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Abstract
Deep Neural Networks (DNNs) are becoming common in “learning-enabled” time-critical applications
such as autonomous driving and robotics. One approach to protect DNN inference from adversarial
actions and preserve model privacy/confidentiality is to execute them within trusted enclaves
available in modern processors. However, running DNN inference inside limited-capacity enclaves
while ensuring timing guarantees is challenging due to (a) large size of DNN workloads and (b) extra
switching between “normal” and “trusted” execution modes. This paper introduces new time-aware
scheduling schemes – DeepTrustRT– to securely execute deep neural inferences for learning-enabled
real-time systems. We first propose a variant of EDF (called DeepTrustRT-LW) that slices each
DNN layer and runs them sequentially in the enclave. However, due to extra context switch
overheads of individual layer slices, we further introduce a novel layer fusion technique (named
DeepTrustRT-FUSION). Our proposed scheme provides hard real-time guarantees by fusing multiple
layers of DNN workload from multiple tasks; thus allowing them to fit and run concurrently within
the enclaves while maintaining real-time guarantees. We implemented and tested DeepTrustRT ideas
on the Raspberry Pi platform running OP-TEE+DarkNet-TZ DNN APIs and three DNN workloads
(AlexNet-squeezed, Tiny Darknet, YOLOv3-tiny). Compared to the layer-wise partitioning approach
(DeepTrustRT-LW), DeepTrustRT-FUSION can schedule up to 3x more tasksets and reduce context
switches by up to 11.12x. We further demonstrate the efficacy of DeepTrustRT using a flight controller
(ArduPilot) case study and find that DeepTrustRT-FUSION retains real-time guarantees where
DeepTrustRT-LW becomes unschedulable.
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1 Introduction

The emergence of modern IoT-specific applications (such as autonomous vehicles, drones, and
cognitive robots, among others) coupled with advances in computing power and hardware
efficiency pushed artificial intelligence toward embedded devices. Engineers in modern
safety-critical applications are progressively deploying more complex deep learning models to
meet the need for on-device intelligence [24]. Many safety-critical learning-enabled systems
also have stringent timing (viz., “real-time”) requirements. For example, an autonomous
vehicle must periodically scan and recognize objects in its surroundings. This is often
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performed by executing a deep neural network (DNN) inference chain. Any delay in the
object recognition process may jeopardize decision-making, thus threatening the safety of
the vehicle, passengers, and others around it.

Executing DNN models on end-user devices introduces new security and confidentiality
challenges. Since most autonomous systems collect sensitive information (e.g., location and
driving dynamics, reconnaissance images, medical records), data leakage from the learning
task results in privacy concerns. Further, a compromised system could redistribute proprietary
models (e.g., parameters, intermediate results, final outputs), leaking the intellectual
property of the model provider. For instance, researchers have demonstrated attacks such as
membership inference [28,37], fault injection [14,27], and input reconstruction [11], which
can leak private model information and cause misclassification.

One way to tackle the DNN confidentiality problem is to execute the inference tasks
inside trusted enclaves such as Intel SGX [2] or ARM TrustZone [5] available in modern
processors. Enabling trusted execution for DNN workloads is challenging as most DNN
tasks are compute/memory-heavy and do not fit within the enclave memory. To put this
in context, VGG-16 [38], an image classification task, requires 528 MB of memory for
runtime computations. In contrast, OP-TEE [29], an open-source TrustZone stack, only
supports 16 MB of enclave memory. To address this issue, researchers proposed various
techniques to “slice” and execute DNN workload inside trusted enclaves [9]. However, they
are designed for general-purpose mobile/edge computing platforms (i.e., do not provide
real-time guarantees). Simply retrofitting existing frameworks without considering periodic,
deadline-based real-time tasks will not effectively ensure the dependability requirements of
learning-enabled hard real-time systems. For instance, although we can split the DNN model
into multiple partitions [16, 31, 35, 41], as we shall see in this paper (Section 4.2), slicing
and moving inference tasks back and forth between the trusted and normal execution mode
results in extra delays due to high context switch overheads. This may cause some (or all!)
critical tasks to miss their deadlines [7].

Hence, our research aims to address the following problem.

The confidentiality of DNN models running on an untrusted device can be maintained by
executing them within trusted enclaves.
Challenge: How do we ensure compute-heavy real-time DNN tasks fit in limited capacity
enclaves while retaining their timing guarantees (deadlines)?

In response to the above problem, we develop scheduling models (called DeepTrustRT)
that ensure a set of learning-enabled real-time tasks can retain model confidentiality. Our
first attempt to make the DNN inference tasks trusted and time-aware relies on a slicing
mechanism that partitions DNN models layer-by-layer [41]. The idea is to sequentially send
one DNN layer at a time to the enclave, perform its computation, and get the results back.
However, a single layer may often not fit in the enclave due to its large size. Hence, we
use the Deep Compression [19] to reduce DNN model size considering the enclave capacity
(Section 4.1). We then use the compressed model and enable real-time scheduling capabilities
for the existing (non-real-time) layer-wise partitioning idea. We call our first approach
DeepTrustRT-LW. We also derive related schedulability conditions (Section 4.2).

We find that despite real-time guarantees, DeepTrustRT-LW results in poorer throughput
(i.e., fewer tasks are schedulable) due to high context switch overheads introduced by
the layer-by-layer partitioning technique. Hence, we further optimize DeepTrustRT-LW
with a novel “fusion” approach that selectively groups multiple layers from multiple tasks,
considering enclave capacity and deadline constraints (Section 5). We name this technique
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Figure 1 High-level schematic of the scheduling techniques used in the work. Due to the large size
of a DNN model, often it is not feasible to fit within the enclave. If we slice the model layer-by-layer
to fit in the enclave and send them sequentially (left rectangle, named DeepTrustRT-LW), extra
context switch overheads may violate real-time constraints. Hence, we also introduce a novel “layer
fusion” technique (named DeepTrustRT-FUSION, right rectangle) that groups multiple layers from
multiple tasks together to reduce context switch costs and results in better schedulability.

DeepTrustRT-FUSION. Figure 1 illustrates the key intuition of DeepTrustRT-FUSION for a
three-task system. When DNN layers are sent sequentially to the enclave, extra context switch
overheads cause longer response time, and one of the tasks misses the deadline. In contrast,
fusing multiple layers saves context switch delays, thus resulting in faster response times.
As a result, all tasks meet deadlines. Our proposed layer fusion approach (a) better utilizes
enclave capacity, and (b) reduces context switches (normal-to-secure and secure-to-normal)
incurred by the layer-by-layer partitioning technique (up to 11.12x for a set of 25 tasks at 50%
utilization, see Section 6). As a result, DeepTrustRT-FUSION achieves better schedulability
compared to the DeepTrustRT-LW approach.

In this work, we focus on ARM-based enclaves (viz., TrustZone) as ARM is the dominant
architecture for embedded applications. However, our ideas are general and can be adapted
to other enclaves (such as SGX) without loss of generality. We tested both DeepTrustRT-LW
and DeepTrustRT-FUSION on three realistic workloads (e.g., AlexNet-squeezed [21], Tiny
Darknet [21], YOLOv3-tiny [3]) running on Raspberry Pi and performed design-space
exploration (Section 6). We also conducted a case study using the ArduPlilot UAV autopilot
system [1] and DNN-enabled workload (YOLOv3-tiny, Tiny Darknet) and found that
DeepTrustRT-FUSION can meet all deadlines for critical tasks while DeepTrustRT-LW misses
some (Section 6.2).

Our Contributions. This research is one of the first efforts to enable time-aware trusted
DNN execution for learning-enabled real-time systems. Our contributions are as follows:

Enabling timing guarantees for performing confidential deep inference in latency-critical
learning-enabled systems.
A new scheduling framework and analytical model (DeepTrustRT-LW) to determine the
feasibility of deploying a given real-time DNN workload on TrustZone enclaves (Section 4).
A novel task fusion approach (DeepTrustRT-FUSION) to further reduce TEE context
switch overheads while retaining real-time guarantees (Section 5).

We performed thorough design-space exploration using three DNN architectures (AlexNet-
squeezed, Tiny Darknet, YOLOv3-tiny). Our case study on a UAV system (ArduPliot)
running on Raspberry Pi further demonstrates the efficacy and feasibility of the proposed
techniques.

We now start with a background on trusted enclaves (TrustZone) and DNN architecture
(Section 2) before introducing our model and related assumptions (Section 3).

ECRTS 2024
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2 Background

2.1 Trusted Execution and ARM TrustZone

Trusted execution environments (TEEs) offer a secure and isolated runtime environment.
TEEs ensure confidentiality and integrity for the code and data that can not be exploited even
if the host (i.e., main) OS is compromised. Among various off-the-shelf TEE implementations,
Intel SGX [2] and ARM TrustZone [5] are two widely used technologies in many IoT/mobile
applications. SGX is usually used for general-purpose computers and servers. In contrast,
TrustZone architecture is more suitable for embedded applications and hence is the focus of
our work.

Hardware

Non-Trusted Environment

Application

OS

Trusted Environment

TEE Application

TEE Kernel

Secure Monitor

Figure 2 TrustZone architecture.

The runtime operations in TrustZone are divided into “normal” and “secure” worlds,
each having its own kernel, user, and memory space (see Fig. 2). In the normal world,
a conventional operating system (e.g., Linux/RTOS) provides the execution environment,
whereas the secure world uses a minimal trusted kernel (e.g., OP-TEE [29]). The state of
the current processor is determined by a specialized bit called the non-secure (NS) bit. The
NS bit has two states: NS = 1 for non-secure execution and NS = 0 for secure execution.
TrustZone employs a customized mechanism known as secure monitor call (SMC) to switch
between these two states. When an SMC instruction is invoked in the normal world, the
processor cores perform a context switch from the normal world to the secure world and
pause normal world operations. As a security precaution, the normal world cannot access
secure memory, while the secure world can access normal world memory. TrustZone also
ensures the isolation of external peripherals.

2.2 Deep Neural Inference

DNNs comprise an input layer, one or more hidden layers, and an output layer. Each layer
consists of interconnected nodes, where the connections between nodes are represented as
edges, each associated with a weight, and each node has an associated threshold value. When
the output of a node exceeds its threshold, the node is activated, and the data is propagated
to the next layer. Figure 3 illustrates a simplified DNN architecture.

DNN algorithms establish models based on training data, enabling them to generate
predictions without explicit programming. During the inference process, input data is passed
through the layers, and each layer performs matrix multiplications on the data. The final
layer’s outputs can be numerical or classified outputs, depending on the specific application.
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Figure 3 A simplified neural network structure. The input and output layers are connected
through multiple hidden layers.

2.3 Confidential DNN
Many DNN-based applications (such as image processing, object detection, medical records,
and financial transactions) deal with sensitive data and require protection against tampering
or theft of intellectual property. When protecting model parameters is needed, an emerging
approach is to execute critical DNN layers inside trusted enclaves. As enclaves have limited
memory and DNN models are generally large, one common approach (used for general-purpose
systems) is to execute the DNN workload layer-by-layer. This is known as “layer-based
partitioning,” where each layer forms an independent partition. Each partition includes
weights and biases and is stored in a separate encrypted file. The enclave stores the decryption
key. The (encrypted) partition file is loaded into shared memory and decrypted by a trusted
application on the secure side.

▶ Note. We do not intend to modify or improve the confidential DNN techniques – a large
number of literature exists to show how DNN models can be protected using TrustZone or other
TEEs [16,31,32,41]. Our focus in this paper is to make existing (non-time-aware) confidential
DNN ideas used for general-purpose systems adaptable for time-critical applications (viz., a
set of periodic tasks with deadline constraints controlled by a real-time scheduling policy).

3 Model and Assumptions

3.1 System Model
We consider a uniprocessor real-time system running on a TEE-enabled platform. The
system consists of n real-time tasks Γ = {τ1, ...τn} performing DNN inference. Each task
τi is characterized by τi = {Ca

i , Ti, Di, Li, Wi}, where Ca
i is the worst-case execution time

(WCET) of the task inside the enclave, Ti is the period of task τi, Di is the deadline, Li is
the number of layers of the DNN task, and Wi is the set of sizes of each layer of the DNN
task τi where Wi = {wi1, wi2, · · · wiL}. Here, wik is the size of the weights associated with
the edges between nodes (neurons), activation, and bias of nodes. In addition, Wi is the size
of the DNN task τi where Wi =

∑Li

k=1 wik. As mentioned earlier (Section 2.3), each layer
partition, which includes weights and biases, is stored in an encrypted file. This encrypted
file is loaded into shared memory and decrypted by a trusted application on the secure side.
Let us denote Ca

i = Cdec
i + Ccom

i is the computation inside the enclave, where Cdec
i is the

time required for decryption of the layers information and Ccom
i is the computation time of

task τi.
We assume the tasks follow the earliest deadline first (EDF) scheduling policy [40]. We

consider an implicit deadline system (i.e., each task’s period is equal to its deadline, Di = Ti).
The taskset Γ is “schedulable” if the response time of each task (the time between arrival

ECRTS 2024
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to completion) is less than its deadline. The trusted enclave has a finite capacity δ, i.e., it
can execute Li ≥ 1 layers together as long as the total resource requirements of those layers
are less than δ. We consider the size of each layer of a task less than δ. Invoking a TEE
session involves a series of API calls. For instance, OP-TEE OS [29] requires 5 API calls for
instantiating and terminating a TEE session (see Table 1). Each time the DNN layers enter
the enclave, the data needs to be transferred into the enclave. Let Cst

si
be the SMC setup

time and Cd
si

be the SMC cleanup time. Hence, Ccs
i = Cst

si
+ Cd

si
captures this data copy

overhead. Note that the parameter Ccs
i is not part of the worst-case execution time (Ca

i ). If
a task requires ncs

i many context switches (to-and-from normal to secure world), the total
data copy overhead will be ncs

i × Ccs
i . In Section 5.2, we derive bounds on the number of

context switches.
Existing TEE implementations (for instance, OP-TEE) use non-preemptive enclave

execution. We incorporate this behavior, i.e., when a task performs DNN inference inside
the enclave, other higher-priority tasks will be “blocked” until the currently running task
releases the enclave.

3.2 Assumptions on Adversarial Capabilities

The pre-trained model (e.g., parameter and hyperparameter values such as structure or
properties of the particular DNN) is deployed to the real-time platform before the system is
operational. We consider an adversary seeks to gain access to sensitive information of the
model. Our focus is on protecting the inference operations of the DNN model. Attackers
may have access to the input data, but they will not obtain any information about the model
architecture or the final inference as long as they execute within the enclave. The attackers
may know all the task periods and their execution times. We further assume that the
adversaries cannot bypass the TEE protection mechanisms. Note that similar assumptions
are used by other researchers [32,42].

Following the convention, we assume that the parameters of the pre-trained model are
kept encrypted in the local storage. The hyperparameters of the model are kept unencrypted
in the normal world as they are generally well-known to the public and do not disclose any
sensitive information about the input or training data [23]. During inference (i.e., invocation
of a job), the input data and model parameters are loaded into the enclave memory, and the
required inference operation is carried out after the decryption of the model parameters.

4 Time-Aware Confidential Deep Learning

In the vanilla case (i.e., when model confidentiality is not a concern), the weights and biases of
each neuron in a DNN architecture can be loaded into memory to calculate neuron activation.
However, a system with confidentiality requirements (execute models within an enclave)
presents challenges when it comes to preloading all the necessary values (e.g., weights, biases)
due to limited enclave size, which could be as low as 8 MB for some systems [33]. In contrast,
most DNN models need 100+ MB [38]. If a DNN model is too large, then the model may fail
to execute inside the enclave. To illustrate this, we conducted experiments on Raspberry Pi
running OP-TEE and Darknet [35]. For large models, Darknet was unable to load to model
(Listing 1). Hence, we used a model compression technique using Deep Compression [19]
to reduce the model size as we present below. Listing 2 shows the case after trimming that
allowed us to load and run the model successfully.
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Listing 1 OP-TEE Log: Failed Invocation of a Large Model on Raspberry Pi.
1 Prepare session with the TA
2 Begin darknet
3 ...
4 ...
5 # darknetp:TEEC Invoke_Command(CONV) failed

Listing 2 OP-TEE Log: Successful Inference.
1 Prepare session with the TA
2 Begin darknet
3 ...
4 ...
5 user CPU start: 0.029851; end: 0.029851
6 kernel CPU start :2.916167; end: 2.917143
7 Max: 2756 kilobytes
8 vmsize :545460850536; vmrss :365072222916;
9 vmdata :545460847464; vmstk :132;

10 vmexe :412; vmlib :545460848828
11

12 // Successful inference and job completion

4.1 Resizing (Trimming) the Model

Deep Compression is a three-stage pipeline that reduces the storage requirement of neural
networks by 35x to 49x without compromising their accuracy. The pipeline consists of
pruning, trained quantization, and Huffman coding [33]. The first stage prunes the network
by learning only the essential connections, and the second stage quantizes the weights to
enforce weight sharing. Finally, the pipeline applies Huffman coding. The method reduces
the storage required by AlexNet-squeezed by 35x (from 240 MB to 6.9 MB), and VGG-16 by
49x (from 552 MB to 11.3 MB), without any significant loss of accuracy. This enables the
large model to fit inside TEE, tackling the memory constraints.

Recall that, to fit the model in the TEE, the size of each layer must be less than the
enclave capacity δ. For a given DNN task τi, Wi is the size of the task, Li is the total number
of layers, and then the set of size of the layers is Wi = {wi1, · · · , wiLi}, where Wi =

∑Li

j=1 wij .
We check ∀wij , wij < δ. If wij > δ, we calculate the approximation θij = wij − δ required
for this layer. The approximate percentage is defined by θij% = θij/wij . The first stage
of Deep Compression (see Algorithm 1) prunes the network by learning only the required
connections, and the second stage quantizes the weights to enforce weight sharing. In general,
for a network with m connections, each connection is represented by b bits, constraining the
connections to have only k shared weights will result in a compression rate of

r = mb

m log2 k + kb
. (1)

Let us assume (1 − θij%) is the desired value for the compression rate r. Plugging the desired
compression rate r = (1 − θij%), we can find the cluster size k based on Eq. (1). After
checking and resizing all the layers, we will get the desired task ready that can fit within the
enclave (see Algorithm 2).

ECRTS 2024
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Algorithm 1 Model Compression.
1: Input: wij , λ
2: Output: Compressed Size (w′

ij)
3: Prune the network below a certain threshold λ following state-of-the-art techniques [20].
4: Retrain the network.
5: Quantize the weights of model: r = mb

m log2 k+kb ▷ Plugging the value of r from approximation
percentage (i.e., (1− θij%) ) to get the value of k

6: Huffman coding to the quantized weights ▷ final compressed weight
7: return w′

ij

Algorithm 2 Resize all Layers.

1: Input: Model size set (Wi), TEE Capacity δ
2: Output: Resized model size set (W ′

i)
3: W ′

i = [ ] ▷ Initialize to an n empty array
4: for j = 1 to Li in Wi do
5: if wij > δ then
6: Optimized the layer using Algorithm 1
7: Wi

′ ← wij
′

8: else
9: Wi

′ ← wij

10: end if
11: j ← j + 1
12: end for
13: return Resized model (W ′

i)

Formal Description of Model Trimming
Algorithm 1 and Algorithm 2 formally present our ideas for trimming a given DNN model.
The model compression process (Algorithm 1) initially prunes the network below a threshold
λ to remove less critical connections (Line 3). For this, we use the techniques Han et al. [20]
described. We rerun the network to learn the final weights with pruned networks (Line 4).
Then, the algorithm quantizes weights, determining the value of shared weights k plugging
desired compression rate r = (1 − θij%) in Eq. (1) (Line 5). Finally, we apply Huffman
coding [33] to the quantized weights (Line 6).

Following the steps in Algorithm 1 allows us to resize a single layer. We then use
Algorithm 2 to resize all the layers of a task τi so that we can fit at least a single layer at
a given time inside TEE. Algorithm 2 examines each layer of τi to determine if it exceeds
the TEE capacity δ (Lines 4-12). For instance, if wij > δ, the layer is optimized using
Algorithm 1 (Line 6) and stores the resized layers information in W ′

i (Line 7). If wij < δ,
unchanged value of wij is stored in W ′

i (Line 9). This process is repeated for each layer of τi,
and resized layer information is stored in W ′

i.
We note that a compressed model may not fit into TEE due to limited enclave size (i.e.,

Wi =
∑

wij > δ). In such cases, a known technique (used in general-purpose systems) is to
split the DNN model into smaller parts [22, 41]. This partitioning method is beneficial as
the only values needed at a given time are the activation of the previous layer, the weights,
and biases for the current layer. To illustrate, for two fully connected layers, each with z

neurons, it would require z activations, z × z weights, and z biases. This effectively reduces
the instantaneous memory requirement to that of a single layer. The largest layer in the
model determines the minimum amount of secure world memory needed for confidential
DNN execution. However, this approach partitions each layer and transfers results back
and forth from secure to the normal world. This extra context switch overhead could be
a bottleneck for real-time applications. Thus, we need timing analysis and schedulability
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conditions to ensure all tasks retain real-time constraints. The following shows how we can
adapt the EDF scheduler for a conventional layer-wise partitioning technique. We refer to
this EDF variant as DeepTrustRT-LW.

4.2 DeepTrustRT-LW: Real-Time Layer-wise DNN Execution

Our first approach – DeepTrustRT-LW– sequentially partitioned the layers. They are
then transferred to the enclave and scheduled using EDF policy. This is feasible since
there is no cross-dependency between any two layers, and each layer can be computed
sequentially independently [22]. Traditional EDF schedulability conditions often involve
checking many relative deadline points to assess the schedulability of a taskset up to the
hyperperiod [30,43]. To speed up this process, Zhang et al. propose an improved algorithm
(called QPA) that significantly reduces the computation required to check each relative
deadline [43]. To determine the schedulability conditions for DeepTrustRT-LW, we use the
existing QPA-based EDF timing analysis technique [43] and adapt it to our DNN-based
workload. We choose QPA-based analysis instead of others [30] because (a) it provides us a
modular model that can be extended to more general tasksets (arbitrary deadline systems)
and (b) computational complexity of QPA is an offline (design-time) analysis which will not
affect runtime performance of DeepTrustRT.

Recall that the execution within the enclave is non-preemptive. Such behavior is modeled
by incorporating a “blocking” delay in schedulability analysis. In EDF scheduling with
blocking, a set of tasks is schedulable if ∀t > 0, h(t) + b(t) ≤ t, where h(t) is the processor
demand function and b(t) is the blocking delay [15, 39]. The function h(t) calculates the
maximum execution time required by the system for all tasks with both their arrival times
and their deadlines in a contiguous interval of length t. The demand function h(t) is given
by: h(t) =

∑i=n
i=1

⌊
t

Ti

⌋
Ci. In our context, the blocking delay is b(t) = max{Ccs

j |Dj > t}.

For DeepTrustRT-LW, the computing time is given by Ci = Ca
i + ncs

i × Ccs
i , where

ncs
i is the total SMC context switches. Hence, we can rewrite h(t) as follows: h(t) =∑i=n

i=1

⌊
t

Ti

⌋
(Ca

i + ncs
i × Ccs

i ), see Lemma 1 in Section 4.3 for a formal derivation. Note that,
in DeepTrustRT-LW, ncs

i = Li. The upper limit of t that needs to be checked is defined by
S = max{T1, T2, · · · , Tn}. The taskset is schedulable if U < 1 and h(t) + b(t) ≤ Tmin, where
Tmin = min{T1, T2, · · · , Tn}.

4.3 Workflow and Analysis of DeepTrustRT-LW

As mentioned before, in DeepTrustRT-LW, layers are sequentially executed inside the enclave,
and the tasks are scheduled using the EDF policy. Algorithm 3 presents steps for the
schedulability checks. We start by finding the maximum task period in the taskset (Line 3).
Tmin stores the minimum value of the task period in the taskset (Line 4). The processor
demand function h(t) calculates the maximum execution time required by the system for
given t (Line 6). If h(t) + b(t) > Tmin and h(t) + b(t) < t, we tighten the bound on processor
demand to check if we can execute all ready tasks. This is done by changing the value of t

to h(t) (Line 8). If h(t) + b(t) ≤ Tmin at any time t, we can conclude that our system can
execute all ready tasks without missing any deadlines. Therefore, the task set is schedulable
(Line 9). If it finds h(t) + b(t) > t at any time t, then we report that the taskset is not
schedulable (Line 13).

ECRTS 2024
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Algorithm 3 DeepTrustRT-LW Schedulability Checking.

1: Input: Real-time taskset (Γ)
2: Output: Taskset schedulability
3: t← max{T1, T2, · · ·Tn}
4: Tmin ← min{T1, T2, · · ·Tn}
5: while t > Tmin do
6: h(t)←

∑n

i=1⌊
t

Ti
⌋(Ca

i + Li × Ccs) ▷ Calculate h(t) for the given t

7: if h(t) + b(t) > Tmin ∧ h(t) + b(t) < t then
8: t← h(t) + b(t)
9: else if h(t) + b(t) ≤ Tmin then

10: Taskset is schedulable
11: Break
12: else
13: Taskset is not schedulable
14: Break
15: end if
16: end while

Table 1 APIs Required for Invoking a TEE Call. The Overheads are Measured on Raspberry Pi.

API Function Overhead (µs)

TEEC_InitializeContext() Initialize connection 240
TEEC_OpenSession() Open a new TEE session 18000
TEEC_InvokeCommand() Invokes a Command 280
TEEC_CloseSession() Close the session 1180
TEEC_FinalizeContext() Close connection 110

Determining the Processor Demand Function. The following lemma shows the expression
for h(t).

▶ Lemma 1. The maximum execution time required by the system contiguous interval of
length t, is given by: h(t) =

∑i=n
i=1

⌊
t

Ti

⌋
Ci.

Proof. From traditional EDF timing analysis [43], h(t) =
∑i=n

i=1 max{0, 1 + ⌊ t−Di

Ti
⌋} × Ci.

Replacing Di = Ti in the above equation (since we have an implicit deadline system) and
after simplification, h(t) can be rewritten as: h(t) =

∑i=n
i=1 max{0, ⌊ t

Ti
⌋} × Ci. Note that,

t
Ti

is a non-negative value. Hence, reduced form of h(t) is h(t) =
∑i=n

i=1 ⌊ t
Ti

⌋Ci. Replacing
Ci = Ca

i + ncs
i × Ccs

i , h(t) can be rewritten as: h(t) =
∑i=n

i=1 ⌊ t
Ti

⌋ × (Ca
i + ncs

i × Ccs
i ). ◀

Overhead Analysis. For a given task τi, the worst-case execution time of the model
inside TEE is Ca

i , where Ca
i =

∑j=Li

j=1 Ca
ij and Ca

ij is the computation time for layer j. In
DeepTrustRT-LW, if a task τi has Li number of layers, we need Li number of context switches.
The total execution time of task τi required in the layer-wise approach is Ci = Ca

i + Li × Ccs
i .

We now explain the overhead of DeepTrustRT-LW using a simple example.

▶ Example 1. Let us assume we have three tasks τ1, τ2, τ3 each having 5 layers (i.e., Li = 5)
and δ = 7. The size of τ1 and τ2 is 10, and the size of τ3 is 5 units. We cannot execute all
the layers of τ1 inside the enclave as the size of τ1 > δ. DeepTrustRT-LW requires five SMC
switches from the normal to secure world for five layers for each task τ1, τ2, and τ3. Hence,
we need 3 × 5 = 15 SMC switches to execute these three tasks inside TEE.
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4.4 The Need for an Efficient Scheduler
Despite DeepTrustRT-LW ensures real-time guarantees (for schedulable tasksets), as we shall
see below (and also from our evaluation in Section 6), it results in poorer schedulability. This
is because each switching results in extra SMC invocation, which increases task response
times. For example, OP-TEE (an open-source TrustZone port for Linux) [29] performs five
API calls to initiate and teardown a TEE session. Each of these API calls takes a considerable
amount of time. We carried out experiments to time each call on a Raspberry Pi platform.
As the Table shows, initiating a TEE session, transferring data to/from the enclave, and
cleanup steps take approximately 20 ms. In our context, each of the layer execution sessions
will add up those TEE API overheads, thus potentially slowing down the inference task and
may result in missed deadlines. We further illustrate this issue using a simple example.

▶ Example 2. Let us consider the taskset listed in Table 2.

Table 2 Example Taskset 1.

Task L Ccs/layer Ca
i C T

τ1 8 20 290 450 700
τ2 6 20 270 390 1500
τ3 8 20 290 450 3000

We now show how layer-wise execution in DeepTrustRT-LW adds context switch overheads
that can increase the overall execution time. There are three tasks τ1, τ2, τ3, where Ca

1 , Ca
2 , Ca

3
are 450, 390, and 450 units respectively. The maximum blocking delay for task τ2 is 450
time units. The periods T1, T2, T3 are 700, 1500, and 3000 time units, respectively. In this
taskset,

∑
Ca

i /Ti = 0.69 < 1. Let us assume the context switch overhead is 20 units per
layer. Adding this context swich overhead leads execution times, C1, C2, C3 to 450, 390, and
450 units, respectively. As a result, the utilization is

∑
Ci/Ti = 1.05 > 1. The taskset is

not schedulable under DeepTrustRT-LW since the system utilization is over 100%. In this
example, we can see the summation of the actual execution time,

∑
Ca

i = 850, and the
summation of total execution time

∑
C = 1290. This indicates an additional 34% context

switching overhead in executing the taskset.

To address this problem, we develop a simple yet compelling idea: instead of sending
each layer sequentially, we propose to group (fuse) multiple layers from multiple tasks
(as long as they fit in the enclave) and send them together. We refer to this technique
DeepTrustRT-FUSION. Figure 4 illustrates a high-level schematic for two tasks. In this
case, DeepTrustRT-LW misses deadlines for Task 2 due to multiple context switch overheads.
However, when we fuse the layers in DeepTrustRT-FUSION, we save context switch costs,
thus allowing both tasks to meet deadlines.

We note that task fusion has been used in literature for TEE-enabled conventional
(i.e., non-learning enabled) fixed-priority real-time systems to reduce TEE context switch
overheads [34]. We borrow a similar concept to group multiple layers of tasks and fit
them within the enclave. For each decision instance, we group the tasks with shorter
deadlines so that (a) enclave utilization (capacity usage) is maximized, i.e., fit as many
layers as possible, and (b) tasks do not miss deadlines. Our selection process, as described in
Section 5, is inspired by the bin-packing heuristics (such as best-fit) [13] used in partitioned
multiprocessor scheduling. We now discuss DeepTrustRT-FUSION scheduler in detail and
derive schedulability conditions.

ECRTS 2024
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Task 1

Layer-wise Execution (DeepTrustRT-LW)

Layer Fusion (DeepTrustRT-FUSION)

SMC Setup

SMC Cleanup

. . . 

Task 2 
Deadline

Task 2 Completion 
(Deadline Miss!)

Task 3 3 units

Task 3 3 units

Task 2 Finishes 
Before Deadline

Task 2

. . . 

Fusion 
(Task 1)

Fusion 
(Task 2)

Figure 4 Key intuition of model fusion: when the tasks are executed layer-wise (DeepTrustRT-LW,
top schedule), Task 2 misses deadline due to multiple context switch overheads. However, in a
multi-layer execution approach (DeepTrustRT-FUSION, bottom schedule), multiple layers are fused
together, which reduces context switch overheads and all the tasks meet their deadlines.

5 DeepTrustRT-FUSION: Multi-layer Task Fusion

Fusing multiple layers from multiple tasks can significantly save context switch overheads
compared to DeepTrustRT-LW approach. For example, AlexNet-squeezed [18] has 16 layers.
If the system follows DeepTrustRT-LW, it needs 16 context switches (one for each layer).
In contrast, assuming each layer is 1 MB in size and the enclave has 8 MB of memory, if
we fuse layers using DeepTrustRT-FUSION, we can finish the execution with two context
switches. We now illustrate how DeepTrustRT-FUSION improves schedulability. Fusion
works independent of task period types (i.e., harmonic/non-harmonic), as we illustrate with
an example.

▶ Example 3. Let us consider the following taskset parameters (Table 3 and Table 4).

Table 3 Example Taskset and Layer Size.

Task L Size of layers (MB) Total Size (MB)

τ1 8 {0.046, 0.186, 0.48, 0.39, 0.27, 5.84, 2.69, 1.50} 11.40
τ2 6 {0.186, 0.48, 0.39, 5.84, 2.69, 1.50} 11.08
τ3 8 {0.046, 0.186, 0.48, 0.39, 0.27, 5.84, 2.69, 1.50} 11.40

We show for both harmonic and non-harmonic cases. Let us first consider the non-
harmonic periods. In this case,

∑
Ci/Ti = 0.78 < 1. We can calculate the schedulability

conditions of as follows: (a) t = 3000, h(t) = 2270; (b) t = 2270, h(t) = 1300; and (c)
t = 1300, h(t) = 330. We can see h(t) < Tmin. Hence, the taskset is schedulable (recall: the
same taskset is not schedulable using DeepTrustRT-LW). Let us now consider the harmonic
case. For harmonic periods, (a) t = 2800, h(t) = 2270; (b) t = 2270, h(t) = 1300; and (c)
t = 1390, h(t) = 330. We can see h(t) < Tmin. Hence, the taskset is schedulable.
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Table 4 Example Taskset with Fusion Parameters.

Task L Ccs/layer CS (fusion) Ca
i C T (non-harmonic) T (harmonic)

τ1 8 20 2 290 330 700 700
τ2 8 20 2 270 310 1500 1400
τ3 8 20 2 290 330 3000 2800

5.1 Workflow of DeepTrustRT-FUSION
DeepTrustRT-FUSION aims to maximize the usage of TEE capacity. Hence, we send the
maximum number of layers that TEE can support to reduce the SMC context switching
overhead. For a given DNN task τi, the worst-case execution time of the model inside TEE
is Ca

i , where Ca
i =

∑j=L
j=1 Ca

ij and Li is the number of layers. If there is Li layers in task τi,
then the size of each layer will be wi1, wi2, ...wiLi

, where
∑j=Li

j=1 wij = Wi. We first check
if the following condition holds: (wi1 + wi2) < δ. We find the maximum value of k where∑j=k

j=1 wij = δ̂ < δ,
∑j=k+1

j=1 wij > δ. If some extra capacity is left (i.e., δ − δ̂), we check
the subsequent task to fit within this extra space. We find the maximum value of k for the
next task where

∑j=k
j=1 w(i+1)j < (δ − δ̂),

∑j=k+1
j=1 w(i+1)j > (δ − δ̂). We check all available

candidate tasks at a given time t to check whether layers can fit inside the enclave. Once we
obtain the schedule profile, we repeat the same steps for all subsequent task arrivals.

Algorithm 4 formally presents DeepTrustRT-FUSION approach. The fusion decision will
be made when a task (a) arrives, (b) completes, or (c) returns from the enclave. Since the
scheduler keeps track of the ready-queue and SMC returns (for example, OP-TEE tear-down
APIs TEEC_CloseSession() and TEEC_FinalizeContext()), we know when to perform
fusion decisions. For each scheduling decision event, DeepTrustRT-FUSION scheduler picks
the fuse candidates (for instance, the loops in Line 8-Line 11, Algorithm 4). Let Ω(t) be the
set of all tasks scheduled by using the vanilla EDF (i.e., without any TEEs) algorithm at
any given time t. We first calculate the hyperperiod of the taskset (Line 6). From Ω(t), we
find the set of layers S to send to TEE (Line 9). We find the transition point k for each task
and remove layers p to k from Ω(t), where p is an integer initialized to 0 (Line 18). Then,
we calculate the corresponding candidate by following the condition (Line 16). We repeat
this for all subsequent tasks available at that time using the while loop (Line 15-20). We
return all the layers wip, · · · , wik, w(i+1)p′ , · · · (Line 21) to S that is finding the set of layers
to send to TEE (Line 9). We then check the schedulability condition (see Lemma 3 for a
formal derivation). If the task is schedulable, we continue to find the next candidate to send
to TEE and repeat this process till hyperperiod. In the following example, we demonstrate
our proposed idea.

▶ Example 4. Let us assume we have three tasks τ1, τ2, τ3 each having 5 layers and δ = 7.
The size of τ1 and τ2 is 10, and the size of τ3 is 5 units. We consider the size of each layer to
be the same for simplicity. We cannot execute all the layers of τ1 inside the enclave as the
size of τ1 > δ. If we execute layer-by-layer, we need five SMC switching from the normal
world for five layers for each task τ1, τ2, and τ3. If we send multiple layers of τ1 that can
be supported by TEE, it still requires two SMC switching i.e., {w11, w12, w13}, {w14, w15}.
For task τ2, we also need two SMC switching {w21, w22, w23}, {w24, w25}. For task τ3, we
need one SMC contetxt switching {w31, w32, w33, w34, w35}. Hence, we need fifteen SMC
switches for layer-by-layer operations to execute these three tasks. In contrast, it is possible
to perform the same objective using only five SMC switches if we can send it by multiple
layers. If we send multiple layers of τ1, we still have some extra capacity left (δ − δ1 = 1).

ECRTS 2024
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Algorithm 4 DeepTrustRT-FUSION: Task Fusion and Scheduling.

1: Input: Real-time taskset (Γ), TEE-capacity δ
2: Output:Taskset schedulability decision

3: Compress the Model ▷ See Algorithm 1
4: Resize Layers ▷ See Algorithm 2
5: Ω(t) = {W ′

1,W ′
2, · · ·W ′

i} ▷ Obtain the set of the weight of each task available at time t
6: Thyp =LCM of {T1, T2, · · · , Tn} ▷ T is the set of period of all DNN tasks
7: BEGIN ▷ Find layers to send to TEE
8: while TRUE do
9: S=Find_Layers_To_Send{Ω(t)} ▷ See Line 23 for definition

10: Send S to TEE
11: end while
12: END

13: function Find_Transition_of_Layers(Ω(t))
14: i← index of first task in Ω(t)
15: while i ≤ no of task available at time t do
16: if

∑j=k

j=p
wij = δ1 < δ and

∑j=k+1
j=p

wij > δ then
17: i = i + 1
18: Remove wim, · · · , wik from Ω(t)
19: end if
20: end while
21: return wip, · · · , wik, w(i+1)p′ , · · ·
22: end function

23: function Find_Layers_To_send(Ω(t))
24: while Ω(t) ̸= NULL do
25: S =Find_Transition_Of_Layers(Ω(t)) ▷ See Line 13 for definition
26: Check schedulability using Lemma 3
27: if Schedulable then
28: Continue
29: else
30: break ▷ Taskset is not schedulable
31: end if
32: if t ≥ Thyp then ▷ Thyp is the hyperperiod of T
33: break
34: end if
35: end while
36: return S
37: end function

In this case, we check whether if it is feasible to use that space capacity. In this example,
w11 + w12 + w13 + w31 = 7 ≤ δ. Hence, we can fuse the first three layers from τ1 and the first
layer from τ3, and then send them together to the enclave. If we repeat the same operations for
the rest of the layers we get the following pattern: {w11, w12, w13, w31},{w14, w15, w21, w32},
{w22, w23, w24, w33},{w25, w34, w35} i.e., we only need four SMC switches.

5.2 Schedulabilty Conditions and Overhead Analysis
Recall that, a taskset is schedulabe if ∀t, U(t) < 1 and h(t) ≤ t. We now derive the
expressions for U(t) and h(t) for DeepTrustRT-FUSION.

▶ Lemma 2. Let ns
i (t) is the number of context switches by applying fusion for a window of

duration t. System utilization U(t) for a given taskset at any given time t is given by

U(t) =
i=n∑
i=1

(
⌊ t

Ti
⌋ × Ci

t
− ns

i (t) × Ccs
i

t

)
. (2)
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Proof. To determine the system utilization for a given taskset, we assume that each task
arrives at time t = 0. We then calculate the number of occurrences of each task within time
t using the expression ⌊ t

Ti
⌋, where Ti represents the period of task τi. The overhead of each

task is then given by ⌊ t
Ti

⌋ × Ci, where Ci represents the computation time required for task

τi. At any given time t, system utilization is
∑i=n

i=1
⌊ t

Ti
⌋×Ci

t . However, by applying layer
fusion, we can reduce context switching overhead as ns

i (t)×Ccs
i

t , where ns
i (t) is the number of

context switches by applying fusion for a window of duration t. Hence, we can calculate the
system utilization at any given time t as follows: U(t) =

∑i=n
i=1

( ⌊ t
Ti

⌋×Ci

t − ns
i (t)×Ccs

i

t

)
◀

In the following, we derive the processor demand function h(t) for DeepTrustRT-FUSION.

▶ Lemma 3. The task set Γ is schedulable under DeepTrustRT-FUSION if ∀t > 0, t < Tmax;
h(t) + b(t) ≤ t, U(t) < 1, where

h(t) =
i=n∑
i=1

(
⌊ t

Ti
⌋Ci − ns

i (t) × Ccs
i

t

)
. (3)

Proof. The demand function h(t) calculates the maximum execution time required by all
tasks that have both their arrival times and their deadlines in a contiguous interval of length
t. Recall that, h(t) is given by h(t) =

∑i=n
i=1 ⌊ t

Ti
⌋Ci. DeepTrustRT-FUSION can reduce up

to ns
i (t) context switches for each task τi for a window of size t. Considering this reduction,

we now rewrite h(t) as: h(t) =
∑i=n

i=1
(
⌊ t

Ti
⌋Ci − ns

i (t)×Ccs
i

t

)
. ◀

We now calculate the performance benefits of DeepTrustRT-FUSION, i.e., the reduction
in SMC context switch counts when we use layer fusion.

▶ Lemma 4. If we have z fused tasks in Γ, then the total context switch reduction within
the hyperperiod is

∑j=z
j=1(kj − 1)Ccs

j , where kj is the number of fused layers in jth fused task,
Ccs

j is the context switch overhead.

Proof. If we can fuse k layers from different tasks that are available at time t, then jth fused
task τfused

j is defined as (Cfused
j , nfused

j ), where Cfused
j is the execution time of fused task

and nfused
j is the SMC context switching reduction due to jth fused task. If we can fuse kj

layers, then Cfused
j can be measured using the following equation: Cfused

j = Ccs
j +

∑i=kj

i=1 Ca
ji,

where Ca
ji is the computation time at ith layer. If we can fuse k layers in jth fused task, we

can reduce nfused
j = (kj − 1) × Ccs

j context switches. If we have z number of fused tasks
within the hyperperiod, we can define the total context switching overhead reduction as:

ns =
j=z∑
j=1

ns
j =

j=z∑
j=1

(kj − 1)Ccs
j . (4)

◀

6 Evaluation

We evaluate our techniques on two fronts: (a) design-space exploration with various DNN
workloads (Section 6.1) and (b) case study with a UAV autopilot system (Section 6.2). Our
implementation is available on GitHub: https://github.com/CPS2RL/DeepTrust-RT.
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Table 5 Systems & Workloads.

Parameters Description

Hardware 4x ARM Cortex A53, 1 GB RAM (Raspberry Pi 3 B)
Rich OS Linux 6.2.0
Trusted OS OP-TEE 3.19.0
Workloads • AlexNet-squeezed (Image Processing)

• Tiny Darknet and YOLOv3-tiny (Object Detection)
• Random: weights and run times are generated randomly

Table 6 Simulation Parameters.

Parameters Value

Enclave capacity, δ 8 MB
Utilization, U 0%-100%
Period T [50, 100] ms
Number of layers, L [5, 24]
Weight, W [0.01, 7]
Execution time inside TEE per layer, ca

ij [0.1, 8] ms
SMC overhead, cst

s + cd
s 20 ms

Number of tasks, n [5, 25]
Number of taskset for each utilization, Nu 200

6.1 Design-Space Exploration with Deep Learning Workloads

6.1.1 Simulation Setup
We evaluate the performance of our scheme using synthetically generated workloads, with
parameters similar to that used in prior work [25]. We vary the system utilization from 0% to
100%. For each system utilization u in the range [0, 10, · · · , 100]%, we generate 200 tasksets,
each taskset containing 5 to 15 tasks. Task periods are randomly selected from 50 to 100 ms.
For deep learning workload, we used three popular DNN architectures: AlexNet-squeezed [21],
YOLOv3-tiny [3], and Tiny Darknet [21]. We also tested with a “random workload” where we
randomly generated the number of layers, task period, size of layers, and computation time.
We tested with two enclave capacities (δ): 8 MB for AlexNet-squeezed and Tiny Darknet
and 16 MB for YOLOv3-tiny. We note that similar sizes of enclaves are used by OP-TEE.
Unless otherwise specified, we consider SMC context switch overhead (cst

s + cd
s) to be 20 ms.

Table 5 summarizes platform and workload, and Table 6 lists key simulation parameters.

6.1.2 Schemes and Metrics
We compare DeepTrustRT-FUSION with layer-wise execution technique (DeepTrustRT-LW).
For completeness, we also study a “non-secure” variant that does not consider any enclave.
The schemes used in our evaluation are listed below.

DeepTrustRT-LW: Sends the layers sequentially (layer-wise) to the enclave (Section 4.2).
DeepTrustRT-FUSION: Our proposed scheme that fuses multiple layers from multiple
tasks (Section 5).
No-TEE: DNN task execution without any enclave. The tasks follow EDF scheduling
policy. In this case, model confidentiality is not enforced.



M. F. Babar and M. Hasan 13:17

0 20 40 60 80 100
Utilization (%)

0.0
0.2
0.4
0.6
0.8
1.0

Sp
ar

sit
y

DeepTrustRT-FUSION
DeepTrustRT-LW
No-TEE

(a) Sparsity-vs-Util., n=5.
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(b) Sparsity-vs-Util., n=10.
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(c) Sparsity-vs-Util., n=15.
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(d) Acc. Ratio-vs-Util., n=5.
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(e) Acc. Ratio-vs-Util., n=10.
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Figure 5 Sparsity and Acceptance Ratio with varying system utilization for {5, 10, 15} tasks using
AlexNet-squeezed [21] architecture. The red shaded regions show cases where DeepTrustRT-LW
cannot find schedulable tasksets while other schemes can. DeepTrustRT-FUSION result in better
schedulability compared to DeepTrustRT-LW as the utilization increases with performance penalty
(i.e., both Sparsity and Acceptance Ratio are close to the No-TEE case.
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(f) Acc. Ratio-vs-Util., n=15.

Figure 6 Sparsity and Acceptance Ratio using Tiny Darknet [21] architecture using a setup
identical to that of Fig. 5. The findings are similar.

We tested the above schemes with the following two metrics.
Sparsity: Our newly introduced metric that shows the “spread” of the task (viz., the
ratio between response time and period). Higher sparsity means tasks are completed late
and that may result in poorer QoS in terms of the DNN inference process. A Sparsity
value > 1 implies the task misses the deadline.
Acceptance Ratio: A commonly used metric by the real-time community that represents
the fraction of tasks that meet deadlines over the total generated ones.

6.1.3 Results
We first show the Sparsity and Acceptance Ratio for varying numbers of tasks (n = 5, n = 10,
and n = 15) for the DNN workloads listed on Table 5. The x-axis of Fig. 5 shows the
various taskset utilization for randomly generated taskset. The y-axis of Fig. 5a and Fig. 5d
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(b) Sparsity-vs-Util., n=10.
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(c) Sparsity-vs-Util., n=15.
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(d) Acc. Ratio-vs-Util., n=5.
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(e) Acc. Ratio-vs-Util., n=10.
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(f) Acc. Ratio-vs-Util., n=15.

Figure 7 Sparsity and Acceptance Ratio using YOLOv3-tiny [3] architecture using a setup
identical to that of Fig. 5. Our findings are similar to Fig. 5 and Fig. 6.

shows Sparsity and Acceptance Ratio, respectively. We show the Sparsity and Acceptance
Ratio for DeepTrustRT-FUSION (Green), DeepTrustRT-LW (Black), and No-TEE (Black)
schemes. The red shaded regions in the figure represent the cases where DeepTrustRT-LW is
unable to find any schedulable candidate while DeepTrustRT-FUSION finds some. For lower
utilization, all schemes show similar behavior. However, DeepTrustRT-FUSION outperforms
DeepTrustRT-LW up to 3x as the utilization increases (i.e., DeepTrustRT-LW is unable to
find schedulable tasksets as the utilization reaches 60%). This is expected because layer-wise
execution in DeepTrustRT-LW increases delay due to additional context switches. At higher
utilization, that causes more tasks to miss deadlines and results in lower acceptance. We also
note that the performance of our scheme (both in terms of Sparsity and Acceptance Ratio)
is close to No-TEE case (recall: No-TEE does not provide model confidentiality). Hence,
DeepTrustRT-FUSION can improve the security posture of the DNN tasks without significant
overhead (close to the vanilla execution that does not have TEE support). In Figs. 6-7, we
repeat the experiments with ImageNet1k datasets and obtain similar results. As the number
of tasks increases (i.e., n = 15), the impact of context switching becomes more apparent,
and hence, Acceptance Ratio in No-TEE case significantly outperforms DeepTrustRT-LW
and DeepTrustRT-FUSION in highly utilized systems.

To further analyze the effect of context switches on Sparsity and Acceptance Ratio, we
vary the SMC overheads as a percentage of WCET. Let max(WCET ) denote the maximum
WCET value observed in our experiments. The solid lines in Fig. 8 show the context switch
cost as 10% of max(WCET ) values of all tasks while dotted lines are generated with SMC
overheads with 30% of max(WCET ). As the figures show, the effect of larger context switch
costs causes DeepTrustRT-LW to perform poorly as delays accumulating by higher context
switch duration lead to longer response times (higher Sparsity values), that in turn, cause
more tasks to miss their deadlines (result in lower Acceptance Ratio).

DeepTrustRT-FUSION outperforms DeepTrustRT-LW, especially for high utilization
scenarios. Further, the overhead of DeepTrustRT-FUSION is negligible as its performance
is close to the No-TEE case. Systems with longer TEE context switch delay can be
significantly benefited by layer fusion compared to layer-wise partitioning.
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Figure 8 Sparsity and Acceptance Ratio for a randomly generated workload with two different
context switching overheads: (a) 10% of max(WCET) values (solid lines) and (b) 30% of max(WCET)
values (dotted lines). Larger context switch delays result in higher Sparsity for DeepTrustRT-LW
when compared to DeepTrustRT-FUSION, which in turn, reduces the percentage of schedulable
tasksets. DeepTrustRT-FUSION performs identically to No-TEE for lower context switch delays.
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(a) AlexNet-squeezed.
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(b) Tiny Darknet.
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(c) YOLOv3-tiny.
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(d) Random workload.

Figure 9 Context switches overhead comparison for three architectures (e.g., Tiny Darknet,
AlexNet-squeezed, YOLOv3-tiny) and one for a random taskset. DeepTrustRT-FUSION reduces
context switch overhead 1.96x-11.12x compared to DeepTrustRT-LW.

In the next set of experiments (Fig. 9), we measure the number of SMC context switches
for DeepTrustRT-FUSION and DeepTrustRT-LW. For this experiment, we set the system
utilization 50%. Note that, as No-TEE does not have any enclave, there are no SMC calls
(context switches). Hence, our plots exclude No-TEE in this case. As the figures show,
DeepTrustRT-FUSION enables us to achieve a significant reduction in context switch counts
compared to DeepTrustRT-LW (5.45x-11.1x) for all three architectures. This is because
DeepTrustRT-FUSION groups multiple layers, hence reducing overall SMC calls.

DeepTrustRT-FUSION can significantly reduce the number context switches (1.9x-11.1x)
(see Fig. 9). This reduction of context switches also contribute to higher acceptance rate
(see Figs. 5-7).

Recall from Section 3.1 that each time a context switch is performed, normal world
(encrypted) data needs to be transferred to the secure world. We now analyze this data copy
overhead. The experiments in Fig. 10 show the overheads for the various DNN workloads
(AlexNet-squeezed, Tiny Darknet, and YOLOv3-tiny) and a varying number of tasks (n = 5,
n = 10, and n = 15) running on Raspberry Pi and OP-TEE. To calculate the end-to-end data
copy overheads, we first measured the response times for No-TEE case and then subtracted
these values from the response times of each of the DeepTrustRT schemes. Finally, we
normalized them with the task periods (i.e., calculated Sparsity) and obtained the overhead
percentage. We only considered schedulable tasksets. For each data point, we generated 100
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(a) AlexNet-squeezed.
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(b) Tiny Darknet.
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Figure 10 DeepTrustRT data copy overheads for various DNN workloads. Inference confidentiality
increases response times due to additional data transfers and SMC calls. However, this overhead
remains constant with the increasing number of tasks. The overheads of DeepTrustRT-FUSION are
less compared to DeepTrustRT-LW due to fewer number of context switches.
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Figure 11 Sparsity for ArduPlilot controller tasks. Bold tasks are DNN inference workload. The
red horizontal line denotes the deadline. The increasing number of context switches in DeepTrustRT-
LW caused a larger spread of tasks (higher Sparsity), and as a result, two tasks missed deadlines.
Under DeepTrustRT-FUSION, all tasks were able to meet deadlines.

samples and took the 90th percentile value. As the figure shows, enabling confidential inference
comes with a cost, i.e., increase in response times. This data copy overhead is system (i.e.,
underlying SMC implementations) and workload (i.e., DNN layers/architecture) dependent.
For instance, we find that the additional delay in response times due to transferring context
for DeepTrustRT-LW and DeepTrustRT-FUSION are (a) 2.39 s and 1.34 s (AlexNet-squeezed),
(b) 1.54 s and 2.95 s (Tiny Darknet), and (c) 5.62 s and 6.96 s (YOLOv3-tiny), respectively
on Raspberry Pi+OP-TEE setup (recall: each SMC overheads could be as high as 20 ms, see
Table 1). As the figure shows, the data copy overhead scales well with the increasing number
of tasks (remains constant). Further, DeepTrustRT-FUSION incurs lower overheads due to a
reduced number of context switches, as we also observed in prior experiments (Fig. 9).

Confidential deep inference comes with a cost: it increases response times due to additional
data transfer between normal and secure worlds. However, this data transfer overhead
does not increase significantly with the increasing number of tasks.
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6.2 Case Study with a UAV Controller System
In the final set of experiments (Fig. 11), we evaluate DeepTrustRT-FUSION, DeepTrustRT-LW,
and No-TEE with a UAV autopilot system (ArduPlilot [1]) running on Raspberry Pi 3 [36].
The ArduPlilot controller has 18 real-time tasks (defined in /ArduCopter/Copter.cpp).
Since the vanilla controller does not have any DNN workload, we included two additional
inference tasks (i.e., check_visual_target() and object_detection()) that use Tiny
Darknet and YOLOv3-tiny models, respectively to perform object detection. The periods of
our DNN tasks were 5. The total system utilization (including two of the included DNN tasks)
was 0.75. Each of the bars in Fig. 11 shows the various tasks and their Sparsity for each of the
three schemes. The figure shows that due to high context switches, DeepTrustRT-LW misses
deadlines for two real-time tasks (i.e., Sparsity > 1). In contrast, both DeepTrustRT-FUSION
and No-TEE were able to meet all deadlines.

High SMC context switch overheads cause DeepTrustRT-LW to miss deadlines for two
real-time tasks. DeepTrustRT-FUSION, in contrast, was able to meet all deadlines.

7 Discussion

In this work, we assume all layers execute inside TEEs. There exist use cases where not all
layers have confidentiality requirements. For example, in image/voice recognition applications
where the user may not want to reveal input and processed data, running initial input layers
and final output layers inside TEE should be sufficient. Our future work will explore the
variable number of TEE executions and analyze the performance trade-offs in a real-time
context. Our research focuses on scheduling within a single enclave as existing TrustZone
implementations support a single enclave. We will further investigate the feasibility and
performance benefits of DeepTrustRT running on multiple enclaves.

DeepTrustRT-FUSION currently selects a whole slice of a layer and fuses it with another
task. For example, consider τi has four layers {l11

i , · · · , l14
i } and τj has three layers

{l11
j , · · · , l13

j }. If feasible (i.e., enclave has capacity), DeepTrustRT-FUSION fuses all seven
layers. It could also be possible to obtain a “partial” slice of a layer in case a complete slice
is not fit in the enclave (or the enclave has a little extra capacity). For instance, in the
example above, {l11

i , l12
i , l12

j , l13
j } could form a fusion group in case all seven layers do not fit

to further improve schedulability. Sub-layer-based partitioning ideas will be explored in our
future work.

We assume only inference tasks use TEEs. In practice, other (non-DNN) tasks could
also use TEEs, thus potentially limiting enclave availability. DeepTrustRT-FUSION can be
extended for such scenarios considering extra slack reclaimed from other non-inference tasks.
The overall security of DeepTrustRT relies on the underlying TEE architecture. However,
TEEs could also be vulnerable, especially exposed to schedule-based attacks [4] for real-time
context. One approach to limit such observability is to introduce “noise” in the scheduler [12].
For instance, instead of fusing the same set of tasks, DeepTrustRT-FUSION can be extended
to select fusion candidates from different groups, thus limiting the predictability and hence
reducing the chances of information leakage.

8 Related work

Research in confidential deep inference for real-time context is still in the early stages. In
our preliminary (workshop) paper [8], we propose a layer-grouping idea for fixed priority
systems. Unlike DeepTrustRT, our prior work does not provide formal timing guarantees.
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AegisDNN [42] proposes to execute only a few layers that will be executed inside SGX-based
TEEs. However, AegisDNN [42] is primarily designed for soft real-time systems and allows
deadline misses. In contrast, DeepTrustRT is designed for hard real-time systems.

There exists other work for general-purpose systems. DarkneTZ [32] proposes to execute
only a few layers that will be executed inside TEE, which is not suitable for applications
that require executing all layers within TEE. Layers that execute outside of the secure
world expose information to the untrusted normal world, raising data privacy concerns. A
similar line of work exists (e.g., HybridTEE [17], Confidential DL [41], Occlumency [26]),
for executing machine learning workloads inside TEEs. However, none of them consider
real-time constraints.

SuperTEE [34] aims to reduce TEE task switching overhead. However, SuperTEE [34]
is not designed for learning-enabled real-time systems and can not be directly adapted for
DNN workloads. Researchers also propose techniques (e.g., Subflow [25], AppNet [10]) to
make deep learning “time-aware,” but they do not consider trusted execution aspects. The
proposed research is one of the fundamental works that investigates time-aware confidential
deep learning techniques for hard autonomous systems.

9 Conclusion

This research introduces techniques to enable real-time guarantees for confidential deep
learning using trusted enclaves. We show how to slice a partition in a large deep-learning
model to schedule using real-time schedulers such as EDF. We further propose an optimization
using a novel idea of “layer fusion” that selectively groups multiple layers from various tasks
to minimize TEE context switch overheads. By using the approach presented in this work,
engineers of future autonomous systems will be able to design/schedule systems efficiently
and measure overheads of deep neural inference workloads in a “quantifiable” way.
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