j(Yj − D̂a) ≥

∑n
j=1 v̂j(Yj) + 1

225
√

n
(i.e., the if-condition in Step 13 is

not satisfied), then
∑n

j=1 v̂j(Yj) ≥ 2
25

∑
j∈A v̂j(Oj). Therefore, the algorithm terminates only

when we have the desired approximation to the welfare among agents in A. This establishes
the correctness of Algorithm 3.

For the run-time analysis, note that in every iteration of the while-loop in the algorithm
the social welfare increases by at least 1

225
√

n
. Since the functions v̂js are upper bounded by

1√
n

, the maximum possible social welfare is
√

n. Hence, the while-loop iterates at most 225n.
Given that each iteration of the loop executes in polynomial time (using value, demand, and
XOS oracle access to the valuations vjs), we get that the algorithm computes an allocation
in polynomial time. This establishes the theorem. ◀

5 Sublinear Approximation Algorithm for Nash Social Welfare

The section establishes our main result, the approximation ratio of Algorithm 1 for Nash
social welfare, through a baroque case analysis. Recall that Algorithm 1 first removes n log n

goods by taking repeated matchings. Then, the remaining goods are randomly partitioned
into subsets R and R′. A discrete moving knife subroutine is executed over the goods in
R (Algorithm 2) and Algorithm 3 partitions the goods in R′ to (approximately) maximize
social welfare under the capped valuations v̂is.

▶ Theorem 1 (Main Result.). Given instance ⟨[n], [m], {vi}i∈[n]⟩, with XOS and demand
oracle access to (monotone and XOS) valuations vis, Algorithm 1 computes (with high
probability) an O(n53/54) approximation to the optimal Nash social welfare.

Recall that Q = (µ(i) + π(i) + Xi + Yi)i∈[n] denotes the allocation returned by Algorithm
1; here we use notation as in Algorithm 1. Also, as before, N = (N1, . . . , Nn) denotes a
Nash optimal allocation and g∗

i = arg maxg∈Ni
vi(g) for all agents i ∈ [n]. For analytic

purposes, we will consider the allocation in which the goods g∗
i are included in the bundles

Qi = µ(i) + π(i) + Xi + Yi, in lieu of the goods µ(i); specifically, throughout this section
write Q∗

i := g∗
i + π(i) + Xi + Yi, for all agents i ∈ [n], and allocation Q∗ := (Q∗

1, . . . , Q∗
n).

The next lemma (proof in the full version [5]) shows that the Nash social welfare of
allocation Q is within a factor of 1/2 of the Nash social welfare of the allocation Q∗.

▶ Lemma 11. Let Q = (µ(i) + π(i) + Xi + Yi)i∈[n] denote the allocation computed by
Algorithm 1 and write allocation Q∗ = (Q∗

1, . . . , Q∗
n) with bundles Q∗

i := g∗
i + π(i) + Xi + Yi,

for all i ∈ [n]. Then, NSW(Q) ≥ 1
2 NSW(Q∗).
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[n]

T1 T2 T3

P P

P + T3

U U

vi(g
∗
i ) ≥

1

256
√
n
vi(Ni)

1

16n logn
vi(Ni) ≤ vi(g∗i ) <

1

256
√
n
vi(Ni) vi(g

∗
i ) <

1

16n logn
vi(Ni)

vi
(
Ni ∩

(
M + π([n])

))
≥

1

16
vi(Ni) vi

(
Ni ∩

(
M + π([n])

))
<

1

16
vi(Ni)

vi
(
Xi + π(i)

)
≥

1

4
√
n
vi(Ni) vi

(
Xi + π(i)

)
<

1

4
√
n
vi(Ni)

Figure 1 The partitions (of the set of agents [n]) used in the analysis of Algorithm 1.

For a case analysis, we fist partition the agents into different types, T1, T2, and T3,
depending on the value they have for their g∗

i ; see Figure 1. Specifically,

T1 :=
{

i ∈ [n] : vi(g∗
i ) ≥ 1

256
√

n
vi(Ni)

}
,

T2 :=
{

i ∈ [n] : 1
16n log n

vi(Ni) ≤ vi(g∗
i ) <

1
256
√

n
vi(Ni)

}
, and

T3 :=
{

i ∈ [n] : vi(g∗
i ) <

1
16n log n

vi(Ni)
}

.

Note that agents in T1 achieve an O(
√

n) approximation if they receive their optimal goods
g∗

i s. To show that most other agents also get a sublinear approximation, we sub-divide the
sets T2 and T3 based on the subsets computed in Algorithm 1.

In particular, we partition T2 into two subsets: P :=
{

i ∈ T2 : vi

(
Ni ∩ (M + π([n]))

)
≥

1
16 vi(Ni)

}
and P :=

{
i ∈ T2 : vi

(
Ni ∩ (M + π([n]))

)
< 1

16 vi(Ni)
}

. Note that the valuation
vi is XOS (subadditive), hence, for all agents i ∈ P we have vi

(
Ni \ (M+π([n]))

)
≥ 15

16 vi(Ni).
It will also be helpful to consider the following partition of P + T3, based on the values

obtained by Xi (the bundle computed by the discrete moving knife procedure) and the
matched good π(i).

U :=
{

i ∈ P + T3 : vi(Xi + π(i)) ≥ 1
4
√

n
vi(Ni)

}
.

U :=
{

i ∈ P + T3 : vi(Xi + π(i)) <
1

4
√

n
vi(Ni)

}
.

The remainder of the section considers the following two exhaustive cases and shows that
in both we achieve the desired approximation ratio of Algorithm 1.
Case 1: |T1 + P + U | ≥ n

27
Case 2: |U | ≥ 26n

27
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Specifically, in both cases, we show that the allocation Q∗ (and consequently the computed
allocation Q) achieves a sublinear approximation to NSW(N ). The rest of the proof is
structured as follows:

Sublinear Approximation for agents in T1, P , and U : Lemmas 12, 13, and 14.
Linear Approximation for T3 and P : Lemmas 15 and 16.
Sublinear Approximation Guarantee in Case 1: Lemma 17.
Properties for Invoking Algorithm 3: Propositions 18 and 19 build upon Lemmas
15 and 16. They show that, for Case 2, the properties required to apply CappedSocial-
Welfare subroutine hold.
Sublinear Approximation Guarantee in Case 2: Lemma 20.
Theorem 1 finally follows from Lemmas 11, 17 and 20.

We defer all the omitted proofs to the full version of the paper [5].
First for the agents in T1, we have a sublinear approximation.

▶ Lemma 12. For each agent i ∈ T1 we have vi(Q∗
i ) ≥ 1

256
√

n
vi(Ni).

The next lemma addresses agents in the set P =
{

i ∈ T2 : vi

(
Ni∩(M +π([n]))

)
≥ 1

16 vi(Ni)
}

.

▶ Lemma 13. For agents in the set P we have
(∏

i∈P vi(Q∗
i )

)1/n ≥ 1
2

(∏
i∈P

1√
n

vi(Ni)
)1/n

.

The following lemma addresses agents in the set U = {i ∈ P + T3 : vi(Xi + π(i)) ≥
1

4
√

n
vi(Ni)}.

▶ Lemma 14. For each agent i ∈ U we have vi(Q∗
i ) ≥ 1

4
√

n
vi(Ni).

The following lemmas show that even if we restrict attention to the assignments made
before the fourth phase in Algorithm 1 (i.e., if we consider (Xi +π(i))s), with high probability,
each agent i ∈ T3 + P achieves a linear approximation with respect to vi(Ni).

▶ Lemma 15. For each agent i ∈ T3, we have (with high probability) vi(Xi) ≥ 1
64n vi(Ni),

where (X1, . . . , Xn) is the allocation returned by the DiscreteMovingKnife subroutine in
Step 9 of Algorithm 1.

As mentioned previously, for all agents i ∈ P , we have vi

(
Ni \ (M + π([n]))

)
≥ 15

16 vi(Ni).
We prove the following lemma for the set P .

▶ Lemma 16. For every agent i ∈ P , we have (with high probability) vi(Xi + π(i)) ≥
1

64n vi(Ni), where (X1, . . . , Xn) is the allocation returned by the DiscreteMovingKnife
subroutine in Step 9 of Algorithm 1 and π(·) is the matching computed in Step 6 of the
algorithm.

The sublinear approximation ratio6 for Algorithm 1 under Case 1: |T1 + P + U | ≥ n
27 is

established in the following lemma.

▶ Lemma 17. If |T1 + P + U | ≥ n
27 , then the Nash social welfare of allocation Q∗ is at least

c′

n53/54 times the optimal Nash social welfare, NSW(Q∗) ≥ c′

n53/54 NSW(N ). Here, c′ ∈ R+ is
a fixed constant.

6 Recall that for the computed allocation Q we have NSW(Q) ≥ 1
2 NSW(Q∗) (Lemma 11).
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Complementing the previous result, we now consider Case 2: |U | ≥ 26
27 n. Recall that

to apply the guarantee obtained for CappedSocialWelfare (i.e., Theorem 7), we need
the instance at hand to satisfy properties P1 and P2, with some underlying allocation
O = (O1, . . . , On) and set of agents A ⊆ [n]. The following propositions show that these
properties hold for the instance ⟨[n], R′, {vi}i⟩, bundles Oj = Nj ∩ R′ (for all agents j ∈ [n])
and subset A = U . This will enable us to instantiate Theorem 7 in the next subsection.

▶ Proposition 18. If |U | ≥ 26n
27 , then (with high probability) the allocation, O = (O1, . . . , On),

with bundles Oi = Ni ∩R′ (for all i ∈ [n]), and subset A = U satisfy property P1 mentioned
above.

Next, we will address property P2.

▶ Proposition 19. With high probability, for each agent i ∈ U and each good g′ ∈ Nj ∩R′,
we have v̂i(g′) < 1

2
√

n
, i.e., property P2 holds with bundles Oj = Nj ∩ R′ (for all agents

j ∈ [n]) and subset A = U .

Using these conditions, we can prove the sublinear approximation in Case 2.

▶ Lemma 20. If |U | ≥ 26n
27 , then the Nash social welfare of allocation Q∗ is at least c

n53/54

times the optimal Nash social welfare,

NSW(Q∗) ≥ c

n53/54
NSW(N ).

Here, c ∈ R+ is a fixed constant.

5.1 Proof of Theorem 1
We now restate Theorem 1 and show that it follows from Lemmas 17 and Lemma 20.

▶ Theorem 1 (Main Result.). Given instance ⟨[n], [m], {vi}i∈[n]⟩, with XOS and demand
oracle access to (monotone and XOS) valuations vis, Algorithm 1 computes (with high
probability) an O(n53/54) approximation to the optimal Nash social welfare.

Proof. Recall that Q is the allocation returned by Algorithm 1 and N is a Nash optimal
allocation. To prove the theorem, we consider the (previously-mentioned) exhaustive cases:
Case 1: |T1 +U +P | ≥ n

27 . In this case, Lemmas 11 and 17 give us NSW(Q) ≥ 1
2 NSW(Q∗) ≥

c′

2n53/54 NSW(N ).
Case 2: |U | ≥ 26n

27 . Here, via Lemmas 11 and 20, we obtain (with high probability)
NSW(Q) ≥ 1

2 NSW(Q∗) ≥ c
2n53/54 NSW(N ).

This case analysis shows that overall Algorithm 1 achieves an approximation ratio of
O(n53/54) for the Nash social welfare maximization problem, under XOS valuations. The
theorem stands proved. ◀

▶ Remark. Here we address the corner case wherein for some agents z ∈ [n] the value of the
good assigned in Step 6 of Algorithm 1 is zero, i.e., vz(π(z)) = 0. Note that for remaining
agents i, we have vi(π(i)) > 0 and, hence, vi(Xi + π(i)) > 0. Consequently, for such agents i,
the parameter βi (considered in Step 10 of the algorithm) is well-defined.

Note that, if for an agent z we have vz(π(z)) = 0, then z necessarily belongs to either set
T1 or set P . This follows from the observation that, for such an agent z, all the goods in the
set [m] \

(
M + π([n])

)
are of zero value. Equivalently, all the goods of nonzero value for z are
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contained in
(
M + π([n])

)
. Therefore, z has nonzero value for at most n log n + n ≤ 2n log n

goods. For an XOS (subadditive) valuation vz, this implies that vz(g∗
z) cannot be less than

1
16n log n vz(Nz) and, hence, z /∈ T3. Furthermore, the fact that vz

(
[m] \

(
M + π([n])

))
= 0

gives us z /∈ P . Therefore, z must be contained in T1 ∪ P .
We exclude such agents z from phases three and four of Algorithm 1; this ensures that

we do not have to consider βz. Then, such agents z are directly considered in Step 12 with
Xz = Yz = ∅. Since z ∈ T1 ∪ P , the arguments from Lemmas 12 and 13 provide a sublinear
guarantee for z even with Xz = Yz = ∅.

For the remaining agents i (with the property that vi(π(i)) > 0), the guarantees obtained
for phases three and four (in particular, the ones obtained in Lemmas 15 and 16) in fact
improve, since the number of agents under consideration gets reduced. These observations
imply that the sublinear approximation guarantee holds as is in Case 1. For Case 2 (i.e.,
when |U | > 26n/27), note that, U ∩ (T1 ∪ P ) = ∅. Therefore, Lemma 20 is applicable and we
obtain the stated approximation ratio throughout.

6 Conclusion and Future Work

This work breaks the O(n) approximation barrier that holds for NSW maximization under
XOS valuations in the value-oracle model. In particular, using demand and XOS oracles, we
obtain the first sublinear approximation algorithm for maximizing NSW with XOS valuations.
A key innovative contribution of the work is the connection established between NSW and
capped social welfare. This connection builds upon the following high-level idea: to achieve a
sublinear approximation for NSW, it suffices first to obtain an O(n)-approximation guarantee
and, then, ensure that a constant fraction of the agents additionally achieve a sublinear
approximation of their optimal valuation.

Understanding the limitations of demand queries – in the NSW context – is a relevant
direction for future work. While we rule out a (1− 1/e)-approximation with subexponentially
many queries and it is known that NSW maximization is APX-hard under demand queries
(see, e.g., [8]), it would be interesting to obtain stronger inapproximability results. Developing
a sublinear approximation guarantee for subadditive valuations will also be interesting.
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