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Abstract
Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted
situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric
structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and
shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such
structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various
geometric graphs that are longest.

Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinat-
orics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They
raised several challenging questions in this direction. In particular, they asked whether the longest
spanning path, on any finite set of points in the plane, must have a pair of crossing edges. They also
conjectured that the longest spanning cycle must have a pair of crossing edges.

In this paper, we give a negative answer to the question and also refute the conjecture. We present
a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the
longest spanning paths, and the longest spanning cycles are noncrossing.
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1 Introduction

Traversing points in the plane by a polygonal path or cycle possessing a desired property has
a rich background. For instance, the celebrated travelling salesperson problem asks for a
polygonal path or cycle with minimum total edge length [9, 23, 25]. In recent years, there
has been increased interest in paths and cycles with properties such as being noncrossing
[2, 16], minimizing the longest edge length [6, 12, 22], maximizing the shortest edge length [7],
minimizing the total or largest turning angle [1, 11, 18, 21], and minimizing the number of
turns [13, 17, 26] to name a few. The longest cycle – the MaxTSP – is NP-hard in Euclidean
spaces of dimension ≥ 3, but the complexity of the planar MaxTSP is unknown [20, 10].
Paths and cycles that have combinations of these properties have also attracted attention.
For example, simultaneously being noncrossing and having maximum total edge length [3, 19]
is difficult to satisfy: to achieve a larger length we typically introduce more crossings.

Edge crossings in geometric graphs are usually undesirable as they have the potential of
creating unwanted situations such as collisions in motion planning and inconsistency in VLSI
layout. They are also undesirable in the context of graph drawing and network visualization
as they make drawings more difficult to read and use. Short geometric structures such as
shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest
spanning cycles are inherently noncrossing. This property, however, does not necessarily
hold if the structure is not shortest. For long structures such as longest perfect matchings,
longest spanning trees, longest spanning paths, and longest spanning cycles – the other end
of the spectrum – it seems natural to expect many crossings. Counting crossings in geometric
graphs and finding geometric structures with a minimum or maximum number of crossings
are active research areas in discrete geometry. The study of this type of problem attracted
more attention after the work of Aronov et al. [8] in 1994, who showed that any set of n

points in the plane in general position admits a crossing family (a set of pairwise intersecting
segments) of size Ω(

√
n). They also conjectured that the true lower bound is linear in n.

The current best lower bound, n1−o(1), was established by Pach et al. [24] in 2019.
The noncrossing property of shortest structures is mainly ensured by the triangle inequality.

The triangle inequality, as noted by Alon et al. [3], also implies that the longest structures
often have crossings because a structure usually gets longer by creating more crossings. Alon
et al. [3] studied the problem of finding longest noncrossing structures (such as matchings,
paths, or trees). Some of their initial results have been improved and extended by Dumitrescu
and Tóth [19] (for matchings, paths, and cycles), by Biniaz et al. [14] and by Cabello et al. [15]
(for trees). Along this direction, one might wonder whether a longest structure (defined on
an arbitrarily large point set) is necessarily crossing. This was explicitly asked by Álvarez-
Rebollar et al. [4]. Among other interesting results, they presented arbitrarily large planar
point sets for which the longest perfect matching is noncrossing. They asked the following
question and proposed the following conjecture:

▶ Question 1 (Álvarez-Rebollar et al. [4]). For every sufficiently large planar point set, must
the longest spanning path have two edges that cross each other?

▶ Conjecture 1 (Álvarez-Rebollar et al. [4]). The longest spanning cycle on every sufficiently
large set of points in the plane has a pair of crossing edges.
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The “sufficiently large” condition in the question and conjecture makes sense, as otherwise
one can take any 3 points in general position, or any 4 points that are not in a convex
position – for such point sets, all spanning paths and cycles are noncrossing.

In the other direction, one might wonder about maximizing the number of crossings in
cycles. Here, we would like to highlight another result of Álvarez-Rebollar et al. [4, 5]. Let
C(n) be the largest number such that any set of n points in the plane admits a spanning
cycle with at least C(n) pairs of crossing edges. Álvarez-Rebollar et al. [4, 5] established
the following lower and upper bounds: n2/12 − O(n) < C(n) < 5n2/18 − O(n). In other
words, any set of n points in the plane admits a spanning cycle with at least n2/12 − O(n)
crossings, and there is a family of point sets that does not admit any cycle with more than
5n2/18 − O(n) crossings.

1.1 Our contributions
In this paper, we provide negative answers to both Question 1 and Conjecture 1. For any
integer n ≥ 1 we present a set of n points in the plane for which the longest spanning path is
unique and noncrossing. Similarly, for any integer n ≥ 4, we present a set of n points in the
plane for which the longest spanning cycle is unique and noncrossing. To build such point
sets, we use the following framework: First, we choose a set P of points on the x-axis for
which the longest structure may not be unique. Then, we assign new y-coordinates to points
in P to obtain a new point set P ′ for which the longest structure corresponds to one in P

and is also unique and noncrossing. In Section 6, we present some structural properties of
longest paths and cycles, which may be of independent interest.

1.2 Preliminaries
All point sets considered in this paper are in the Euclidean plane. A geometric graph is a
graph with vertices represented by points and edges represented by line segments between the
points. Let P be a finite point set. A spanning path for P is a path drawn with straight-line
edges such that every point in P lies at a vertex of the path and every vertex of the path
lies at a point in P . A spanning cycle is defined analogously. In other words, a spanning
path is a Hamiltonian path in the complete geometric graph on P , and a spanning cycle is a
Hamiltonian cycle in this graph.

Consider two line segments, each connecting a pair of points in P . If the interiors of the
segments intersect, then we say that they cross; this configuration is called a crossing. A
path or a cycle is called noncrossing if its edges do not cross each other. We denote the
undirected edge between two points p and q by pq, the directed edge from p towards q by
(p, q), and the Euclidean distance between p and q by |pq|. The length of a geometric graph
G is the sum of the lengths of its edges, and we denote it by |G|.

2 Longest Paths and Cycles on the Real Line

In this section we characterize longest paths and cycles in dimension one. These observations
play a pivotal role in our constructions in the plane (Sections 3 and 4). We say that an edge
e intersects a point p if the intersection of e and p is not empty (the intersection could be an
endpoint of e). For a sorted set of 2k+1 numbers, the median is the number with rank k+1,
and for a sorted set of 2k numbers, the median is the mean of the two numbers with ranks k

and k+1.

GD 2024
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▶ Lemma 2. Let P be a set with an even number of points in R, i.e., in dimension one.
The endpoints of any longest spanning path on P lie on different sides of the median of P .

Proof. Let P = {p1, . . . , pn} and assume w.l.o.g. that 0 is the median of P (in particular,
0 /∈ P ). Let H be a longest spanning path on P . Orient the edges of H to make it a directed
path. Let ps and pe be the starting and ending points of H, respectively. For the sake of
contradiction, assume that ps and pe have the same sign, which we may assume, due to
symmetry, to be positive. Thus ps, pe > 0. Then, the sum of degrees of vertices in H to the
left of the origin is 2 more than the sum of degrees of vertices to the right. Therefore, H must
have a directed edge (pa, pb) where pa, pb < 0. If pb < pa, then by replacing (pa, pb) with the
undirected edge pspb we obtain a longer undirected path; and if pb > pa by replacing (pa, pb)
with pepa we obtain a longer undirected path. Both cases lead to a contradiction. ◀

▶ Lemma 3. Let P be a set with an even number of points in R, i.e., in dimension one. Let
H be a spanning path on P . Then H is a longest spanning path if and only if

(i) every edge of H intersects the median of P , and
(ii) the two endpoints of H are the two points closest to the median of P .

Proof. Let P = {p1, . . . , pn} so that pi < pj for all i < j ∈ {1, . . . , n}, and assume w.l.o.g.
that 0 is the median of P . Note that 0 /∈ P since n is even. First, we prove by contradiction
that if H is a longest spanning path, then (i) and (ii) hold.

Suppose that (i) does not hold. Orient the edges of H to make it a directed path. Let
(pa, pb) be an edge of H that does not intersect the median. Due to symmetry, assume that
pa, pb < 0. By Lemma 2, the endpoints of H lie on different sides of the median. This implies
that both sides have the same sum of vertex degrees. Thus H must have an edge (pc, pd)
such that c, d > 0. By replacing these edges with papc and pbpd we obtain an (undirected)
spanning path that is longer than H because |pa − pc| + |pb − pd| > |pa − pb| + |pc − pd|. This
contradicts H being a longest path.

Now suppose that (ii) does not hold: without loss of generality pn/2 is not an endpoint
of H. (The case for pn/2+1 can be handled symmetrically). Then H has an endpoint pa

with a < n/2. Orient the edges of H so that the path is directed from pa towards the other
endpoint. Let (pn/2, pb) be the outgoing edge from pn/2. By part (i), we have pb ≥ 0. By
removing (pn/2, pb) we obtain two paths, and pb is an endpoint on one of those paths. Next,
join the paths with a new edge (pa, pb). Thus we obtain an (undirected) spanning path that
is longer than H because |pa − pb| > |pn/2 − pb|. This contradicts H being longest.

Finally, we prove that any spanning path H that satisfies (i) and (ii) is longest, using a
direct proof. Consider a longest spanning path L on P . By the sufficiency proof, (i) and
(ii) hold for L. This implies that the positive interval [pn/2, pn/2+1] is contained in each of
the n−1 edges, hence it contributes to the length of L with multiplicity n − 1. Similarly, for
any i ∈ {2, . . . , n/2} the positive interval [pn/2+i−1, pn/2+i] contributes to the length of L

by multiplicity n − 2i. A similar argument holds for negative intervals. See Figure 1. On
the other hand, any spanning path (including H) that satisfies (i) and (ii) receives the exact
same multiplicities from the corresponding intervals. Therefore H and L have the same
length, and hence H is also a longest path. ◀

A statement similar to that of Lemma 3 can be proved for paths with an odd number of
points (in this case one endpoint is the median itself and the other endpoint is the closest
point to the median). However, we will not use this in our construction.
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pn/2+1 pnpn/2p2p1 24

n-1 multiplicity

...

Figure 1 Illustration of a longest path for a point set on a line, for the case where the number
of points, n, is even. Numbers below intervals [pn/2+i, pn/2+i+1] represent the multiplicity of the
contribution of the corresponding intervals to the length of the longest path.

▶ Lemma 4. Let P be a finite set in R, i.e., in dimension one.
(i) A spanning cycle on P is longest iff each of its edges intersects the median of P .
(ii) If P contains an odd number of points, then for any longest spanning cycle the two

edges incident to the median lie on opposite sides of it.
(iii) Assume that P contains n = 2k+1 points and there is an interval I of length h > 0

between the leftmost k+1 and the rightmost k points. Then in any longest spanning
cycle, n−1 = 2k edges contain the interval I; and if a spanning cycle has fewer than 2k

edges that contain I, then it is at least 2h shorter than a longest cycle.

Proof. Let P = {p1, . . . , pn} so that pi < pj for all i < j ∈ {1, . . . , n}, and assume w.l.o.g.
that 0 is the median of P . Note that 0 /∈ P if n is even, and p⌈n/2⌉ = 0 if n is odd.

First we prove the sufficiency of (i) by contradiction. Let C be a longest cycle on P , and
orient its edges to obtain a directed cycle. Suppose, for the sake of contradiction, that the
edge (pa, pb) of C does not intersect the median. We may assume w.l.o.g. that pa, pb < 0.
The sum of vertex degrees strictly on the left and right side of the median are the same,
and the edges that contain 0 in their interior contribute 1 to both sums. Consequently, C

contains an edge (pc, pd) with pc, pd > 0; or (when n is odd) there are two edges incident to
the median, say (pc, 0) and (0, pd) with pc, pd > 0. In the first case, we can replace edges
(pa, pb) and (pc, pd) with (pa, pc) and (pb, pd). In the second case, replace (pa, pb) and (pc, 0)
with (pa, pc) and (pb, 0). In both cases, we obtain a longer (undirected) spanning cycle,
contradicting the maximality of C.

The necessity of (i) can be proved by a counting argument similar to that of Lemma 3-(i).
Now, we prove (ii) by contradiction. Without loss of generality, let 0 ∈ P be the median

of P . Suppose that the median is incident to two edges (pc, 0) and (0, pd) with pc, pd > 0.
Then, there is a point in P to the right of 0 incident to an edge of C that does not contain 0
in its interior. Denote this edge by (pa, pb), where pa, pb < 0. We can replace edges (pa, pb)
and (pc, 0) with (pa, pc) and (pb, 0) to obtain a longer spanning cycle, contradicting the
maximality of C.

To prove the first part of (iii), note that if n = 2k+1, then the median is the (k+1)-st
point of P , that we denote by p0. Let C be a longest cycle on P . It is implied from (i) and
(ii) that exactly one edge of C (which is incident to p0) does not contain I. The remaining
n−1 = 2k edges contain I.

For the second claim in (iii), let C be a spanning cycle on P in which fewer than 2k

edges contain I. Orient the edges of C to obtain a directed cycle. The sum of degrees of the
leftmost k+1 (resp., rightmost k) vertices is 2k+2 (resp., 2k), and the edges containing I have
fewer than 2k left (resp., right) endpoints. Consequently, the leftmost k+1 (resp., rightmost
k) points in P induce at least two edges (resp., one edge) of C. Therefore, C contains two
edges, (pa, pb) and (pc, pd), such that pa, pb are to the left of I and pb, pd are to the right of
I. We can replace these two edges with (pa, pc) and (pb, pd), to obtain a spanning cycle C ′

that traverses I two more times than C. In particular, we have |C ′| ≥ |C| + 2 |I| = |C| + 2h,
hence |C| ≤ |C ′| − 2h ≤ |Cmax| − 2h, where Cmax is a longest cycle on P . ◀

GD 2024
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3 Noncrossing Longest Paths

Let n ≥ 1 be an integer. In this section, we construct n points for which the longest spanning
path is unique and noncrossing. This can be easily observed for n < 5: For example, for
n = 4, any spanning path of the vertices of a triangle and a point in the interior is noncrossing.
Thus, we will now assume that n ≥ 5. In Section 2, we uncovered some structural properties
of longest paths for n points on a line. Here we show how to construct a 2-dimensional point
set starting with n points on the x-axis and then assigning y-coordinates to the points. We
show that the longest path is unique and noncrossing. We describe our construction for the
case where n is even; the construction for the case where n is odd follows with some minor
changes. The following theorem summarizes our result in this section.

▶ Theorem 5. For every integer n ≥ 1 there exists a set of n points in the plane for which
the longest spanning path is unique and noncrossing.

In Section 3.1 we give an overview of our construction for an even number of points. The
details and proofs are given in Section 3.2. The case of odd paths is considered in Section 3.3.

3.1 A path with an even number of points: An overview

For k ≥ 3, consider a set P of n = 2k points pi on the x-axis such that p1 = (0, 0) and
pi = (i, 0) for i = −1, ±2, . . . , ±k, as illustrated in Figure 2(a). Our construction would
work even if we set p1 = (1, 0); however, for a reason that will become clear in Section 3.3,
we set p1 differently. The longest spanning path for this point set is not unique. In fact,
Lemma 3 implies that any spanning path with endpoints p1 and p−1 and with all edges
crossing the y-axis is a longest path. Conversely, any longest path must have endpoints p1
and p−1, and its edges must cross the y-axis. Let H be the set of these paths. Let P ′ be the
point set obtained by assigning to each point pi a y-coordinate yi such that, as illustrated in
Figure 2(b), the following holds:

1
8k

= y1 ≫ y−2 ≫ y2 ≫ y−3 ≫ y3 ≫ · · · ≫ y−k ≫ yk ≫ y−1 = 0.

The value y1 is much larger than y−2, which is in turn much larger than y2 and so on.
Notice that the largest y-coordinate y1 is 1/8k which is much smaller than 1. Due to the
small y-coordinates, a longest path H ′ on P ′ corresponds to a path H ∈ H. The length
of H ′ is roughly the length of H plus a very small value ∆(H ′), which depends on the
new y-coordinates. Let e1 be the only edge of H ′ incident to p1. Since p1 has a very large
y-coordinate compared to other points, the contribution of e1 to ∆(H ′) is larger than the
contribution of other edges. The contribution of e1 is maximized if it connects p1 to the
nearest plausible neighbor, which is p−2; this can be observed from Figure 2(b). Therefore
e1 = p1p−2. By a similar argument, p−2 gets connected to p2, and so on. It follows that
the path H ′ is unique and it is p1, p−2, p2, p−3, p3, . . . , p−k, pk, p−1. This path is y-monotone,
and hence noncrossing; see Figure 2(b).

Note. Figures 2(a) and 2(b) are not to scale. The y-coordinates should be small enough
so that all points lie almost on the x-axis (We exaggerated the y-coordinates to facilitate
readability). Moreover, if we orient the path from p1 towards p−1, then the extension of
every directed edge intersects all edges that follow.
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p1

p2 pk

p−1p−2p−k

ℓ2ℓk

∆2

∆k

1/8k

(a)

p1

p2
pk

p−1

p−2

p−k

1/8k

δ

p−k

(b)

Figure 2 Illustration of the construction of a longest path for 2k points. The figure is not to
scale as the real y-coordinates are very small so that the points lie almost on the x-axis. (a) Lifting
p1 to the y-coordinate 1/8k. (b) The final longest path.

3.2 A path with an even number of points: Details

Recall the set P of 2k points, k ≥ 3, on the x-axis, described in the previous section and
illustrated in Figure 2(a). We say that an edge e intersects the y-axis if the intersection
of e and the y-axis is not empty (the intersection could be an endpoint of e). The longest
paths for points on a line were characterized in Lemma 3. Denote by H the set of all longest
spanning paths on P .

▶ Lemma 6. Let 0 ≤ ε ≤ 1
8k be a real number. Suppose that every point in P is perturbed by

a distance of at most ε. Let P ′ be the new point set after perturbation. Then, the order of
the points along any longest path for P ′ is the same as the order of the points along some
path in H.

Proof. The length of any path on P is an integer. Therefore, any path in H is at least 1
unit longer than any path not in H.

Let H ′ be any longest path on P ′. The difference between its length and the length of
any path in H is at most (2k−1) · 2ε because H ′ has 2k−1 edges, each edge has 2 endpoints,
and each endpoint is at distance at most ε from its corresponding point in P . Since ε ≤ 1

8k

the difference is less than 1/2. Therefore, H ′ cannot correspond to a path that is not in H,
so H ′ corresponds to a path in H with the same order of points. ◀

GD 2024
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Our plan is to assign new y-coordinates to the points of P to obtain a point set P ′ for
which the longest path is y-monotone and unique. The new y-coordinates will be at most 1

8k ,
and thus, by Lemma 6, the longest path H ′ of P ′ will correspond to a path in H. We will
make H ′ correspond to the path p1, p−2, p2, p−3, p3, . . . , pk, p−1, which is in H (by Lemma 3)
and depicted in Figure 2(b). We assign to each point pi the y-coordinate yi such that the
following holds:

y1 ≫ y−2 ≫ y2 ≫ y−3 ≫ y3 ≫ · · · ≫ y−k ≫ yk ≫ y−1.

We set y1 = 1
8k , y−1 = 0, and use the following lemma to identify the remaining y-coordinates.

▶ Lemma 7. There exists a real number δ, with 0 < δ < y1, such that if 0 ≤ yi ≤ δ for each
i ̸= 1 then the longest path on P ′ connects p1 to p−2.

Proof. Since each yi is at most 1/8k, Lemma 6 implies that any longest path H ′ on P ′

corresponds to a path H in H. Due to small y-coordinates, we have |H ′| = |H| + ∆(H ′) for
some small value ∆(H ′) ≥ 0 which depends on the new y-coordinates. Specifically, we have

|H ′| =
∑

(pi,pj)∈E(H′)

|pipj | =
∑

(pi,pj)∈E(H′)

√
|i − j|2 + |yi − yj |2

= |H| +
∑

(pi,pj)∈E(H′)

(√
|i − j|2 + |yi − yj |2 − |i − j|

)
= |H| + ∆(H ′),

where 0 ≤
√

|i − j|2 + |yi − yj |2 − |i − j| ≤ |yi − yj | ≤ max{yi, yj}.
Recall from Lemma 3 that p1 is an endpoint of any longest path in H. Moreover, p1 is

connected to a point (different from p−1) to the left of the y-axis. For j ∈ {2, . . . , k} let ℓj

be the Euclidean distance between p1 and the point (−j, 0), and let ∆j be the difference of
their x-coordinates as in Figure 2(a). The contribution of p1p−j to |H ′| would be at least
ℓj − δ (when p−j has y-coordinate δ) and at most ℓj (when p−j has y-coordinate 0). The
contribution of the corresponding edge to |H| would be ∆j . Hence the contribution of p1p−j

to ∆(H ′) would be at least ℓj − δ − ∆j and at most ℓj − ∆j . An easy calculation shows that

ℓ2 − ∆2 > ℓ3 − ∆3 > · · · > ℓk − ∆k;

this is also implied by the fact that ∆i+1−∆i = 1 while ℓi+1−ℓi < 1. If we set δ <

(ℓ2 − ∆2) − (ℓ3 − ∆3), then the contribution of p1p−2 to ∆(H ′) is at least

ℓ2 − δ − ∆2 > ℓ2 − ∆2 − ((ℓ2 − ∆2) − (ℓ3 − ∆3)) = ℓ3 − ∆3,

which is larger than the contribution of any other plausible edge p1p−j . Since the y-coordinates
of all other points are less than δ, any other edge of H ′ contributes less than δ to ∆(H ′). By
setting

δ = (ℓ2 − ∆2) − (ℓ3 − ∆3)
2k − 1 ,

the contribution of p1p−2 exceeds the sum of the contributions of the remaining 2k − 2 edges
of H ′. Thus, for this choice of δ the longest path H ′ connects p1 to p−2. ◀

By Lemma 7, we have a specific value δ such that the longest path includes edge (p1, p−2).
Now we set y−2 = δ and repeat the arguments of Lemma 7, with y−2 and p−2 (instead of y1
and p1). This implies that the next edge of the longest path will connect p−2 to p2. Repeating
this 2k−5 more times, we obtain the unique longest path p1, p−2, p2, p−3, p3, . . . , pk, p−1, as in
Figure 2(b); in each of the last two steps, there is only one remaining plausible edge (namely,
p−kpk from p−k, and pkp−1 from pk). This path is y-monotone and hence is noncrossing.
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3.3 A path with an odd number of points
In this section, we obtain a noncrossing longest path with an odd number of points. Here
is the place where we use the coordinate (0, 0) of the point p1 ∈ P . We show that our
construction for even paths leads to a construction for odd paths by simply removing p1.
Thus we do not need to repeat the lemmas of Section 3.2 for the odd case.

We claim that if we remove the point p1 from the path H ′ constructed on P ′ in the
previous section, the remaining path, i.e., H ′′ = p−2, p2, p−3, p3, . . . , pk, p−1, is the longest
path for the remaining 2k−1 points. By construction, |H ′| = |H ′′| + |p1p−2|. Assume, for
the sake of proof by contradiction, that the longest path L for the remaining points is longer
than H ′′. Among the two endpoints of L, let pi be an endpoint that is not p−1. Due to our
choices of the x- and y-coordinates we have |p1pi| ≥ |p1p−2|. Therefore the concatenation of
L and p1pi would give a path on P ′ of length |L| + |p1p−2| which is larger than |H ′|. This
contradicts H ′ being the longest path on P ′.

4 Noncrossing Longest Cycles

Let n ≥ 3 be an integer. In this section, we construct a set of n points for which the longest
spanning cycle is unique and noncrossing. For n = 3, every spanning cycle is noncrossng.
For n = 4, we take three vertices of a triangle and a point in the interior. Thus, we assume
that n ≥ 5.

▶ Theorem 8. For every integer n ≥ 3 there exists a set of n points in the plane for which
the longest spanning cycle is unique and noncrossing.

In Section 4.1 we give an overview of our construction for an even number of points.
The details and proofs are given in Section 4.2. For an odd number of points we sketch a
construction in Section 4.3.

4.1 A cycle with an even number of points: An overview
Let n ≥ 6 be an even number. Then either n = 4k or n = 4k−2 for some integer k. To
simplify the indexing (of points and y-coordinates) in our construction, from now on we
assume that n = 4k−2. Let P be a set of n points, consisting of 2k points pi = (i, 0) for
i = ±1, ±2, . . . , ±k and 2k−2 points p′

i = (i+ϵ, 0) for i = −1, ±2, . . . , ±(k−1), k, where
ϵ > 0 is a small value to be determined; see Figure 3. (The construction for n = 4k is
similar; it consists of P and two additional points pk+1 = (k+1, 0) and p′

−k = (−k+ϵ, 0).)
Our construction for cycles is somewhat similar to that of paths in the sense that our cycle
consists of two y-monotone interior-disjoint paths between p1 and p−k (or between p1 and
pk+1 when n is a multiple of 4). Although the main idea sounds simple, the noncrossing
property of the longest cycle is not straightforward and involves a more detailed analysis.

Lemma 4 implies that a spanning cycle on P is longest if and only if each of its edges
intersects the y-axis. Let C be the set of all longest spanning cycles on P . As illustrated
in Figure 3, we obtain a point set P ′ by assigning to each point pi and p′

i the respective
y-coordinates yi and y′

i such that:

1
16k

= y1 ≫ y−1 ≫ y′
2 ≫ y−2 ≫ y′

3 ≫ · · · ≫ y′
k ≫ y−k = 0.

For each i ∈ {2, 3, . . . , k} we choose yi such that pi lies just below (almost on) the segment
p′

−i+1p′
i, and for each i ∈ {−1, −2, . . . , −(k−1)} we choose y′

i such that p′
i lies just below

(almost on) the segment p−ipi.
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36:10 Noncrossing Longest Paths and Cycles

Due to the small y-coordinates, any longest cycle C ′ on P ′ corresponds to a cycle C ∈ C.
Moreover |C ′| = |C| + ∆(C ′) for some small value ∆(C ′) which depends on the new y-
coordinates. Since p1 has the largest y-coordinate, the contribution of the two edges of C ′

that are incident to p1 (say e1 and e2) is maximized when they are connected to the nearest
plausible neighbors which are p−1 and p′

−1. We will choose the y-coordinates in such a way
that the contribution of e1 and e2 is larger than the sum of the contributions of the remaining
edges of the cycle. Thus C ′ must connect p1 to p−1 and p′

−1. Similarly, by a suitable choice
of y-coordinates, we enforce C ′ to connect p−1 and p′

−1 to the nearest plausible neighbors
which are p2 and p′

2, and so on. By repeating this process, the longest cycle C ′ would be the
concatenation of two paths p1, p−1, p2, p−2, . . . , p−k and p1, p′

−1, p′
2, p′

−2, . . . , p′
k, p−k.

p1

p2

p−1

p−k

p′−1

p′2

pk

ϵ ϵϵϵ

1 2 k−1−2y−k=0

y1 = 1/16k

y−1

y′2
p′k
y′k

y−2

p−2
p′−2

< ϵ

Figure 3 Illustration of the construction of a longest cycle for 4k−2 points. The figure is not to
scale. The y-coordinates should be small enough so that all points lie almost on the x-axis.

4.2 A cycle with an even number of points: Details
Recall the point set P from the previous section (the y-coordinates and the value of ϵ > 0
will be determined in this section). The longest cycles for points on a line were characterized
in Lemma 4. Let C be the set of all longest cycles on P .

▶ Lemma 9. Any cycle in C is at least 1 unit longer than any cycle not in C.

Proof. Consider any cycle D that is not in C. Lemma 4 implies that D has an edge that
does not intersect the y-axis. Orient the edges of D to make it a directed cycle. Since the
number of points to the left of the y-axis is the same as the number of points to its right, D

has two directed edges (pa, pb) and (pc, pd) such that a, b ≤ −1 and c, d ≥ 1. By replacing
these edges with papc and pbpd we obtain an (undirected) spanning cycle D′ such that

|D′| − |D| = (|papc| + |pbpd|) − (|papb| + |pcpd|) ≥ 2|p1p′
−1| = 2(2 − ϵ) > 1.

Since the length of any cycle C in C is at least |D′|, we get |C| > |D| + 1. ◀

▶ Lemma 10. Let 0 ≤ ε ≤ 1/16k be a real number. Suppose that every point of P is perturbed
by a distance of at most ε. Then the order of the points along any longest cycle of the new
point set is the same as the order of the points along some cycle in C.
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Proof Sketch. The proof is similar to that of Lemma 6 and uses Lemma 9. The parameter
ε is small enough such that the total change in the length of any spanning cycle on P is
less than 1/2. Together with Lemma 9, this implies that any longest cycle on the perturbed
points corresponds to a cycle in C. ◀

To obtain P ′ we only need to describe the following y-coordinates:

y1 ≫ y−1 ≫ y′
2 ≫ y−2 ≫ y′

3 ≫ · · · ≫ y′
k ≫ y−k.

The y-coordinates of the remaining points would then follow as outlined in the previous
section (more details are given after Lemma 12). We set y1 = 1

16k and y−k = 0. We use the
following lemma (which can be proven similarly to Lemma 7) to assign the y-coordinates.

▶ Lemma 11. There exists a real number δ, ϵ ≤ δ < y1, such that if 0 ≤ yi ≤ δ for i ̸= 1
and 0 ≤ y′

i ≤ δ for i ̸= −1, then every longest cycle of P ′ connects p1 to p−1 and p′
−1.

Proof. Lemma 10 implies that any longest cycle C ′ on P ′ corresponds to a cycle C in C. Due
to small y-coordinates, we have |C ′| = |C| + ∆(C ′) for some small value ∆(C ′) ≥ 0 which
depends on the new y-coordinates. Lemma 4 implies that C ′ connects p1 to two points to the
left of the y-axis. Similar to Lemma 7, for j ∈ {1, . . . , k} define ℓj as the Euclidean distance
between p1 and the point (−j, 0), and define ∆j as the difference of their x-coordinates.
Analogously, for j ∈ {1, . . . , k−1} define ℓ′

j and ∆′
j for p1 and the point (0, −j + ϵ). Every

edge that connects p1 to a point to the left of the y-axis has the following contributions to
|C|, |C ′| and ∆(C ′).

For j ∈ {1, . . . , k} the contribution of p1p−j to |C ′| is at least ℓj − δ and at most ℓj . The
contribution of the corresponding edge to |C| is ∆j . Hence the contribution of p1p−j to
∆(C ′) is at least ℓj − δ − ∆j and at most ℓj − ∆j .
For j ∈ {2, . . . , k−1} the contribution of p1p′

−j to |C ′| is at least ℓ′
j − δ and at most ℓj .

The contribution of the corresponding edge to |C| is ∆′
j . Thus the contribution of p1p′

−j

to ∆(C ′) is at least ℓ′
j − δ − ∆′

j and at most ℓ′
j − ∆′

j .
The contribution of p1p′

−1 to |C ′| is at least ℓ′
1 − δ − ϵ because the y-coordinate of p′

−1
is at most δ + ϵ; to verify this observe that y−1 ≤ δ and y′

−1 − y−1 < ϵ because p′
−1 is

almost on p1p−1 whose slope is less than 1; also see Figure 3 (recall that the figure is
not to scale). The contribution of the corresponding edge to |C| is ∆′

1. Therefore the
contribution of p1p′

−1 to ∆(C ′) is at least ℓ′
1 − δ − ϵ − ∆′

1 and at most ℓ′
1 − ∆′

1.

Observe that

ℓ′
1 − ∆′

1 > ℓ1 − ∆1 > ℓ′
2 − ∆′

2 > ℓ2 − ∆2 > · · · > ℓk − ∆k.

If we set δ < 1
2 ((ℓ1 − ∆1) − (ℓ′

2 − ∆′
2)), then the contributions of p1p−1 and p1p′

−1 to ∆(C ′)
would respectively be at least

ℓ1 − δ − ∆1 > ℓ1 − 2δ − ∆1 > ℓ1 − ∆1 − ((ℓ1 − ∆1) − (ℓ′
2 − ∆′

2)) = ℓ′
2 − ∆′

2, and

ℓ′
1 − δ − ϵ − ∆′

1 ≥ ℓ′
1 − 2δ − ∆′

1 > ℓ′
1 − ∆′

1 − ((ℓ1 − ∆1) − (ℓ′
2 − ∆′

2)) > ℓ′
2 − ∆′

2,

which are larger than the contribution of any other edge p1p−j and p1p′
−j . By setting

δ = 1
2

(ℓ1 − ∆1) − (ℓ′
2 − ∆′

2)
4k − 2

the contribution of each of p1p−1 and p1p′
−1 would be even larger than the sum of the

contributions of the remaining 4k−4 edges of C ′. Thus, for this choice of δ the longest cycle
C ′ connects p1 to p−1 and p′

−1. ◀
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We choose δ as in the proof of Lemma 11, and set y−1 = δ. Then we set y′
−1 so that p′

−1 lies
just below (almost on) the segment p1p−1, as in Figure 3. Notice that δ < y′

−1 < δ+ϵ = y−1+ϵ.
Then, by Lemma 11 the longest cycle connects p1 to p−1 and p′

−1. By Lemma 4, the other
edges incident to p−1 and p′

−1 must cross the y-axis.

▶ Lemma 12. There exists a real δ, ϵ ≤ δ < y−1, such that if 0 ≤ yi ≤ δ for i ̸= −1, 1, 2
and 0 ≤ y′

i ≤ δ for i ̸= −1, then every longest cycle of P ′ connects p−1 to p2 and p′
−1 to p′

2.

Proof. Recall the longest cycle C ′ from the proof of Lemma 11. We choose δ small enough
such that the contribution of each of p−1p2, p−1p′

2, p′
−1p2, and p′

−1p′
2 to ∆(C ′) is larger than

the sum of the contributions of the remaining 4k−6 edges of C ′. This would force C ′ to
connect p−1 and p′

−1 to p2 and p′
2.

By an argument similar to that of Lemma 11 we can find a parameter δ1 that forces C ′

to connect p−1 to p2 or p′
2 (δ1, y−1, p−1, p2, and p′

2 play the roles of δ, y1, p1, p′
−1, and p−1,

respectively). Similarly, we can find a parameter δ′
1 that forces C ′ to connect p′

−1 to p2 or p′
2

(where δ′
1, y′

−1, p′
−1, p2, and p′

2 play the roles of δ, y1, p1, p′
−1, and p−1, respectively). Then

we choose δ = min{δ1, δ′
1}.

Our choice of δ ensures that C ′ connects p−1 and p′
−1 to p2 and p′

2. Notice that p−1
and p′

−1 cannot both connect to p2 or to p′
2 because it closes the cycle. Thus C ′ must use

p−1p2 and p′
−1p′

2 or p−1p′
2 and p′

−1p2. We show that C ′ uses p−1p2 and p′
−1p′

2. See Figure 4.
Recall that p2 is almost on the edge p′

−1p′
2, and hence |p′

−1p′
2| ≈ |p′

−1p2| + |p2p′
2|. By the

triangle inequality we get |p−1p2| + |p2p′
2| > |p−1p′

2|. Adding these two yields

|p−1p2| + |p′
−1p′

2| > |p−1p′
2| + |p′

−1p2|, (1)

which means that C ′ connects p−1 to p2 and p′
−1 to p′

2. ◀

p′−1

p−1

p2
p′2

Figure 4 The longest cycle connects p−1 to p2 and p′
−1 to p′

2.

We choose our new δ as in the proof of Lemma 12, and set y′
2 = δ. Now that the point p′

2
is fixed we can choose the y-coordinate of p2 in the triangle △p−1p′

−1p′
2 and very close to the

segment p′
−1p′

2 such that (1) holds. This forces the longest cycle to use p−1p2 and p′
−1p′

2. By
repeatedly applying Lemma 12, the longest cycle will use the edges pip−i and p′

ip
′
−i (for i > 0)

and the edges pip−i+1 and p′
ip

′
−i+1 (for negative i < 0). Therefore the longest cycle on P ′

is the concatenation of two paths: p1, p−1, p2, p−2, . . . , p−k and p1, p′
−1, p′

2, p′
−2, . . . , p′

k, p−k.
This cycle is unique and noncrossing.

Each time we apply Lemma 12 we obtain a new value for δ. In each application we need
δ to be greater than or equal to our fixed parameter ϵ. For this purpose, we choose ϵ to be
the parameter δ that is obtained in the last application of Lemma 12, i.e., δ = y′

k.

4.3 A cycle with an odd number of points: An overview
Our construction uses the longest paths of Section 3.2. First we observe that our path
construction can be generalized to any set of x-coordinates.
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▶ Lemma 13. For every even integer n ≥ 4, every set P of n real numbers, and every δ > 0
such that the δ-neighborhood of the median of P does not contain any points in P , there
exists a set P ′ of n points in the plane with the following properties:
1. the x-projection of P ′ is P ;
2. all y-coordinates are in the interval [0, δ];
3. the x-projection of any longest path on P ′ is a longest path on P ;
4. the longest spanning path on P ′ is unique and noncrossing; and
5. the y-coordinates of the two endpoints of the longest path are 0 and δ.

Proof sketch. We choose the points in P ′ such that their x-coordinates are the same as the
numbers in P and their y-coordinates are in [0, δ], and thus (1) and (2) follow.

By an argument similar to the proof of Lemma 3(i) one can show that the difference of
lengths of a longest and a non-longest path on P is at least 2δ. Therefore Lemma 6 would
imply that by choosing the y-coordinates in the interval [0, 2δ/8k], any longest path on P ′

corresponds to a longest path on P , and thus (3) follows. Items (4) and (5) follow by proper
choices of y-coordinates similar to that of Lemma 7. ◀

We can now outline the construction; see Figure 5 for an illustration. Let
n = 2k+1, for k ≥ 2. We choose a set of x-coordinates as P =
{−k, −(k−1)ϵ, −(k−2)ϵ, . . . , −ϵ, 0, 1, 2, . . . , k}, where ϵ ∈ (0, 1/16k2) will be specified later.
Note that 0 is the median of P , and the set A = {−i · ϵ : i = 0, 1, . . . , k − 1} ⊂ [−1/16k, 0]
forms a small cluster. By Lemma 4(ii), all edges of any longest cycle on P intersect the
y-axis; and Lemma 4(iii) implies the following.

▶ Observation 14. The length of any cycle on P that connects p−k to two points in A is at
least 2 units shorter than a longest cycle on P .

p2

p−k

p0

pk

ϵ

1 2 3
−(k − 1)ϵ

y−k = 1/8k

ϵϵ
0

−k k333

p3

y0 = δ

−ϵ

Figure 5 Illustration of the construction of a longest cycle for 2k+1 points.
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Below, we will specify a y-coordinate for each element in P . This will result in the point
set P ′ for which the longest spanning cycle is unique and noncrossing. We will denote by A′

the set of points in P ′ corresponding to A.
It remains to specify the y-coordinates of the points in P ′ and the parameter ϵ. Let px

denote the point in P ′ with x-coordinate x ∈ P . We first choose the y-coordinate for the
leftmost point: Let y−k = −1/16k; this is the only negative y-coordinate. We assume that
|yi| ≪ 1/16k for all other points. This ensures that the longest cycle on P ′ corresponds
to a longest cycle on the 1-dimensional multiset where 0 represents the entire cluster A

(cf. Lemma 4(iii) and Lemma 10). By Lemma 4(ii), for any longest cycle on P ′, the two edges
incident to p−k intersect the y-axis (i.e., the median). Furthermore, there is a threshold
δ > 0 such that if 0 ≤ yi ≤ δ for all remaining points, then p−k must be adjacent to the
two closest points on or to the right of the y-axis: That is, p−k is adjacent to a point in
cluster A′ and to p1 (cf. Observation 14 and Lemma 10). Next, we set y0 = δ and find a
threshold δ1 ∈ (0, δ) such that if 0 ≤ yi ≤ δ1 for all remaining points and 0 < ϵ < δ1, then
the contribution of edge p−kp0 exceeds the sum of contributions of all remaining edges of a
spanning cycle. Consequently, the longest cycle must include the edge p−kp0. Now both p−k

and p0 are fixed, and we choose a sufficiently small ϵ ∈ (0, δ1) such that all remaining points
in the cluster A′ are below p−kp0 for all possible y-coordinates.

A longest cycle on P ′ comprises of p−kp0, p−kp1, and the longest path H ′ on P ′ \ {p−k}
(from p0 to p1 cf. Lemma 3). By Lemma 13, we can choose y-coordinates for the remaining
points such that H ′ is unique and noncrossing; and y1 = 0. In particular, edge p−kp1 lies
below the x-axis, hence below the entire path H ′; and P ′ \{p−k, p0} lies below the supporting
line of p−kp0. Consequently, the concatenation of p−kp0, p−kp1 and H ′ is noncrossing.

5 Noncrossing Longest Matchings

Álvarez-Rebollar et al. [4] showed that there exist point sets for which the longest perfect
matchings are noncrossing. Their example is attributed to Kåra P. Villanger in a paper by
Tverberg [27]. As illustrated in Figure 6, it consists of a set S of k segments with endpoints
in A = {a1, . . . , ak} and B = {b1, . . . , bk}. The distance between any two points ai ∈ A and
bj ∈ B is larger than the distance between any two points in A, or the distance between any
two points in B. The points in B are roughly on a vertical line. Álvarez-Rebollar et al. [4]
have provided a precise description of the construction along with a detailed proof that S is
a longest matching for A ∪ B.

a1 a2
a3

a4

b1

b2

b3

b4

Figure 6 Villanger’s configuration as illustrated in [4].

Here, we exhibit an alternative point set for which the longest perfect matching is
noncrossing. Our construction follows the same framework as for paths and cycles. Let
P be a set of 2k points pi = (i, 0) for i = ±1, ±2, . . . , ±k. One can verify that a perfect
matching on P is longest if and only if all edges cross the y-axis. One such matching is
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M = {p−ipi : i = 1, . . . , k}. Using ideas similar to those used for paths and cycles, one can
assign to each pi a new y-coordinate yi to make M longest and noncrossing at the same time;
see Figure 7. The new y-coordinates are of the following form: y1 ≫ y−1 = y2 ≫ y−2 =
y3 ≫ · · · = yk ≫ y−k.

p1 p2 pkp−1p−2p−k

Figure 7 Illustration of our construction of a longest matching.

6 Some Properties of Longest Paths and Cycles

In this section we give some structural properties of longest paths and cycles, possibly of
independent interest. We state these properties only for cycles, but they hold for paths as
well. Two edges are in convex position if they are edges of their convex hull. Two directed
edges in convex position have the same orientation if they are both directed clockwise or
counterclockwise along their convex hull.

▶ Observation 15. Suppose that we orient the edges of a longest cycle C to make it a directed
cycle. Then C cannot have pair of non-adjacent edges that are in convex position and have
the same orientation along their convex hull.

To verify this, note that if C has two such edges, say e1 and e2, then flipping them
(replacing e1 and e2 by the two diagonals of the convex hull of e1 and e2) would produce a
longer undirected cycle as in Figure 8(a). Since e1 and e2 have the same orientation along
their convex hull, the flip does not break the cycle into two components. If every directed
simple polygon S contained a pair of non-adjacent edges in convex position with the same
orientation along their convex hull, Observation 15 would imply Conjecture 1. However,
some simple polygons do not have edges that can be flipped in this way; see e.g., Figure 8(b).

e1

e2

(a) (b)

Figure 8 (a) Flipping two edges in convex position. (b) A simple polygon with no pair of edges
in convex position that have the same orientation, no matter how we direct the polygon.

▶ Observation 16. The longest cycle need not contain an edge between diametric points.
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To verify this observation consider an isosceles right triangle abc whose right angle is at
b. Place one point at a, one point at c, and two or more points very close to b. Then, the
longest cycle does not contain the diametric point pair {a, c}. This observation implies that
a longest cycle may not be achieved by greedily choosing longest edges.

The following proposition implies that if the longest cycle is noncrossing, it contains some
edge whose length is among the smallest three-quarters of all distances defined by its vertices.

▶ Proposition 17. Let S be a simple polygon (a noncrossing cycle) on n points. Then S has
an edge whose length is among the smallest 3n2/8 + n/8 distances of the

(
n
2
)

point pairs.

Proof. Let e and e′ be two edges of S such that their distance along S (in terms of the
number of edges) is at least 2. Since S is a simple polygon, e and e′ do not cross. Thus, there
is an endpoint p of e and an endpoint p′ of e′ such that |pp′| is larger than the length of the
shorter of e and e′, and pp′ is not an edge of S. The number of pairs of edges at distance 0 is
n, and the number of pairs of edges at distance 1 is also n. Thus, the total number of pairs
of edges at a distance at least 2 is

(
n
2
)

− 2n. Each such pair of edges yields a pair {p, p′}.
Each {p, p′} can be counted for 4 different pairs of edges that are obtained by combining
the two edges incident to p and the two edges incident to p′. Therefore the total number of
distinct pairs {p, p′} is at least 1

4
((

n
2
)

− 2n
)
. Subtracting this from the total number

(
n
2
)

of
point pairs yields the claimed bound. ◀
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