
State Canonization and Early Pruning in
Width-Based Automated Theorem Proving
Mateus de Oliveira Oliveira # Ñ

Department of Computer and Systems Sciences, Stockholm University, Sweden
Department of Informatics, University of Bergen, Norway

Farhad Vadiee #

Department of Informatics, University of Bergen, Norway

Abstract
Width-based automated theorem proving is a framework where counter-examples for graph theoretic
conjectures are searched width-wise relative to some graph width measure, such as treewidth or
pathwidth. In a recent work it has been shown that dynamic programming algorithms operating on
tree decompositions can be combined together with the purpose of width-based theorem proving.
This approach can be used to show that several long-standing conjectures in graph theory can be
tested in time 22kO(1)

on the class of graphs of treewidth at most k. In this work, we give the first
steps towards evaluating the viability of this framework from a practical standpoint. At the same
time, we advance the framework in two directions. First, we introduce a state-canonization technique
that significantly reduces the number of states evaluated during the search for a counter-example of
the conjecture. Second, we introduce an early-pruning technique that can be applied in the study
of conjectures of the form P1 → P2, for graph properties P1 and P2, where P1 is a property closed
under subgraphs.

As a concrete application, we use our framework in the study of graph theoretic conjectures
related to coloring triangle free graphs. In particular, our algorithm is able to show that Reed’s
conjecture for triangle free graphs is valid on the class of graphs of pathwidth at most 5, and on
graphs of treewidth at most 3. Perhaps more interestingly, our algorithm is able to construct in
a completely automated way counter-examples for non-valid strengthenings of Reed’s conjecture.
These are the first results showing that width-based automated theorem proving is a promising
avenue in the study of graph-theoretic conjectures.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Width-Based Automated Theorem Proving, Dynamic Programming, Para-
meterized Complexity

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.33

Funding Research Council of Norway, Project Number 288761

1 Introduction

Width-based automated theorem proving is a framework where parameterized algorithms
are employed to search for counterexamples to graph-theoretic conjectures. Within this
framework, the search for counterexamples is conducted width-wise, relative to some specific
width measure for graphs, such as treewidth or pathwidth. More specifically, given a
conjecture C and a positive integer k, the objective is to determine whether C holds on the
class of graphs of width at most k. If C does not hold on this class of graphs, a counterexample
of width at most k that invalidates the conjecture should be produced.

This approach is relevant for two main reasons. First, many interesting classes of graphs
have small width with respect to some graph width measure. For example, trees and forests
have treewidth at most 1, series-parallel graphs have treewidth at most 2 and outerplanar

© Mateus de Oliveira Oliveira and Farhad Vadiee;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 33; pp. 33:1–33:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oliveira@dsv.su.se
https://www.uib.no/en/persons/Mateus.De.Oliveira.Oliveira
https://orcid.org/0000-0001-7798-7446
mailto:farhad.vadiee@uib.no
https://orcid.org/0000-0001-8106-2198
https://doi.org/10.4230/LIPIcs.FSCD.2024.33
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 State Canonization and Early Pruning inWidth-Based Automated Theorem Proving

graphs have treewidth at most 2 [16, 2, 5]. It has also been shown that k-outerplanar graphs
have treewidth O(k) [1, 15], and that k-caterpilars have pathwidth at most k [20]. Second,
many important conjectures in graph theory are not known to hold on classes of graphs
of small treewidth or pathwidth, and it is therefore natural to try to determine whether
such conjectures hold when restricted to such classes of graphs. In many cases, structural
properties of graphs of small treewidth or pathwidth have been used to produce analytic
proofs of special cases of several well studied conjectures [11, 6, 12, 13, 19, 22, 13, 17]. The
framework of width-based automated theorem proving is an avenue for automatizing this
approach for certain classes of conjectures.

In a recent work [9], a new approach for width-based automated theorem proving was
introduced. Within this approach, instead of specifying graph properties using logical formulas,
such properties are specified using dynamic programming algorithms operating on graph
decompositions. More specifically, it was shown in [9] that given dynamic programming cores
D1, D2, . . . , Dr specifying graph properties P1,P2, . . . ,Pr, then for any Boolean combination
P of these properties, there is an algorithm A that takes a number k as input and decides
whether all graphs of treewidth at most k belong to P. Furthermore, if not all graphs of
treewidth k belong to P, then the algorithm outputs a certificate that can be used to extract
a counter-example. This approach takes double-exponential time with respect to the number
of bits needed to represent local witnesses used by the dynamic programming algorithms.
Given that many interesting graph properties have DP-algorithms that use local witnesses
of size kO(1) when processing tree decompositions of width k, the dynamic programming
approach developed in [9] implies that many interesting conjectures can be tested in time
double-exponential in kO(1) on the class of graphs of treewidth at most k. This includes
long-standing conjectures such as Hadwiger’s conjecture (for a fixed number of colors) [4],
Tutte’s flow conjectures [14, 18], Reed triangle free conjecture etc.

1.1 Our Results
In this work we give the first steps towards evaluating the viability of the width-based
automated theorem proving framework introduced in [9] from a practical perspective. At
the same time, we advance this framework by introducing a new width based deduction
algorithm that produces significantly less states when compared with the algorithm originally
introduced in [9]. Our new algorithm leverages on the introduction of two techniques. First,
we introduce a suitable notion of state canonization. The second is an early pruning technique
that can be used in the study of conjectures of the form P1 → P2, where P1 is a graph
property closed under subgraphs. As a concrete case study, we use our implementation to
study graph-theoretic statements related to colorings of graphs. Our algorithm was able to
produce non-trivial counter-examples for false statements, and also to confirm a well known
conjecture due to Reed [21] on the class of graphs of pathwidth at most 5, and on the class
of graphs of treewidth at most 3. Together, our results provide the first evidence that the
width-based ATP framework introduced in [9] may be a promising avenue in the study of
graph-theoretic conjectures.

1.2 Related Work
The approach for width-based automated theorem proving introduced in [9], and further
developed in the present work, is heavily based on dynamic programming algorithms deciding
graph theoretic properties. Another suitable approach for the study of width-based automated
theorem proving is based on logic [7, 8]. In this context, instead of using dynamic-programming

M. de Oliveira Oliveira and F. Vadiee 33:3

algorithms to define graph properties, such graph properties are defined using logical formulas.
For example, it can be shown that for each formula φ in the monadic second order logic of
graphs, there is an algorithm that takes a positive integer k as input and determines whether
every graph of treewidth at most k satisfies φ [7]. The drawback with this approach is that
the running time of the deduction algorithm is governed by a function that grows as a tower
of exponentials on the quantifier depth of the formula φ.

It is worth noting that several interesting graph theoretic properties have dynamic
programming algorithms that produce local witnesses of size kO(1) when processing tree
decompositions of width at most k, while at the same time, require large quantifier depth to
be expressed in MSO logic [9]. For such properties, while the time complexity implied by
the logic approach is upper bounded by a tower of exponentials on k, the time complexity
implied by the dynamic-programming approach is upper bounded double exponential in
kO(1).

2 Basic Definitions

Basic Notation. We let N =̇ {0, 1, . . . } denote the set of natural numbers and N+ = N\{0}
denote the set of positive natural numbers. Given a number n ∈ N, we let [n] =̇ {1, . . . , n}.
In particular, [0] = ∅. Given a set S, the set of finite subsets of S is denoted by Pfin(S), the
set of all subsets of S is denoted by P(S).

Graphs. In this work, a graph is a triple G = (V, E, ρ) where V ⊆ N is a finite set of
vertices, E ⊆ N is a finite set edges, and ρ ⊆ E × V is an incidence relation with the
property that each edge is incident to exactly two vertices. For each edge e ∈ E, we let
endpts(e) = {v ∈ V : (e, v) ∈ ρ} be the endpoints of e. In what follows, we may write V (G),
E(G) and ρG to denote the sets V , E and ρ respectively. We let |G|= |V (G)|+|E(G)| be
the size of G. We let Graphs denote the set of all graphs. For us, the emtpy graph is the
graph (∅, ∅, ∅) with no vertices and no edges.

Graph Isomorphisms. An isomorphism from a graph G to a graph H is a pair φ = (ϕ, ν)
where ϕ : V (G) → V (H) is a bijection from the vertices of G to the vertices of H and
ν : E(G) → E(H) is a bijection from the edges of G to the edges of H with the property that
for each vertex v ∈ V (G) and each edge e ∈ E(G), (v, e) ∈ ρG if and only if (ϕ(v), ν(e)) ∈ ρH .
If such a bijection exists, we say that G and H are isomorphic, and denote this fact by
G ∼ H.

Graph Properties. A graph property is any subset P ⊆ Graphs closed under isomorphisms.
That is to say, for each two isomorphic graphs G and H in Graphs, G ∈ P if and only if
H ∈ P. Note that the sets ∅ and Graphs are graph properties. Given a set S of graphs, the
isomorphism closure of S is defined as the set ISO(S) = {G ∈ Graphs : ∃H ∈ S, G ∼ H}.

Ranked Alphabet. A ranked alphabet is a finite set Σ together with function a : Σ → N,
which intuitively specifies the arity of each symbol in Σ. A term over Σ is a pair τ = (T, λ)
where T is a rooted tree and λ : Nodes(T) → Σ is a function that labels each node p in
Nodes(T) with a symbol from Σ in such a way that if λ(p) is a symbol of arity r, then p

has r children p1, . . . , pr. In particular, leaf nodes are labeled with symbols of arity 0. We
assume that the children of p are ordered from left to right, so it makes sense to speak about
th i-th child of a node. We may write Nodes(τ) to refer to Nodes(T). We write |τ | to denote
|Nodes(T)|. The height of τ is defined as the height of T . We denote by Terms(Σ) the set of
all terms over Σ.

FSCD 2024

33:4 State Canonization and Early Pruning inWidth-Based Automated Theorem Proving

Terms. If τ1 = (T1, λ1), ..., τr = (Tr, λr) are terms in Terms(Σ), and a ∈ Σ is a symbol
of arity r, then we let a(τ1, ..., τr) denote the term τ = (T, λ) where Nodes(T) = {u} ∪
Nodes(T1)∪ . . .∪Nodes(Tr) for some fresh node u, root(T) = u, λ(u) = a, and λ|Nodes(Tj)= λj

for each j ∈ [r].

3 Instructive Dynamic Programming Cores

In this work, we represent graphs of treewidth at most k using k-instructive tree decomposi-
tions (k-ITDs) [9]. For each k ∈ N, consider the following alphabet

Σk =
{

Leaf, IntroVertex{u}, IntroEdge{u, v},

ForgetVertex{u}, Join : u, v ∈ [k + 1], u ̸= v
}

,
(1)

where Leaf is a symbol of arity 0, IntroVertex{u}, ForgetVertex{u} and IntroEdge{u, v}
are symbols of arity 1, and Join is a symbol of arity 2. We call Σk the k-instructive alphabet.
Intuitively, elements of Σk represent instructions that can be used for the construction of a
graph of treewidth at most k, together with a set b ⊆ [k + 1] of active labels, where each
active label labels exacly one vertex of the graph.

1. In the base case, the instruction Leaf creates an empty graph with an empty set of active
labels.

2. Now, let G be a graph with set of active labels b.
a. For each u ∈ [k + 1]\b, the instruction IntroVertex{u} adds a new vertex to G, labels

this vertex with u, and adds u to b.
b. For each u ∈ b, the instruction ForgetVertex{u} erases the label from the current

vertex labeled with u, and removes u from b. The intuition is that the label u is now
free and may be used later in the creation of another vertex.

c. For each u, v ∈ b, the instruction IntroEdge{u, v} introduces a new edge between the
current vertex labeled with u and the current vertex labeled with v. We note that
multiedges are allowed in our graphs.

3. Finally, if G and G′ are two graphs, each having b as the set of active labels, then the
instruction Join creates a new graph by identifying, for each u ∈ b, the vertex of G

labeled with u with the vertex of G′ labeled with u.

Such a construction process can be formalized using a term τ over Σk, which specifies
an inductive construction from the leaves towards the root. More specifically, leaves are
labeled with the Leaf instruction, nodes with a single child are labeled with an instruction of
type IntroVertex{u}, ForgetVertex{u}, or IntroEdge{u, v}, and nodes with two children
are labeled with the Join instruction. We let G(τ) be the graph associated with the root
of τ . We let B(τ) be the set of active labels after processing all operations in τ , and let
θ[τ] : B(τ) → V (G(τ)) be the map that sends each label in B(τ) to its corresponding vertex
in G(τ).

We note that not all terms over Σk give rise to legal graphs. For instance, if the set
b does not contain a label u then the instruction ForgetVertex{u} is not well defined.
Similarly, if u is already in b, then the instruction IntroVertex{u} is not well defined. In
order to specify the set of all terms over Σk that do correspond to graphs, we may use a tree
automaton Ak. More specifically, we let Ak = (Σk, Qk, Fk, ∆k) be the tree automaton where
Qk = Fk = P([k + 1]), and

M. de Oliveira Oliveira and F. Vadiee 33:5

∆k = {Leaf → ∅}
∪ {IntroVertex{u}(b) → b ∪ {u} | u /∈ [k + 1]\b}
∪ {ForgetVertex{u}(b) → b\{u} | u ∈ b}
∪ {IntroEdge{u, v}(b) → b | u, v ∈ b, u ̸= v}
∪ {Join(b, b′) → b | b = b′}.

We let ITDk = L(Ak) where L(Ak) is the set of terms accepted by Ak. The terms in ITDk

are called k-instructive decompositions. It turns out that graphs that can be represented by
k-instructive tree decompositions are precisely the graphs of treewidth at most k.

▶ Lemma 1 ([9]). Let G ∈ Graphs and k ∈ N. Then G has treewidth at most k if and only
if there exists a k-instructive tree decomposition τ such that G(τ) ≃ G.

Dynamic programming algorithms operating on tree decompositions can be formalized
using the notion of an instructive dynamic programming core (instructive DP-core), as defined
below.

▶ Definition 2 (Instructive DP-Cores). An instructive dynamic programming core is a
sequence of 6-tuples D = {(Σk, Wk, Finalk, ∆k, Cleank, Invk)}k∈N where for each k ∈ N,
1. Σk is the k-instructive alphabet;
2. Wk ⊆ {0, 1}∗ is a decidable subset of {0, 1}∗;
3. Finalk : Wk → {0, 1} is a function;
4. ∆k is a set containing

A finite subset Leaf ⊆ W.
A function IntroVertex{u} : W → Pfin(W) for each u ∈ [k + 1].
A function ForgetVertex{u} : W → Pfin(W) for each u ∈ [k + 1].
A function IntroEdge{u, v} : W → Pfin(W) for each {u, v} ∈ P([k + 1], 2).
A function Join : W × W → Pfin(W).

5. Cleank : Pfin(W) → Pfin(W) is a function;
6. Invk : Pfin(W) → {0, 1}∗ is a function.

For each k ∈ N, we let D[k] = (Σk, Wk, Finalk, ∆k, Cleank, Invk) denote the k-th tuple
of D. We may write D[k].Σ to denote the set Σk, D[k].W to denote the set Wk, and so
on. Intuitively, for each k, D[k] is a description of a dynamic programming algorithm that
operates on k-instructive tree decompositions. Such an algorithm processes a k-instructive
tree decomposition τ from the leaves towards the root, and assigns a set of local witnesses
to each node of τ , depending on which instruction labels the node and on the sets assigned
to the children of the node. Some dynamic programming algorithms use a function that
removes redundant local witnesses from the set of local witnesses constructed at each node.
In our framework, this is formalized by the function Cleank. In this work, we assume that
Cleank is the identity function. Finally, the function Invk is used whenever we want to use
dynamic programming algorithms to compute graph invariants. In this work, we will not be
concerned with the computation of invariants, and therefore, we assume that Invk is the
Boolean function that assigns 1 to a set of local witnesses if and only if it contains some final
witness. This process is formalized by the notion of dynamization, which we define below.

▶ Definition 3 (Dynamization). Let k ∈ N and D be an instructive DP-core. The k-
dynamization of D is the function Γ[D, k] : ITDk → Pfin(D[k].W) inductively defined as
follows for each τ ∈ ITDk.
1. If τ = Leaf, then Γ[D, k](τ) = D[k].Leaf.

FSCD 2024

33:6 State Canonization and Early Pruning inWidth-Based Automated Theorem Proving

2. If τ =IntroVertex{u}(σ), then Γ[D, k](τ)=D[k].Clean(IntroVertex{u}(Γ[D, k](σ))).
3. If τ =ForgetVertex{u}(σ), then Γ[D, k](τ)=D[k].Clean(ForgetVertex{u}(Γ[D, k](σ))).
4. If τ =IntroEdge{u, v}(σ), then Γ[D, k](τ)=D[k].Clean(IntroEdge{u, v}(Γ[D, k](σ))).
5. If τ =Join(σ1, σ2), then Γ[D, k](τ)=D[k].Clean(Join(Γ[D, k](σ1), Γ[D, k](σ2))).

We say that D[k] accepts τ if Γ[D, k](τ) has a final local witness, i.e. a local witness w with
the property that D[k].Final(w) = 1. We let G(D[k]) = ISO({G(τ) : τ is accepted by D[k]})
be the isomorphism closure of the set of graphs associated with terms accepted by D[k]. We
note that G(D[k]) is a graph property, and that all graphs in G(D[k]) have treewidth at most
k. We let G(D) =

⋃
k∈N G(D[k]) be the graph property defined by D.

▶ Definition 4 (Coherency). Let D be an instructive DP-core. We say that D is coherent if
for each k, k′ ∈ N, each τ ∈ ITDk, and each τ ′ ∈ ITDk′ if G(τ) ≃ G(τ ′) then D[k] accepts τ

if and only if D[k′] accepts τ ′.

Let D be a coherent instructive DP-core, and k ∈ N. A (k, D)-state is a pair of the form
(b, S) where b ⊆ [k + 1] and S ⊆ D.W . Such a state is said to be (k, D)-inconsistent, if S has
no final local witness. The initial (k, D)-state is the pair (∅, D.Leaf).

▶ Definition 5 ((k, D)-Refutation). Let D be an instructive DP-core. A (k, D)-refutation is a
sequence of pairs R ≡ (b0, S0)(b1, S1) . . . (bm, Sm) satisfying the following conditions.

1. (b0, S0) = (∅, D[k].Leaf).

2. (bm, Sm) is (k, D)-inconsistent.

3. For each i ∈ [m], there is some j ∈ [i], such that (bi, Si) is equal to one of the following
pairs.
a. (bj ∪ {u}, IntroVertex{u}(Sj)) with u /∈ bj.
b. (bj \ {u}, ForgetVertex{u}(Sj)) with u ∈ bj.
c. (bj , IntroEdge{u, v}(Sj)) with u, v ∈ bj.
d. (bj , Join(Sj , Sl)) with l ∈ [i].

Intuitively, a (k, D)-refutation is a certificate that some inconsistent (k, D)-state is reach-
able from the initial (k, D)-state. It turns out that if D is a coherent instructive DP-core,
then constructing a (k, D)-refutation is equivalent to showing that G(D) does not contain all
graphs of treewidth at most k.

▶ Theorem 6 ([9]). Let D be a coherent instructive DP-core. Then there is a (k, D)-refutation
if and only if some graph of treewidth at most k does not belong to the graph property G(D).

4 Example: An Instructive DP-Core for Chromatic Number at Most r

Let S be a finite set, and r ∈ N. An r-partition of S is a partition of S with at most r cells.
Let G be a graph. We say that G is r-colorable if there is an r-partition of V (G) such that
for each edge e ∈ E(G), the endpoints of e belong to distinct cells. Let Colorabler be the
graph property consisting of all graphs that are r-colorable. In this section, we specify a
DP-core C-Colorabler for the property Colorabler. We start by defining the notion of
a C-Colorabler[k] local witness, for each k ∈ N.

▶ Definition 7. Let k ∈ N. A C-Colorabler[k] local witness is any r-partition of a subset
of [k + 1].

M. de Oliveira Oliveira and F. Vadiee 33:7

▶ Definition 8. Let r ∈ N. We let C-Colorabler be the instructive DP-core D specified
below. For each k ∈ N, we define C-Colorabler[k] = D[k]. We let u, v ∈ [k + 1], w and w′

be C-Colorabler[k] local witnesses, and S be a set of such local witnesses.

1. D[k].W = {w : w is a C-Colorabler[k] local witness }.
2. D[k].Leaf = {∅}.

3. D[k].IntroVertex{u}(w) =

{
{(w \ {p}) ∪ {p ∪ {u}} : p ∈ w} if |w|= r,

{w ∪ {{u}}} ∪ {(w \ {p}) ∪ {p ∪ {u}} : p ∈ w} if |w|< r.

4. D[k].ForgetVertex{u}(w) = {p \ {u} : p ∈ w}\{∅} 1.

5. D[k].IntroEdge{u, v}(w) =
{

{w} if u and v are not in a same cell,
∅ Otherwise.

6. D[k].Join(w, w′) =
{

{w} if w = w′,
∅ Otherwise.

7. D[k].Final(w) = 1 for every w ∈ D.W.
8. D[k].Clean(S) = S for every S ⊆ D.W.

9. D[k].Inv(S) =
{

1 if S has a final witness,
0 Otherwise.

Next, we define a predicate relating k-instructive tree decompositions with local witnesses.

▶ Definition 9. We let P-Colorabler[k] be the predicate that is true on a pair (τ, w) ∈
ITDk × C-Colorabler[k].W if and only if the following conditions are satisfied.
1.

⋃
c∈w

c = dom(θ[τ]).

2. There is an r-partition α of V (G(τ)) such that for every u, v ∈ B(τ), θ[τ](u) and θ[τ](v)
belong to the same cell in α if and only if u and v belong to the same cell in w.

▶ Proposition 10. For each τ ∈ ITDk, a local witness w belongs to Γ[C-Colorabler, k](τ)
if and only if P-Colorabler[k](τ, w) = 1.

The next corollary states that the predicate P-Colorable[k, r] characterizes
those pairs (τ, w) for which w is a witness in Γ[C-Colorabler[k], τ]. Below,
Accepted(C-Colorabler[k]) is the set of k-instructive tree decompositions accepted by
C-Colorabler[k].

▶ Corollary 11. Let τ be a k-instructive tree decomposition. Then G(τ) is r-colorable if and
only if τ ∈ Accepted(C-Colorabler[k]).

Since a C-Colorabler[k] local witness is an r-partition of a subset of [k + 1], we can
represent such a partition using O(k · log r) bits.

▶ Observation 12. C-Colorabler[k] has bit-length O(k · log r).

1 There is at most one cell containing u. If this cell is a singleton, the whole cell is deleted from w.

FSCD 2024

33:8 State Canonization and Early Pruning inWidth-Based Automated Theorem Proving

5 Width Based ATP with Symmetry Breaking

In this section, we introduce our main technical result. More specifically, we introduce a
width-based automated deduction algorithm endowed with a symmetry breaking procedure
that allows us to remove redundant states during the search for counter-example for a given
conjecture. At the core of our technique, lies the notion of a witness action. Intuitively,
functions that satisfy the axioms of a witness action can be used to define permuted versions
of local witnesses generated by a DP-core. This allows us to define the notion of canonical
form of a state generated during the search process. Instead of keeping track of all inferred
states, we only keep their canonical forms. This leads to a significant reduction of the
search space because states with the same canonical form are identified. Our main theorem
(Theorem 19) states that this process preserves provability.

Let Fk = {f : b → [k + 1] | b ⊆ [k + 1]} be the set of all injective functions f : b → [k + 1]
from some subset b ⊆ [k + 1] to [k + 1]. We call the elements of F relabeling functions. Given
such a function f ∈ Fk, and a subset b ⊆ [k + 1], we let f(b) = {f(u) : u ∈ b} be the image
of b under f . Next, we introduce the notion of a witness action for a DP-core (Definition
13). Actions will be used later to define the notion of a canonical form for a D[k]-state.

▶ Definition 13 (Witness Action). Let D be a DP-core and k ∈ N. We say that a function
ρk

D : Fk × D[k].W → D[k].W is an action for D[k] if the following conditions are satisfied for
each f ∈ Fk, and each w ∈ D[k].W.
1. ρk

D preserves acceptance: w ∈ Accepted(D[k]) if and only if ρk
D(f, w) ∈ Accepted(D[k]).

2. ρk
D(f−1, ρk

D(f, w)) = w.
3. ρk

D(f ◦ f ′, w) = ρk
D(f, ρk

D(f ′, w)).
4. ρk

D(f, IntroVertex{u}(w)) = IntroVertex{f(u)}(ρk
D(f, w)).

5. ρk
D(f, ForgetVertex{u}(w)) = ForgetVertex{f(u)}(ρk

D(f, w)).
6. ρk

D(f, IntroEdge{u, v}(w)) = IntroEdge{f(u), f(v)}(ρk
D(f, w)).

7. ρk
D(f, Join(w1, w2)) = Join(ρk

D(f, w1), ρk
D(f, w2)).

We extend Definition 13 to subsets of witnesses by setting

ρk
D(f, S) = {ρk

D(f, w) : w ∈ S}

for each S ⊆ D[k].W. Next, given a DP-core D, we will define a notion of canonization for a
pair (b, S) where b ⊆ [k + 1] and S ⊆ Pfin(D.W).

Let U be an ordered set of elements, and X ⊆ U . We let vec(X) be the vector obtained
by ordering the elements of X from the smallest value to the largest value. For instance,
if X = {2, 3, 5}, then vec(X) = (2, 3, 5). Given two such subsets X, X ′ ⊆ U , we say that
X < X ′ if vec(X) is lexicographically smaller than vec(X).

Let D be a DP-core and fix an arbitrary order for the set D[k].W . For instance, this order
can be simply the lexicographic order on strings. We say that a pair (b, S) is smaller than
(b′, S′) if the pair (vec(b), vec(S)) is lexicographically smaller than the pair (vec(b′), vec(S′)).

▶ Definition 14 (Canonical Pair). Let b ⊆ [k + 1], S ⊆ D[k].W, and

CANk
D(b, S) = min{(f(b), ρk

D(f, S)) | f ∈ Fk, dom(f) = b}.

We call the function f : b → [k + 1] where the minimum in the above equation is achieved the
canonical relabeling of (b, S).

M. de Oliveira Oliveira and F. Vadiee 33:9

Intuitively, given a fixed action ρk
D the canonical form CANk

D(b, S) of a pair (b, S) is the
lexicographically smallest pair obtained by relabeling the elements of b and each string w ∈ S

according to some relabeling function f : b → [k + 1]. The canonical relabeling of (b, q) is
the unique function f : b → [k + 1] with the property that (f(b), ρk

D(f, S)) = CANk
D(b, S).

Our next step is to define the notion of a relabeled refutation. Intuitively, relabelings will
be used to produce refutations where all states are in canonical form.

▶ Definition 15 (F-Relabeled Refutation). Let F = (f1, . . . , fm) be a sequence of relabeling
functions in Fk and D be a DP-core. An F-relabeled (k, D)-refutation is a sequence of pairs

R ≡ (b0, S0)(b1, S1) . . . (bm, Sm)

satisfying the following conditions:
1. (b0, S0) = (∅, D[k].Leaf).

2. (bm, Sm) is (k, D)-inconsistent, i.e., Sm has no final local witness.

3. For each i ∈ [m], there is some j ∈ [i], such that (bi, Si) is equal to one of the following
pairs.
a. (fi(bj ∪ {u}), ρk

D(fi, IntroVertex{u}(Sj))) for some u /∈ bj.
b. (fi(bj \ {u}), ρk

D(fi, ForgetVertex{u}(Sj))) for some u ∈ bj.
c. (fi(bj), ρk

D(fi, IntroEdge{u, v}(Sj))) for some u, v ∈ bj.
d. (fi(bj), ρk

D(fi, Join(Sj , ρk
D(f, Sl)))) for some l ∈ [i] and some f : bl → [k + 1] with

f(bl) = fi(bj).

If the sequence R in Definition 15 satisfies Conditions 1 and 3, but not Condition 2, then
we say that R is a semi F-relabeled (k, D)-refutation.

Below, given an instructive tree decomposition τ , we let Sub(τ) denote the set of all
subterms of τ .

▶ Lemma 16. Let D be a DP-core, F = (f1, . . . , fm) be a sequence of k-relabeling functions.
Let R = (b0, S0)(b1, S1) . . . (bm, Sm) be a semi F-relabeled (k, D)-refutation, and g : bm →
[k + 1] be a k-relabeling. Then, there is a k-instructive tree decomposition τR ∈ ITDk and a
function T : Sub(τR) → Pfin(D.W) such that the following conditions are satisfied for each
subterm τ of τR.
1. If τ = τR, then T (τ) = ρk

D(g, Sm).
2. if τ = Leaf, then T (τ) = D[k].Leaf.
3. if τ = IntroVertex{u}(τ1) for some subterm τ1, then T (τ) = IntroVertex{u}(T (τ1)).
4. if τ = ForgetVertex{u}(τ1) for some subterm τ1, then T (τ) = ForgetVertex{u}(T (τ1))
5. if τ = IntroEdge{u, v}(τ1) for some subterm τ1, then T (τ) = IntroEdge{u, v}(T (τ1)).
6. if τ = Join(τ1, τ2) for some subterms τ1 and τ2, then T (τ) = Join(T (τ1), T (τ2)).

Proof. The proof of Lemma 16 follows by induction on m. In the base case, we have that
R = (b0, S0). In this case, by setting τR = Leaf and T (τR) = D[k].Leaf, the conditions 1-6
of Lemma 16 are satisfied.

Assume that the lemma holds for all n < m. We show that the lemma holds for n = m.
Below, for each i ∈ [n], we let Ri = (b0, S0)(b1, S1) . . . (bi, Si). By the induction hypothesis,
for each such i, and each h : bi → [k + 1], there is a k-instructional tree decomposition τh

i

and a function T h
i : Sub(τ ′) → Pfin(D.W) such that the conditions 1-6 of Lemma 16 are

satisfied. There are four cases to be analyzed.

FSCD 2024

33:10 State Canonization and Early Pruning inWidth-Based Automated Theorem Proving

1. In the first case (bm, Sm) = (fm(bi ∪ {u}), ρk
D(fm, IntroVertex{u}(Si))) for some i < m.

Let τ = IntroVertex{g ◦ fm(u)}(τg◦fm

i), and T : Sub(τ) → Pfin(D[k].W) be such that
T (τ) = IntroVertex{g ◦ fm(u)}(ρk

D(g ◦ fm, Si)) and T |Sub(τg◦fm
i

)= T g◦fm

i . It should be
clear that conditions 2-6 are satisfied. Finally, to show that Condition 1 is satisfied, we
note that

IntroVertex{g ◦ fm(u)}(ρk
D(g ◦ fm, Si))

= ρk
D(g ◦ fm, IntroVertex{u}(Si))

= ρk
D(g, ρk

D(fm, IntroVertex{u}(Si)))
= ρk

D(g, Sm).

where the first equality follows from Definition 13.4, the second equality follows
from Definition 13.3 and the third equality follows from the fact that Sm =
ρk

D(fm, IntroVertex{u}(Si)).
2. In the second case (bm, Sm) = (fm(bi \ {u}), ρk

D(fm, ForgetVertex{u}(Si))) for some
i < m. Let τ = ForgetVertex{g ◦ fm(u)}(τg◦fm

i), and T : Sub(τ) → Pfin(D[k].W) be
such that T (τ) = ForgetVertex{g ◦ fm(u)}(ρk

D(g ◦ fm, Si)) and T |Sub(τg◦fm
i

)= T g◦fm

i . It
should be clear that conditions 2-6 are satisfied. Finally, to show that Condition 1 is
satisfied, we note that

ForgetVertex{g ◦ fm(u)}(ρk
D(g ◦ fm, Si))

= ρk
D(g ◦ fm, ForgetVertex{u}(Si))

= ρk
D(g, ρk

D(fm, ForgetVertex{u}(Si)))
= ρk

D(g, Sm).

where the first equality follows from Definition 13.5, the second equality follows
from Definition 13.3 and the third equality follows from the fact that Sm =
ρk

D(fm, ForgetVertex{u}(Si)).
3. In the third case (bm, Sm) = (fm(bi), ρk

D(fm, IntroEdge{u, v}(Si))) for some i < m. Let
τ = IntroEdge{g ◦ fm(u), g ◦ fm(v)}(τg◦fm

i), and T : Sub(τ) → Pfin(D[k].W) be such
that T (τ) = IntroEdge{g ◦ fm(u), g ◦ fm(v)}(ρk

D(g ◦ fm, Si)) and T |Sub(τg◦fm
i

)= T g◦fm

i .
It should be clear that conditions 2-6 are satisfied. Finally, to show that Condition 1 is
satisfied, we note that

IntroEdge{g ◦ fm(u), g ◦ fm(v)}(ρk
D(g ◦ fm, Si))

= ρk
D(g ◦ fm, IntroEdge{u, v}(Si))

= ρk
D(g, ρk

D(fm, IntroEdge{u, v}(Si)))
= ρk

D(g, Sm).

where the first equality follows from Definition 13.6, the second equality follows
from Definition 13.3 and the third equality follows from the fact that Sm =
ρk

D(fm, IntroEdge{u, v}(Si)).
4. In the fourth case (bm, Sm) = (fm(bi), ρk

D(fm, Join(Si, Sj))) for some j, i < m. Let
τ = Join(τg◦fm

i , τg◦fm

j), and T : Sub(τ) → Pfin(D[k].W) be such that T (τ) = Join(ρk
D(g◦

fm, Si), ρk
D(g ◦ fm, Sj) and T |Sub(τg◦fm

i
)= T g◦fm

i and T |Sub(τg◦fm
j

)= T g◦fm

j . It should be
clear that conditions 2-6 are satisfied. Finally, to show that Condition 1 is satisfied, we
note that

Join(ρk
D(g ◦ fm, Si), ρk

D(g ◦ fm, Sj))
= ρk

D(g ◦ fm, Join(Si, Sj))
= ρk

D(g, ρk
D(fm, Join(Si, Sj)))

= ρk
D(g, Sm).

where the first equality follows from Definition 13.7, the second equality follows from
Definition 13.3 and the third equality follows from the fact that Sm = ρk

D(fm, Join(Si, Sj)).
◀

M. de Oliveira Oliveira and F. Vadiee 33:11

The next theorem states that if D is a coherent DP-core, then from each relabeled
(k, D)-refutation, one can extract a k-instructive tree decomposition whose graph does not
belong to G(D).

▶ Theorem 17. Let F = (f1, . . . , fm) be a sequence of relabeling functions and D be a
coherent DP-core. If there is an F-relabeled (k, D)-refutation, then there exists a k-instructive
tree decomposition τ ∈ ITDk where G(τ) /∈ G(D).

Proof. Let R = (b0, S0)(b1, S1) . . . (bm, Sm) be a F-relabeled (k, D)-refutation. By Lemma 16,
there is a k-instructive tree decomposition τ and a map T : Sub(τ) → Pfin(D.W) such that
conditions 1-6 of Lemma 16 are satisfied. Conditions 2-6 imply that the value of T on τ is
equal to the value of the dynamization of D on τ . In particular we have that Sm = Γ[D, k](τ).
Since R is a (k, D)-refutation, we have that Sm has no final local witness. Therefore, the
definition of acceptance for a DP-core, τ is not accepted by D. Since D is coherent, then
G(τ) does not belong to G(D). ◀

Next, we define the notion of a canonized refutation. Intuitively, such a refutation is
obtained by canonizing the (k, D)-pairs occurring in a (k, D)-refutation.

▶ Definition 18 (Canonized Refutation). Let D be a coherent DP-core, and k ∈ N, F =
(f1, . . . , fm) be a sequence of relabelings, and R ≡ (b0, S0)(b1, S1) . . . (bm, Sm) be an F -
relabeled (k, D)-refutation. We say that R is canonized if for each i ∈ N, the pair (bi, Si) is
canonical.

Our main theorem (Theorem 19) states that if D is a coherent DP-core, then the existence
of a canonized (k, D)-refutation is equivalent to the existence of a graph of treewidth at most
k that does not belong to the property G(D) defined by D.

▶ Theorem 19. Let D be a coherent DP-core and k ∈ N. Then there is a canonized
(k, D)-refutation if and only if some graph of treewidth at most k does not belong to G(D).

Proof. Let G be a graph of treewidth at most k that does not belong to G(D). Then,
by Theorem 6, there is a (k, D)-refutation R = (b0, S0)(b1, S1) . . . (bm, Sm). Let R′ =
(b′

0, S′
0)(b′

1, S′
1) . . . (b′

m, S′
m) be the sequence of pairs where for each i ∈ {0, 1,, m}, (b′

i, S′
i)

is the canonical form of (bi, Si). Then R′ is a canonized DP-refutation.
For the converse, suppose there is a canonized (k, D)-refutation R. By Definition 18,

R is a F-relabeled refutation for some relabeling sequence F. By Theorem 17, there is a
k-instructive tree decomposition τ where G(τ) /∈ G(D). ◀

6 Early Pruning

Our second main contribution is an early-pruning procedure that can be applied in the study
of conjectures of the form P1 → P2 where P1 is closed under subgraphs. This reduces the
search space even more because it allows us to avoid the computation of states that do not
contribute in the search for a counter-example.

A graph property P is said to be closed under sub-graphs if whenever a graph G belongs
to P, we have that every sub-graph of G also belongs to P. If the graph property G(D)
specified by a given coherent DP-core D is of the form G(D1) → G(D2) for coherent DP-cores
D1 and D2, such that G(D1) is closed under subgraphs, then when running our inference
algorithm to determine whether some graph of treewidth at most k is not contained in G(D)
we may prune the search earlier. The following simple, but crucial observation is the basis of
our specialized search.

FSCD 2024

33:12 State Canonization and Early Pruning inWidth-Based Automated Theorem Proving

▶ Observation 20. Let P be a graph property closed under subgraphs. Let τ and τ ′ be
k-instructive tree decompositions such that τ is a subterm of τ ′. Then, if G(τ) /∈ P, then
G(τ ′) /∈ P.

Proof. Assume that G(τ) /∈ P. Since τ is a subterm of τ ′, we have that G(τ) is isomorphic
to a subgraph of G(τ ′). Suppose G(τ ′) ∈ P, then since P is closed under subgraphs, we have
that G(τ) ∈ P. This contradicts the assumption that G(τ) /∈ P. ◀

Observation 20 implies that in order to determine whether there is a graph of treewidth
at most k that does not belong to G(D), instead of searching for inconsistent (k, D)-pairs, we
may instead search for inconsistent (k, D1, D2)-triples. Such a triple, is a triple of the form
(b, S1, S1) satisfying the following properties:
1. (b, S1) is a (k, D1)-pair,
2. (b, S2) is a (k, D2)-pair,
3. S1 has a final local witness for D1 but S2 does not have a final local witness for D2.

This allows a more efficient search because, since G(D1) is assumed to be closed under
subgraphs, as soon as we have reached a (k, D1, D2)-triple (b, S1, S2) where (b, S1) is an
inconsistent (k, D1)-pair, we know that no triple (b, S′

1, S′
2) derived from (b, S1, S2) will be

inconsistent (because S′
1 does not contain a final witness for D1). Therefore, we do not need

to consider (k, D1, D2)-triples derived from (b, S1, S2). This construction is carried out in
details in the full version of this work.

7 Reed’s Conjecture Parameterized by Treewidth

In this section, we provide a concrete example of how dynamic programming algorithms can
be used to provide asymptotic upper bounds on the time-complexity of verifying whether a
given graph theoretic conjecture is valid on the class of graphs of width at most k. More
specifically, we analyze the following well known conjecture due to Reed [21], which establishes
an upper bound on the chromatic number χ(G) of a triangle-free graph G in terms of the
maximum degree ∆(G) of G.

▶ Conjecture 21. For any simple, triangle-free, undirected graph G, χ(G) ≤ ⌈ ∆(G)+3
2 ⌉.

It is worth noting that graphs of treewidth at most k are (k + 1)-colorable [3]. The
following theorem due to Dvorák and Kawarabayashi establishes a better upper bound for
the chromatic number of triangle-free graphs in terms of treewidth.

▶ Theorem 22 ([10]). For any triangle-free graph G of treewidth ≤ k, χ(G) ≤
⌈

k+3
2

⌉
.

Therefore, in order to prove that every graph of treewidth at most k satisfies Conjecture 21,
it is enough to show that for each s ∈ {0, . . . , k − 1}, every graph of treewidth at most k and
maximum degree at most s has chromatic number at most ⌈ s+3

2 ⌉, since for larger values of
s, Theorem 22 implies that the conjecture is true. Now, let Colorabler denote the graph
property consisting of all graphs that are r-colorable, MaxDegd denote the graph property
consisting of all graphs that have maximum degree at least d, Cliqueω be the property
consisting of all graphs that have clique number at least ω, and MultiEdge be the property
consisting of all graphs that have some multiple edges. Let Reed(s) be the graph property

Reed(s) ≡ ¬MultiEdge ∧ ¬Clique3 ∧ ¬MaxDegs+1 → Colorable⌈(s+3)/2⌉. (2)

M. de Oliveira Oliveira and F. Vadiee 33:13

Then determining whether all graphs of treewidth at most k satisfy Reed conjecture
is equivalent to determining whether for each s ∈ {0, 1, . . . , k − 1}, the set of all graphs
of treewidth at most k is contained in property Reed(s). Now, Reed(s) is a Boolean
combination of four properties, each of which can be decided coherent DP-cores whose
bitlength is polynomial in k. The bitlength of a DP-core D is a function β(k) that measures
the maximum number of bits of a local witness produced during the processing of a k-
instructive tree decomposition. The specification of each of the four DP-cores can be found
in the appendix. Such implementations are of independent interest, because each such core
may be viewed as an algorithm that takes a k-instructive tree decomposition τ as input
and decides whether the graph G(τ) associated with τ satisfies the corresponding property
represented by the core.

▶ Theorem 23 (DP-Cores for Reed’s Conjecture). There exist coherent, instructive DP-
cores C-MaxDeg, C-Colorable, C-Cliqueω, C-MultiEdge satisfying the following
properties.
1. C-MaxDegd has bit-length O(k · log d) and G(C-MaxDegd) = MaxDegd.
2. C-Colorabler has bit-length O(k · log r) and G(C-Colorabler) = Colorabler.
3. C-Cliqueω has bit-length O(k · log ω) and G(C-Cliqueω) = Cliqueω.
4. C-MultiEdge has bit-length O(k2) and G(C-MultiEdge) = MultiEdge

Therefore, as a consequence of Theorem 19, Theorem 23, and Equation 2 we have the
following corollary.

▶ Corollary 24. For each k ∈ N, Reed’s conjecture for triangle-free graphs can be tested in
time double-exponential in O(k2).

Actually, the bound in Corollary 24 can be improved to double-exponential in O(k · log k) by
noting that the DP-core C-MultiEdge is deterministic.

8 Experimental Evaluation

We have implemented our width-based automated theorem proving framework on a software
called TreeWidzard. Our software provides an interface that facilitates the implementation
of dynamic programming algorithms parameterized by treewidth and pathwidth, and the
integration of such algorithms with the purpose of width based automated theorem proving.
In this section we evaluate our implementation on the task of producing counter-examples
for wrong graph-theoretic statements, and also to provide a verification of Reed’s conjectures
on graphs of small treewidth and pathwidth.

8.1 Constructing Counterexamples for Wrong Mathematical Statements
One of the most remarkable applications of the framework of width-based automated theorem
proving lies in its ability to search for counter-examples width-wise. The advantage of this
approach is that the width of a graph may be significantly smaller than its number of vertices.

As stated in Theorem 22, triangle-free graphs of treewidth at most k have chromatic
number at most ⌈ k+3

2 ⌉. It can be shown by an analytic proof that for each k ≥ 1, this
bound is tight [10], in the sense that there are graphs of treewidth at most k that cannot
be properly colored with ⌈ k+3

2 ⌉ − 1 colors. In Figure 1:Left we depict a triangle-free graph
with 14 vertices, 27 edges and chromatic number 4. Apart from the drawing, for which we
took some artistic liberty, this graph was obtained as a counter-example for the following
statement: triangle-free graphs have chromatic number at most 3. In particular, the graph

FSCD 2024

33:14 State Canonization and Early Pruning inWidth-Based Automated Theorem Proving

was found when restricting our search to graphs of pathwidth at most 4. Note that it follows
from [10] that this statement is true for graphs of pathwidth at most 3, and our search
terminates without counter-examples in this case.

In a similar vein, the graph depicted in Figure 1:Right is a triangle-free graph of maximum
degree 4 and chromatic number 4. This graph was obtained as a counter example for the
following statement which is a (false) strengthening of Conjecture 21: triangle-free graphs of
maximum degree at most 4 have chromatic number at most 3. The graph was found when
restricting our search to graphs of pathwidth at most 4. It is worth noting that it also follows
from [10] that this statement is true for graphs of pathwidth at most 3. In this case, our
algorithm concluded the search without a counter-example.

9

1

7

3

12

5

4

14

8

6

10

2

1311

21

19

1514

22
18 20

17 16

4

2

86

3
1 7

5 9

1110

1213

Figure 1 Left: G is a triangle-free graph of pathwidth 4 and chromatic number 4. This is a
counter-example for a strengthening of a theorem of Reed and Dvorak. Right: G is a triangle-free
graph of pathwidth 4, chromatic number 4, and maximum degree 4. This is a counter-example for a
strengthening of Reed’s conjecture for triangle free graphs.

8.2 Validating Reed’s Triangle Free Conjecture on Graphs of Small
Pathwidth and Treewidth

When testing whether a given graph-theoretic conjecture is valid on the class of graphs of
pathwidth/treewidth at most k, our deduction algorithm may terminate without producing
a counter-example. This means that the conjecture is valid on the class of graphs of
pathwidth/treewidth at most k.

When combining both the symmetry-breaking technique introduced in Section 5 with the
early-pruning technique introduced in Section 6, our software was able to confirm Conjecture
21 in the class of graphs of pathwidth at most 5. To the best of our knowledge, an analytic
proof of Conjecture 21 on this class of graphs is lacking in the literature. It is worth noting
that to confirm this case, it is enough to consider graphs of maximum degree at most 3, since
for graphs of larger degree Reed’s conjecture follow from Theorem 22.

In the verification of Conjecture 21 in the case of graphs of pathwidth at most 5, our
search, using both techniques introduced in this work, produced 746187 states, took about 21
hours, and consumed 35 GB of memory on a cluster with processors of type Intel Xeon Gold
6130, with 2.1 Ghz. The search in this particular case was executed with 64 cores and 128
threads. It is worth noting that this case becomes prohibitively large if we deactivate either
the canonization procedure or the subgraph-closed premise search. Therefore, the techniques
introduced in this work were crucial in this regard.

For graphs of treewidth at most 3, and graphs of pathwidth at most 4, we performed a
comparison between the original deduction algorithm introduced in [9], and the algorithm
augmented only with the symmetry breaking procedure, only with the early pruning procedure,

M. de Oliveira Oliveira and F. Vadiee 33:15

and with both (See Table 1). Both improvements when applied isolated decrease significantly
the number of states considered during the search process. Nevertheless, when combining
both approaches, the reduction of the search space was very expressive. For example, in the
case of pathwidth 3 and maximum degree 2, the method with no improvement produced more
than 20 million states. The method with only the symmetry breaking improvement produced
about 1 million states, the method with only the early pruning improvement produced about
1916 states, and the method with both improvements produced only 141 states.

Table 1 Number of states generated by our program when testing Reed’s (ω, ∆, χ)-conjecture
for ω = 2 (triangle-free case) on graphs of constant pathwidth and treewidth. The entries in
blue correspond to experiments that did not terminate, and the entries with a star correspond to
experiments that stopped due to a memory limit.

BFS BFS-premise

pw
∆

2 3 4 2 3 4

pw = 2 2503 4814 9877 149 341 617

pw = 3 > 20738085∗ > 21164080∗ 5193467 1916 9850 27720

pw = 4 > 9463445∗ > 6019042∗ > 8333258∗ 29184 1156954 2438694

ISO-BFS ISO-BFS-premise

pw = 2 520 945 1843 38 76 128

pw = 3 1031545 1050960 223920 141 579 1451

pw = 4 > 9449990∗ > 9903864∗ > 5029614∗ 486 12375 24494

ISO-BFS ISO-BFS-premise

tw = 2 >25351 >25960 >27632 57 153 330

tw = 3 >69621 >71183 >72891 194 1268 4080

tw = 4 >71858 >73532 >75426 616 >4942 >13438

9 Conclusion

In this work, we have given the first steps towards evaluating the width-based automated
theorem proving approach introduced in [9] from a practical perspective. At the same time, we
have introduced two techniques that have together drastically reduced the space of states to
be explored during the search for a counter-example. While the first technique is quite general
and can be applied in the study of any conjecture involving DP-cores for which a witness
action can be defined, the second improvement can be applied in the case of conjectures
of the form P1 → P2, where P1 is a property closed under subgraphs. To illustrate the
applicability of our methods, we have used our implementation to produce counter-examples
for false graph-theoretic statements, and also to confirm Reed’s triangle-free conjecture on
the class of graphs of pathwidth at most 5 and on the class of graphs of treewidth at most 3.

It is worth highlighting the modularity of our approach. While the implementation of
instructive dynamic programming cores requires specialized knowledge from the part of the
programmer, the use of such cores once they have been implemented is straightforward.
For instance, in our framework, the critical case for testing Reed’s conjecture on graphs of
pathwidth at most 5 is the case where the degree is at most 3. More precisely, a conjecture
stating that all simple, triangle-free graphs of maximum degree at most 3 have chromatic
number at most 3. This conjecture is stated in our framework using the following intuitive
lines of code, where the first four lines correspond each to a graph property, and the last line
corresponds to the conjecture being tested.

FSCD 2024

33:16 State Canonization and Early Pruning inWidth-Based Automated Theorem Proving

x := MaxDegree_AtLeast(4)
y := CliqueNumber_AtLeast(3)
z := HasMultipleEdges
w := Colorable(3)
Formula
NOT x AND NOT y AND NOT z IMPLIES w

The idea is that dynamic programming cores deciding graph properties are implemented
as plugins that need to be implemented only once by a specialist and then used without
difficulty by graph theorists. We believe that our approach has the potential to create a nice
interchange of knowledge between the community of researchers working on parameterized
complexity theory, and researchers working in automated theorem proving. In essence, our
framework shows that the 3 decades of accumulated knowledge obtained in the development
of faster width-based parameterized algorithms for model checking may now be put into use
in the context of automated theorem proving.

References
1 Therese C. Biedl. On triangulating k-outerplanar graphs. Discret. Appl. Math., 181(1):275–279,

2015. doi:10.1016/j.dam.2014.10.017.
2 Hans L. Bodlaender. Classes of graphs with bounded tree-width, volume 86. Unknown Publisher,

1986.
3 Hans L Bodlaender and Fedor V Fomin. Equitable colorings of bounded treewidth graphs.

Theoretical Computer Science, 349(1):22–30, 2005.
4 Béla Bollobás, Paul A Catlin, and Paul Erdös. Hadwiger’s conjecture is true for almost every

graph. Eur. J. Comb., 1(3):195–199, 1980.
5 Andreas Brandstädt, Van Bang Le, and Jeremy P Spinrad. Graph classes: a survey. SIAM,

1999.
6 CN Campos and Yoshiko Wakabayashi. On dominating sets of maximal outerplanar graphs.

Discrete Applied Mathematics, 161(3):330–335, 2013.
7 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.

Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.
8 Bruno Courcelle and Irène Durand. Automata for the verification of monadic second-order

graph properties. Journal of applied logic, 10(4):368–409, 2012.
9 Mateus de Oliveira Oliveira and Farhad Vadiee. From width-based model checking to width-

based automated theorem proving. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37(5), pages 6297–6304, 2023.

10 Zdeněk Dvořák and Ken-ichi Kawarabayashi. Triangle-free graphs of tree-width t are ⌈(t+3)/2⌉-
colorable. European Journal of Combinatorics, 66:95–100, 2017.

11 DJ Guan and Xuding Zhu. Game chromatic number of outerplanar graphs. Journal of Graph
Theory, 30(1):67–70, 1999.

12 Daniel Heldt, Kolja Knauer, and Torsten Ueckerdt. On the bend-number of planar and
outerplanar graphs. Discrete Applied Mathematics, 179:109–119, 2014.

13 Pavol Hell and Xuding Zhu. The circular chromatic number of series-parallel graphs. Journal
of Graph Theory, 33(1):14–24, 2000.

14 Jesper Lykke Jacobsen and Jesús Salas. Is the five-flow conjecture almost false? Journal of
Combinatorial Theory, Series B, 103(4):532–565, 2013.

15 Frank Kammer. Determining the smallest k such that g is k-outerplanar. In European
Symposium on Algorithms, pages 359–370. Springer, 2007.

16 Ton Kloks. Treewidth: computations and approximations. Springer, 1994.
17 Zhishi Pan and Xuding Zhu. Tight relation between the circular chromatic number and the

girth of series-parallel graphs. Discrete mathematics, 254(1-3):393–404, 2002.

https://doi.org/10.1016/j.dam.2014.10.017
https://doi.org/10.1016/0890-5401(90)90043-H

M. de Oliveira Oliveira and F. Vadiee 33:17

18 Léo Vieira Peres and Ricardo Dahab. Tutte’s 3-flow conjecture for almost even graphs. Procedia
Computer Science, 195:280–288, 2021.

19 Alexandre Pinlou and Éric Sopena. Oriented vertex and arc colorings of outerplanar graphs.
Information Processing Letters, 100(3):97–104, 2006.

20 Andrzej Proskurowski and Jan Arne Telle. From bandwidth to pathwidth k. _THEORETICAL-
E, page 90, 1996.

21 Bruce Reed. ω, δ, and χ. Journal of Graph Theory, 27(4):177–212, 1998.
22 Bo Zhou. Upper bounds for the zagreb indices and the spectral radius of series-parallel graphs.

International Journal of Quantum Chemistry, 107(4):875–878, 2007.

FSCD 2024

	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Basic Definitions
	3 Instructive Dynamic Programming Cores
	4 Example: An Instructive DP-Core for Chromatic Number at Most r
	5 Width Based ATP with Symmetry Breaking
	6 Early Pruning
	7 Reed's Conjecture Parameterized by Treewidth
	8 Experimental Evaluation
	8.1 Constructing Counterexamples for Wrong Mathematical Statements
	8.2 Validating Reed's Triangle Free Conjecture on Graphs of Small Pathwidth and Treewidth

	9 Conclusion

