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Abstract
The standard Delaunay triangulation is a geometric graph whose vertices are points in the plane, and
two vertices share an edge if they lie on the boundary of an empty disk. If the disk is replaced with
a homothet of a fixed convex shape C, then the resulting graph is called a C-Delaunay graph. We
study the problem of local routing in C-Delaunay graphs where C is a regular polygon having five to
eight sides. In particular, we generalize the routing algorithm of Chew for square-Delaunay graphs
(Chew. SCG 1986, 169–177) in order to obtain the following approximate upper bounds of 4.640,
6.429, 8.531 and 4.054 on the spanning and routing ratios for pentagon-, hexagon-, septagon-, and
octagon-Delaunay graphs, respectively. The exact expression for the upper bounds of the routing
ratio is

Ψ(n) :=

{√
1 + ((cos(2π/n) + n − 1)/ sin(2π/n))2 if n ∈ {5, 6, 7},√
1 + ((cos(π/8) cos(3π/8) + 3)/(cos(π/8) sin(3π/8)))2 if n = 8.

We show that these bounds are tight for the output of our routing algorithm by providing a point set
where these bounds are achieved. We also include lower bounds of 1.708 and 1.995 on the spanning
and routing ratios of the pentagon-Delaunay graph.

Our upper bounds yield a significant improvement over the previous routing ratio upper bounds
for this problem, which previously sat at around 400 for the pentagon, septagon, and octagon as well
as 18 for the hexagon. Our routing ratios also provide significant improvements over the previously
best known spanning ratios for pentagon-, septagon- and octagon-Delaunay graphs, which were
around 45.
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1 Introduction

A geometric graph is a weighted graph whose vertices are points in the plane and edges are
line segments weighted with the Euclidean distance between their endpoints. Two of the
main distance-preserving properties of a graph are the spanning ratio and routing ratio. The
spanning ratio of a pair of points is the ratio of the shortest path between them in the graph
divided by their Euclidean distance, and the spanning ratio of a graph is the maximum
spanning ratio over all pairs of points [11]. On the other hand, the routing ratio is defined
similarly, except that the path is usually computed locally with only information of the
current vertex’s neighbourhood. Since a routing ratio is based on an algorithm that finds a
path and the spanning ratio is based on the existence of a path, the spanning ratio of any
graph is a lower bound on the routing ratio.
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14:2 Routing in Polygon Delaunay Graphs

In this paper, we consider variants of standard Delaunay triangulations, which are
geometric graphs with an edge between two points if there exists a disk with the endpoints on
its boundary and no vertices in its interior. The spanning ratio of the Delaunay triangulation
is known to be between 1.5932 [14] and 1.998 [13], however the exact value still remains
unknown. The gap is even larger for the routing ratio, lying somewhere between 1.70 [2]
and 3.56 [1]. Many papers study the related graphs that result from replacing the disk with
a homothet of a fixed convex shape C, resulting in C-Delaunay graphs. Chew [8] proved
that square-Delaunay graphs have a spanning ratio of at most

√
10 by giving a local routing

algorithm. Subsequently, Chew [9] adapted his algorithm to equilateral triangle-Delaunay
graphs to find a spanning ratio of 2, however the adapted algorithm was no longer a routing
algorithm. In fact, Bose et al. [6] showed that the routing ratio of the equilateral triangle-
Delaunay graph is exactly 5√

3 , showing the first separation between the spanning ratio and
routing ratio. By generalizing Chew’s algorithm, Bose et al. [2] were then able to show
that the standard Delaunay triangulation has a routing ratio of at most 5.90 which was an
improvement on the previously known upper bound of 15.48 [5]. Currently, the best-known
bound is 3.56[1]. In this paper, we show that Chew’s algorithm can be further generalized to
pentagon-, hexagon-, septagon-, and octagon-Delaunay graphs to obtain routing ratios of
4.640, 6.429, 8.531 and 4.054, respectively.

The hexagon-Delaunay graph is known to have a tight spanning ratio of 2 [12], however
less is known about Delaunay graphs based on pentagons, septagons and octagons. With the
exception of the hexagon-Delaunay graph, our routing ratio upper bounds yield a significant
improvement over the previous best spanning ratio upper bounds. Bose et al. [4] give a
spanning ratio upper bound for any C-Delaunay graph, where C is any convex shape. In
particular, their bound is based intuitively on the thinness of C, which is essentially measured
by the ratio of the perimeter to the width of C. For example, this ratio is π when C is a disk.
Furthermore, by the construction of the paths from Bose et al. [4] and Perkovic et al. [12],
it is possible to route using the algorithm of Bose and Morin [7] with a constant routing
ratio of 9 times the spanning ratio. For each polygon, we compare our contribution to the
previous best known upper bound in Table 1. We also prove lower bounds of 1.708 and 1.995
on the spanning and routing ratios of the pentagon-Delaunay graph in the appendix.

Table 1 Comparison to previously best-known upper bounds on the spanning and routing ratio
of the C-Delaunay graph.

C Spanning Ratio Routing Ratio Our Routing and Spanning Ratio

Triangle 2[9] 5/
√

3[6]
Square

√
4 + 2

√
2 [3]

√
10[8]

Pentagon ≈ 45[4] ≈ 405[7] ≈ 4.640
Hexagon 2[12] 18[7] ≈ 6.429
Septagon ≈ 45[4] ≈ 405[7] ≈ 8.531
Octagon ≈ 43[4] ≈ 387[7] ≈ 4.054

Circle ≈ 1.998[13] ≈ 3.56[1]

2 Preliminaries

We denote the line segment between points u, v as uv, and the Euclidean length of uv is
denoted |uv|. For a path P in the plane, denote |P| as the length of the path. If paths P,Q
share an endpoint, then P +Q denotes their concatenation. Next, for a, b, c ∈ R2, we define
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∠abc as the angle from ab to bc clockwise around b. The x and y coordinates of a ∈ R2 are
denoted x(a), y(a) respectively. For two vertices u, v in a geometric graph G, the length of
the shortest path from u to v in G is denoted dG(u, v). Then for a constant c ≥ 1, G is said
to be a c-spanner if for all points u, v in G, we have dG(u, v) ≤ c|uv|. The spanning ratio of
G is the least c for which G is a c-spanner. The spanning ratio of a class of graphs G is the
least c for which all graphs in G are c-spanners. A constant spanner is a c-spanner where c is
a constant.

We make the assumption that the graph is embedded on a polynomial-sized grid and
therefore specifying the coordinates of a vertex in V (G) requires O(log(|V (G)|)) bits. Formally,
a m-memory local routing algorithm is a function that takes as input (s, N(s), t, M), and
outputs some memory M ′ and a vertex p ∈ N(s) where s is the current vertex, N(s) is the
neighbourhood of s, t is the destination, and both M, M ′ are bit-strings of length m. An
algorithm is said to be c-competitive for a family of geometric graphs G if the path output
by the algorithm for any pair of vertices s, t ∈ V (G) for G ∈ G has length at most c|st|. The
routing ratio of an algorithm is the least c for which the algorithm is c-competitive for G.
Note that the routing ratio is an upper bound on the spanning ratio.

For n ∈ {5, 6, 7, 8}, let ⃝n denote a regular n-gon in the plane. Every time we mention
an n-gon, it is assumed to be a scaled translate of⃝n. Note that rotations are not permitted.
We refer to the boundary of any n-gon C as ∂C, and to the interior as int(C). We make
the general position assumptions that no two points are on a line parallel to a side of ⃝n,
that neither coordinate axis is parallel to a side of ⃝n, and that no four points lie on ∂C for
some n-gon C. For two points a, b ∈ ∂C, define Arc(C, a, b) to be the clockwise portion of
∂C from a to b. Let S be a set of points in the plane.

▶ Definition 1. For a, b ∈ S, an edge ab satisfies the empty-⃝n property with respect to S if
there exists an n-gon C with a, b ∈ ∂C and S ∩ int(C) = ∅.

▶ Definition 2. A ⃝n-Delaunay graph of S is a maximal planar graph on S such that every
edge satisfies the empty-⃝n property with respect to S. By maximal, we mean that no more
edges satisfying the empty-⃝n property can be added.

Note that specifying maximality in Definition 2 guarantees that every bounded face
is a triangle [4]. Let u, v be two points in the plane that satisfy the general position
assumption. Then Boundary(u, v) denotes the set of n-gons C such that u, v ∈ ∂C. Also for
any homothet C, define the point Center(C) to be the point in C equidistant from all vertices
of C. Furthermore, denote North(C) to be the vertex of C with the largest y-coordinate.
Similarly, define East(C), South(C) and West(C). For a set H of homothets of ⃝n, let
Center(H) := {Center(C) | C ∈ H}. Similarly, we define West(H). For any homothet C of
the n-gon ⃝n, we label the vertices clockwise from West(C) as C1, ..., Cn.

3 Routing Ratio Upper Bound

Recall that

Ψ(n) :=
{√

1 + ((cos(2π/n) + n− 1)/ sin(2π/n))2 if n ∈ {5, 6, 7},√
1 + ((cos(π/8) cos(3π/8) + 3)/(cos(π/8) sin(3π/8)))2 if n = 8.

The goal of this section is to prove the following theorem.

▶ Theorem 3. The routing ratio of the ⃝5-Delaunay graph is at most Ψ(5) ≈ 4.64.

ISAAC 2024



14:4 Routing in Polygon Delaunay Graphs

3.1 Local Routing Algorithm
We present Algorithm 1, which is a O(log(|V (G)|))-memory local routing algorithm for ⃝n-
Delaunay graphs generalizing Chew’s local routing algorithm [8]. Without loss of generality,
we assume that the start vertex s and destination t satisfy y(s) = y(t) and x(s) < x(t). The
location of s is stored in memory for each step. In addition, we will assume that all edges of
the convex hull are present in the ⃝n-Delaunay graph of S. Then in Section 3.2, we describe
how Algorithm 1 can be modified to handle routing when the convex hull is not present.

The intuition behind Algorithm 1 is that when the current vertex is pi, the next vertex
pi+1 is restricted to one of the vertices of the rightmost triangle Ti of the graph containing
vertex pi and intersecting st. Note that the two neighbours of pi under consideration are on
opposite sides of st. Then, consider the empty n-gon Ci corresponding to Ti. We partition the
boundary of Ci into two arcs by splitting at its west point wi and its rightmost intersection
with st, denoted ti. If pi is in the upper arc, we choose the clockwise neighbour, otherwise
we choose the counterclockwise neighbour. A trace of Algorithm 1 is illustrated in Figure 1.
Note that the triangles T0, ..., Tk are ordered from left to right along st, so the algorithm
terminates. We assume that there are k + 1 edges in the path output by Algorithm 1. Note
that the last edge pkt in Algorithm 1 may appear to be a separate case from case b in
Algorithm 1, but we can avoid analyzing it separately by viewing t as both above and below
st. The important detail in the analysis is that t is in the same portion of ∂Ck as pk (either
pk, t ∈ Arc(Ck, wk, tk) or pk, t ∈ Arc(Ck, tk, wk)).

s = p0

p1

p2

p3 p4

p5

t = p6

C0

C1

C2

C3

C5

C4

Figure 1 Trace of Algorithm 1. In this case, k = 5 and n = 5. The orange line is the path chosen
by Algorithm 1 and the thick black edges represent the other edge (pia or pib) considered in step b.

When u, v are in general position, the set Center(Boundary(u, v)) is analogous to the
perpendicular bisector of uv when the n-gon ⃝n is replaced with a disk. For this reason, we
will refer to Center(Boundary(u, v)) as Bisector(u, v). In Lemma 2.2.1.1 of [10], Ma shows
that for any regular n-gon, Bisector(u, v) is a polygonal chain completed with two rays at
the ends. In this way, Bisector(u, v) partitions R2 into two half-spaces (see Figure 2).

When y(v) > y(u), then there is a natural ordering of the points in Bisector(u, v) from
left to right. By convention, for any u, v ∈ R2 in general position, we say that the point
Bisector(u, v) ∩ Arc(C, u, v) is to the left of the point Bisector(u, v) ∩ Arc(C, v, u). This is
extended to an ordering on all the points of Bisector(u, v). Note that with this convention,
Bisector(u, v) does not have the same ordering as Bisector(v, u). For example, this convention
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Algorithm 1 Local Routing algorithm in ⃝n-Delaunay triangulation.

Data: Two points s, t ∈ S (w.l.o.g. y(s) = y(t) and x(s) < x(t))
Result: Vertices s = p0, ..., t = pk+1 forming a path in ⃝n-Delaunay graph of S

Set i← 0 and pi ← s;
while pi ̸= t do

(a) If t is a neighbour of pi, set pi+1 ← t.
(b) Otherwise, let Ti be the rightmost triangle in the graph intersecting st with

vertex pi. Let a, b be the other vertices of Ti above and below st, respectively.
Let Ci be the empty n-gon with pi, a, b ∈ ∂Ci. Let wi := West(Ci) and ti be
the intersection of Ci with st closest to t.
(1) If pi ∈ Arc(Ci, wi, ti), then set pi+1 ← a and i← i + 1.
(2) Else, set pi+1 ← b and i← i + 1.

end

tells us that in Figure 2, Center(Ci−1) is to the left of Center(Ci) on Bisector(q, pi), whereas
Center(Ci−1) is to the right of Center(Ci) on Bisector(pi, q). Then the following remark is
based on Ma’s plane sweep algorithm [10] which produces the vertices of Bisector(u, v).

▶ Remark 4 ([10]). Let u, v ∈ R2 be in general position with y(v) > y(u). Then for
any C, C ′ ∈ Boundary(u, v) we have that ∠South(C)Center(C)v ≥ ∠South(C ′)Center(C ′)v
provided that Center(C) is to the left of Center(C ′) on Bisector(u, v).

In the following lemma, we describe the structure of the path output by Algorithm 1.

pi

q

Ci−1
Ci

Figure 2 The black polygonal chain is Bisector(q, pi). The white points are the centers of the
5-gons Ci−1 and Ci.

▶ Lemma 5. Let i ∈ {1, ..., k}. If edges pi−1pi and pipi+1 both use case b1 in Algorithm 1,
then ∠wi−1Center(Ci−1)pi ≥ ∠wiCenter(Ci)pi. If instead both edges use case b2 in Algorithm
1, then ∠piCenter(Ci−1)wi−1 ≥ ∠piCenter(Ci)wi.

Proof. Assume without loss of generality that edges pi−1pi and pipi+1 were chosen using
case b1 in Algorithm 1. Then pi is above st. We will first consider the case where Ti−1 and
Ti share an edge, denoted piq. Since pi is above st, then q is below st. Refer to Figure 2.
Both Center(Ci−1) and Center(Ci) lie on Bisector(q, pi), however it remains to establish their
relative position. Then by Remark 4, the result follows if we show that Center(Ci−1) is to the
left of Center(Ci). Define L := {Center(C) | C ∈ Boundary(pi, q) and pi−1 ∈ int(C)} and

ISAAC 2024



14:6 Routing in Polygon Delaunay Graphs

R := {Center(C) | C ∈ Boundary(pi, q) and pi+1 ∈ int(C)}. Since pi−1 ∈ Arc(Ci−1, q, pi),
then L propagates from Center(Ci−1) to the left. Similarly, R propagates from Center(Ci)
to the right since pi+1 ∈ Arc(Ci, pi, q).If Center(Ci−1) is to the right of Center(Ci), then
L ∪R = Bisector(q, pi). However, Center(Ci−1) and Center(Ci) are both examples of points
in Bisector(q, pi) but not in L ∪ R. Therefore Center(Ci−1) is to the left of Center(Ci),
hence ∠South(Ci−1)Center(Ci−1)pi ≥ ∠South(Ci)Center(Ci)pi. Then we obtain the desired
inequality by remarking that pi is not on Arc(Cr, South(Cr), wr) for r ∈ {i− 1, i} and also
the angle ∠South(C)Center(C)West(C) is constant for all homothets C of ⃝n.

If Ti and Ti−1 do not share an edge, then we use this argument on all the triangles
between Ti−1 and Ti. The result follows since inequality is transitive. ◀

Next, we define the worst-case n-gons, shown in Figure 3.

pi+1
pi+1

pi
pi

Ci
Ci

C ′i C ′i
pi+1

pi

Ci

C ′i

Figure 3 The original 5-gons, Ci, are blue, and the worst-case 5-gons, C′
i from Definition 6, are

purple. In all examples, pi+1 is above st. Left: West(C′
i) = pi. Middle: West(C′

i) = pi. Right:
South(C′

i), s, t are collinear.

▶ Definition 6 (Worst-Case n-gons). Let i ∈ {0, ..., k} and suppose pi+1 is above st. Start
with an n-gon C = Ci, then move Center(C) left along Bisector(pi, pi+1) while keeping
C ∈ Boundary(pi, pi+1) until the points South(C), s, t are collinear, or pi = West(C). The
resulting n-gon is denoted by C ′

i. If instead pi+1 is below st, then move Center(C) right
along Bisector(pi, pi+1) while keeping C ∈ Boundary(pi, pi+1) until the points North(C), s, t

are collinear, or pi = West(C). The resulting n-gon is again denoted by C ′
i.

To shorten notation, denote w′
i := West(C ′

i) for i ∈ {0, ..., k}. A similar statement to that of
Lemma 5 can be made about the worst-case n-gons:

▶ Lemma 7. Let i ∈ {1, ..., k}. If edges pi−1pi and pipi+1 both use case b1 in Algorithm
1, then ∠w′

i−1Center(C ′
i−1)pi ≥ ∠w′

iCenter(C ′
i)pi. If instead both edges use case b2 in

Algorithm 1, then ∠piCenter(C ′
i−1)w′

i−1 ≥ ∠piCenter(C ′
i)w′

i.

Proof. Let i ∈ {1, ..., k} and assume edges pi−1pi and pipi+1 both use case b1 in Al-
gorithm 1. By Lemma 5, we have ∠wi−1Center(Ci−1)pi ≥ ∠wiCenter(Ci)pi. Since pi is
above st, then the construction of Definition 6 guarantees that ∠wi−1Center(Ci−1)pi ≤
∠w′

i−1Center(C ′
i−1)pi. Similarly, pi+1 is above st, meaning that ∠w′

iCenter(C ′
i)pi ≤

∠wiCenter(Ci)pi. Combining inequalities yields the result. Proving the case when both
edges use case b2 in Algorithm 1 is similar. ◀

Using the same point set as in Figure 1, the trace of Algorithm 1 is shown in Figure 4 with
worst-case n-gons.

Now we define the wedge Wp to be the area swept by stretching⃝n with its west point on p.
More precisely, Wp := {v ∈ R2 | ∃ homothet C of ⃝n such that p = West(C) and v ∈ C}.
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s = p0

p1

p2

p3 p4

p5

t = p6C ′0

C ′1

C ′2

C ′3

C ′5

C ′4

Figure 4 Trace of Algorithm 1 with worst-case 5-gons.

▶ Lemma 8. For i ∈ {1, ..., k}, we have w′
i ∈Ww′

i−1
.

Proof. Suppose pi is above st. If pi = w′
i, then w′

i is on the boundary of C ′
i−1, hence w′

i ∈
Cw′

i−1
. If on the other hand pi ̸= w′

i, by Definition 6 we must have pi ∈ Arc(C ′
i, w′

i, South(C ′
i))

and South(C ′
i) is on st. Suppose for now that South(C ′

i−1) is also on st. Define the set of
homothets

L := {C | South(C), s, t are collinear and pi ∈ Arc(C, West(C), South(C))}.

Then we will prove the following claim, illustrated in Figure 5.

pi

c2

Ĉ2

Ĉ1Ĉ3

Figure 5 West(L) is the black line, and c2 is the homothety center relating Ĉ2 and Ĉ3. Segments
West(Ĉ2)West(Ĉ3) and c2West(Ĉ2) lie on the same line. In this example, σ = 4 and m = 2.

▷ Claim. West(L) is a polygonal chain connected to a ray.

Firstly, suppose 1 < σ < n such that Cσ = South(C). Then for j ∈ {1, ..., σ − 1}, define Ĉj

to be the unique homothet of ⃝n where pi = Ĉj
j and Ĉσ

j is collinear with st. By definition,
for j ∈ {1, ..., σ − 1}, we have West(Ĉj) ∈West(L).

Next, for j ∈ {1, ..., σ − 2}, the n-gons Ĉj and Ĉj+1 are related by a homothety whose
center cj lies on the intersection of lines given by extending the segments st and Ĉj

j Ĉj+1
j .

Furthermore, for any C ∈ L with pi on CjCj+1, the homothety relating Ĉj and C has the
same center, cj . Therefore the point West(C) lies on the segment West(Ĉj)West(Ĉj+1). On
the other hand, for C ∈ L with pi on Cσ−1Cσ, the n-gons C and Ĉσ−1 are related by a

ISAAC 2024



14:8 Routing in Polygon Delaunay Graphs

homothety whose center is South(Ĉσ−1). Therefore the point West(C) must lie on the ray
r starting at West(Ĉσ−1) extending directly opposite South(Ĉσ−1). We have shown that
West(L) is the polygonal chain (West(Ĉ1), ..., West(Ĉσ−1)) along with the ray r, so the proof
of the claim is completed.

To establish a direction on West(L), which is homeomorphic to a ray by the claim, we
choose the convention that pi is the rightmost point. Then since the vertices Cj are labelled
in the clockwise orientation in the claim, we have that for C, C ′ ∈ L, if West(C) is to the left
of West(C ′) on West(L) then ∠West(C)Center(C)pi ≥ ∠West(C ′)Center(C ′)pi. Therefore
by Lemma 5, w′

i must be to the right of w′
i−1 on West(L).

Finally, we will show that the slope of West(L) remains between the slope of ⃝1
n⃝n

n

and ⃝1
n⃝2

n. Recall the notation ⃝j
n denotes the j-th vertex clockwise around ⃝n where

⃝1
n := West(⃝n). Let 1 < m < n such that ⃝m

n = North(⃝n). We analyze West(L) in
three portions.

Segment West(Ĉj)West(Ĉj+1) for j ∈ {1, ..., m − 1}. Let j ∈ {1, ..., m− 1}. Then by
the homothety relating Ĉj and Ĉj+1, the segment West(Ĉj)West(Ĉj+1) has slope equal to
the slope of segment cjWest(Ĉj). Since cj lies to the left of the line by extending West(Ĉj)Ĉ2

j ,
then the slope of cjWest(Ĉj) is positive and less than the slope of ⃝1

n⃝2
n.

Segment West(Ĉj)West(Ĉj+1) for j ∈ {m, ..., σ − 2}. Suppose j ∈ {m, ..., σ − 2}.
Then by the homothety relating Ĉj and Ĉj+1, the segment West(Ĉj)West(Ĉj+1) has slope
equal to the slope of segment West(Ĉj)cj . Since cj lies to the right of South(Ĉj), then the
slope of West(Ĉj)cj is negative and greater than or equal to the slope of ⃝1

n⃝σ
n, which is

always at least the slope of ⃝1
n⃝n

n.

Ray r. The slope of ray r is West(Ĉσ−1)cσ−1. Since cσ−1 is South(Ĉσ−1), then the slope
of the ray is equal to the slope of ⃝1

n⃝σ
n, which is again in the desired range.

Therefore the slope of each segment of West(L) is within the range given by the cone
Ww′

i−1
. Since w′

i is to the right on West(L), then we must have w′
i ∈Ww′

i−1
.

If now South(C ′
i−1) is instead below st, then we define the homothet C ′ such that

pi ∈ ∂C ′, the points s, South(C ′), t are collinear, and Center(C ′
i−1), Center(C ′), pi are

also collinear. Since C ′ is fully contained in C ′
i−1, then West(C ′) ∈ Ww′

i−1
. Also,

∠West(C ′)Center(C ′)pi = ∠West(C ′
i−1)Center(C ′

i−1)pi, therefore the argument from above
can show that w′

i ∈WWest(C′), hence w′
i ∈Ww′

i−1
. ◀

Next we define a projection that depends on whether the point is above or below st.

▶ Definition 9 (West Side Projection). For a point p above st, let p be the intersection of st

with the line passing through p with the same slope as ⃝1
n⃝2

n. Similarly, when p is below st,
let p be the intersection of st with the line passing through p with the same slope as ⃝1

n⃝n
n.

Using the projections, we define the two paths that we will call snail paths and that are
used to bound the length of the path output by Algorithm 1.

▶ Definition 10 (Snail Paths). Let a, b ∈ R2 satisfy y(a) = y(b). When x(a) < x(b),
define the n-gon C such that b = South(C) and a, C1, C2 are collinear. Then a,b :=
aC1 + Arc(C, C1, b). Similarly, let C ′ be the n-gon such that b = North(C ′) and a, C ′1, C ′n

are collinear, and then a,b := aC ′1 + Arc(C ′, b, C ′1). When x(a) ≥ x(b), we define a,b

and a,b to be empty paths.

The shape of the snail path is very important as it will directly lead to the routing ratio in
the proof of Theorem 3. Notice how the path in Figure 9 is arbitrarily close to s,t.
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▶ Remark 11. After fixing the orientation of the ⃝n, there exists a constant c > 1 such
that for any a, b ∈ R2 with y(a) = y(b) and x(a) < x(b), we have | a,b| = c|ab|. When
x(a) ≥ x(b), then | a,b| = 0. The same is true for | a,b|.
When n = 5, we prove Ψ(5) is an upper bound on the constant c from Remark 11.

▶ Lemma 12. Let n = 5 and a, b ∈ R2 with y(a) = y(b) and x(a) < x(b). Then
max(| a,b|, | a,b|) ≤ Ψ(5)|ab|.

Proof. Let C be the 5-gon corresponding to a,b, and let θ := ∠West(C)ab. For now,
assume C5 = South(C), meaning π/5 ≤ θ, and also θ ≤ π/2. Then the side length
|West(C)South(C)| = |ab| sin(θ)

sin(2π/5) by the law of sines. Similarly, |aWest(C)| = |ab| sin(2π/5+θ)
sin(2π/5) .

Since | a,b| = |aWest(C)|+ 4|West(C)South(C)|, then we have

| a,b| =
|ab| sin(2π/5 + θ)

sin(2π/5) + 4 |ab| sin(θ)
sin(2π/5) ≤ Ψ(5)|ab|,

where the last inequality follows from the analysis in the appendix. See Lemma 16. It is
straightforward to verify that the claim still holds when C5 ≠ South(C). The analysis for

a,b is symmetric. ◀

One useful tool that we will often use is a convex path bound from [2].

▶ Observation 13 (Convex Path Bound). Suppose two convex paths P1,P2 have the same
endpoints a and b, and P1 is contained in the region formed by the simple polygon P2 + ab.
Then |P1| ≤ |P2|.

Next, for i ∈ {0, ..., k}, we define the path Pi := w′
iw

′
i + Arc(C ′

i, w′
i, pi). Paths of this

form will be used in the following lemma for pentagons (n = 5).

▶ Lemma 14. Let n = 5. For 1 ≤ i ≤ k, we have

|Pi−1|+ |pi−1pi| ≤ Ψ(5)|w′
i−1w′

i|+ |Pi|. (1)

Furthermore, we have |Pk|+ |pkt| ≤ Ψ(5)|w′
k, t|.

Proof. For i ∈ {1, ..., k}, we will show that (1) holds using a case analysis. Without loss of
generality, we will assume that pi is above st for all cases. This is equivalent to assuming
that the routing decision is case b1 in Algorithm 1, meaning that pi−1 ∈ Arc(C ′

i−1, w′
i−1, pi).

The arguments for when pi is below st are symmetric. We will use the following shorthand:
s′

i := South(C ′
i).

Case 1: pi−1 is above st and both s′
i−1, s′

i lie on st. See Figure 6. We split the snail
path of C ′

i−1 up into several parts:

|
w′

i−1,s′
i−1
| = |Pi−1|+ |Arc(C ′

i−1, pi−1, pi)|+ |Arc(C ′
i−1, pi, s′

i−1)|. (2)

If w′
i is west of s′

i−1, then by a convex path bound, we get

|
w′

i
,s′

i−1
| ≤ |Pi|+ |Arc(C ′

i−1, pi, s′
i−1)|. (3)

On the other hand, inequality 3 still holds when w′
i is east of s′

i−1 since |
w′

i
,s′

i−1
| = 0.

Finally,

|Pi−1| + |Arc(C′
i−1, pi−1, pi)| = |

w′
i−1,s′

i−1
| − |Arc(C′

i−1, pi, s′
i−1)| − |Pi| + |Pi| by 2

≤ |
w′

i−1,s′
i−1

| − |
w′

i
,s′

i−1
| + |Pi| by 3

≤ |
w′

i−1,w′
i

| + |Pi| by Remark 11.
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w′i−1 w′i s′is′i−1

w′i−1 w′i

pi

C ′i−1 C ′i

w′i−1

w′i s′iw′i−1

w′i

pi

C ′i

C ′i−1

C

Figure 6 Left: Case 1 when x(w′
i) < x(s′

i−1). The path
w′

i
,s′

i−1
is red. Right: Case 2 reduces

to case 1 by defining n-gon C in green.

Case 2: pi−1 is above st and only s′
i lies on st. We will reduce this case to Case 1.

See Figure 6 First, define a new n-gon C with w := West(C) such that w = w′
i−1, and

South(C), s, t are collinear, and pi ∈ ∂C. By a convex path bound, we have

|Pi−1|+ |Arc(C ′
i−1, pi−1, pi)| ≤ |w′

i−1w|+ |Arc(C, w, pi)| (4)

Lastly, we proceed with the argument in Case 1, replacing C ′
i−1 with C in order to obtain

|w′
i−1w|+ |Arc(C, w, pi)| ≤ |Pi|+ | w′

i−1,w′
i

| (5)

Combining (4) with (5) yields (1).

Case 3: pi−1 is above st and s′
i lies below st. In this case, pi = w′

i, meaning Pi = w′
ipi.

Let point p be collinear with w′
i−1, w′

i−1 such that y(p) = y(pi). Then by a convex path
bound, we have

|Pi−1|+ |Arc(C ′
i−1, pi−1, pi)| ≤ |w′

i−1p|+ | p,pi
|

Finally, equation (1) follows since the paths w′
i−1p and p,pi are translates of Pi and

w′
i−1,w′

i

respectively.

Case 4: pi−1 is below st. In this case, w′
i−1 = pi−1, hence Pi−1 = w′

i−1w′
i−1. Define point

p be the intersection of C ′
i−1 closest to s. We will prove the claim, illustrated in Figure 8.

▷ Claim. Pi−1 is a sub-path of
w′

i−1,p
.

Fix m such that ⃝m
n := North(⃝n). Then for 0 ≤ j ≤ m− 2 let Ĉj be the n-gon such that

Ĉm−j
j = p and West(Ĉj) = w′

i−1. Note that Ĉ0 is exactly the n-gon corresponding to
w′

i−1,p
.

In addition, p was defined to be collinear with C ′1
i−1C ′2

i−1, therefore w′
i−1 = West(Ĉm−2).

Then, for 1 ≤ j ≤ m−2, the n-gons Ĉj−1, Ĉj are related by a homothety with center cj lying
on the intersection of extended segments Ĉ1

j Ĉn
j and Ĉm−j

j Ĉm−j+1
j . By construction, we have

Ĉm−j
j = Ĉm−j+1

j−1 , therefore by symmetry (reflection about the extended line cjCenter(Ĉj)),
we also have Ĉ1

j = Ĉn
j−1. Then West(Ĉj) is on the snail path

w′
i−1,p

if and only if j < 2.
In particular, the claim holds when m− 2 < 2, which is the case for n ∈ {5, 6, 7, 8} since in
general ⌊n

4 ⌋ ≤ m− 1 ≤ ⌈n
4 ⌉.
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pi−1 = w′i−1

wi

w′i−1

pi

C ′i−1 C ′i

w′i−1

w′i−1

pi = w′i

w′i

p

C ′i−1

Figure 7 Left: In Case 3, the blue path w′
i−1X + X,pi is longer than the dotted red path

Pi−1 + Arc(C′
i−1, pi−1, pi). Right: In Case 4: The blue path Pi−1 + pi−1pi is longer than the dotted

red path
w′

i−1,w′
i

+ Pi.

Ĉ0
Ĉ1 Ĉ2

w′i−1 p

c1

c2 = Ĉ1
0

Ĉ1
1

w′i−1 = Ĉ1
2

Figure 8 Case 4 claim. Here, n = 9, m = 4, and therefore C′
i−1 = Ĉ1

m−2 is not on the blue path
w′

i−1,p
. If instead n ∈ {5, 6, 7, 8}, then m ∈ {2, 3}.

Then by Lemma 8, x(p) ≤ x(w′
i), therefore Pi−1 is a also sub-path of

w′
i−1,w′

i

. Inequality
(1) follows since the paths Pi−1+pi−1pi and

w′
i−1,w′

i

+Pi have the same endpoints, concluding
this case.

Finally, we have |Pk|+ |pkt| ≤ max(|
w′

k
,t
|, |

w′
k

,t
|) by a convex path bound. Note that

for i = 1, the edge sp1 classifies as Case 4. ◀

Putting this all together, we can now prove Theorem 3.

Proof. Consider the path s = p0, ..., pk+1 = t from Algorithm 1 and apply Lemma 14:

k+1∑
i=1
|pi−1pi| ≤ (

k∑
i=1
|Pi|+ Ψ(5)|w′

i−1w′
i| − |Pi−1|) + (Ψ(5)|w′

kt| − |Pk|)

= Ψ(5)|w′
0t| − |P0| = Ψ(5)|st|.

Since Algorithm 1 is a O(log(|V (G)|))-memory local routing algorithm, then Ψ(5) is an upper
bound on the routing ratio of ⃝5-Delaunay graphs. ◀
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Now we present a lemma showing that our analysis is optimal for Algorithm 1.

▶ Lemma 15. Let n ∈ {5, 6, 7, 8}. For any ϵ > 0, there is a ⃝n-Delaunay graph for which
Algorithm 1 has a routing ratio of at least Ψ(n)− ϵ.

Proof. For simplicity, we present S not in general position, however it is possible to perturb
the position of each vertex to force the ⃝n-Delaunay graph of S to have the desired edges
while being in general position. See Figure 9. Let C be an n-gon, and define σ such that
Cσ = South(C). Then let L be a horizontal line above and arbitrarily close to Cσ. Define
t := L ∩ Cσ−1Cσ and vj := Cj for j ∈ {2, ..., σ − 1}. Let v0 be on CσCσ+1 below L. Let v1
be on C1C2 arbitrarily close to C1. Then let Ĉ be an n-gon such that East(Ĉ) = v0 and
p1 ∈ ∂Ĉ. Finally, s is the leftmost intersection of L and ∂Ĉ. Let S := {s, t, v0, v1, ..., vσ−1}.
While there are several valid ⃝n-Delaunay graphs of S, we will choose to route on the graph
with edges sv0, sv1, vj−1vj , v1v0, vjv0, v0t, vσ−1t for j ∈ {2, ..., σ − 1}. When Algorithm 1
routes from s to t in the ⃝n-Delaunay graph of S, then each step of case b is sub-case b1,
therefore the path is s, v1, v2, ..., vσ−1, t. By construction, this path is arbitrarily close to
the snail path s,t. Since Ψ(n)|st| represents the maximum length of the snail path s,t

over all orientations of ⃝n, then the routing ratio of Algorithm 1 for this graph is at least
Ψ(n)− ϵ. ◀

s t
v0

v1

v2

v3

v4

C

Ĉ

Figure 9 Worst-case point-set construction causes Algorithm 1 to choose the orange path which
is arbitrarily close to | s,t| since each step of case b is sub-case b1. Here n = σ = 5. For more
details, see proof of Lemma 15.

3.2 Extending Algorithm 1 to graphs where the convex hull is not
present

In order to extend Algorithm 1 to graphs where the convex hull is not present, we add
dummy vertices to the graph G to ensure the entire set S is triangulated. In particular,
define the set D of dummy vertices as follows:

Let C be the scaled translate of⃝n with Center(C) = s and |West(C)Center(C)| = 10|st|.
Then let Rot(C) denote the rotated n-gon obtained by rotating C about Center(C) by π

radians (or by π − ϵ radians for ϵ > 0 to satisfy the general position assumption). Lastly, let
D be the corners of Rot(C) that are in the unbounded region of the ⃝n-Delaunay graph
of S.
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If Algorithm 1 is used in the ⃝n-Delaunay graph of S ∪D, then the path from s to t

will have length at most c|st| where c is given in Lemma 16. In all cases, c < 10, so for all
i ∈ {0, ..., k + 1}, we have that pi /∈ D. The choice of D ensures that all pi are not incident
to the unbounded region.

When routing in the ⃝n-Delaunay graph of S, Algorithm 1 can be modified to simulate
the edges of the ⃝n-Delaunay graph of S ∪D. Firstly, it can be verified locally whether the
current vertex pi is incident to the unbounded region. Indeed, pi is in the unbounded region
if and only if there exists a j ∈ {1, ..., n} and an n-gon C such that Cj = pi and no edges
incident to pi intersect C. Note that the size of C is irrelevant. Then if pi is incident with
the unbounded region, it can be verified whether pi has neighbours in D in the ⃝n-Delaunay
graph of S ∪D since the algorithm stores the location of s and can calculate the distance |st|.

3.3 Extending our result to hexagons, septagons and octagons
So far, we have shown that Algorithm 1 has a routing ratio of at most Ψ(5) ≈ 4.640 for any
⃝5-Delaunay graph. To extend our result to n-gons with 6 ≤ n ≤ 8, then Lemma 12 needs
to be generalized to Lemma 16. Additionally, Lemma 14 is trivially generalized by replacing
each occurrence of Ψ(5) with Ψ(n) for the corresponding n-gon.

▶ Lemma 16. Let a, b ∈ R2 with y(a) = y(b) and x(a) < x(b). Then max(| a,b|, | a,b|) ≤
Ψ(n)|ab| for n ∈ {5, 6, 7, 8}.

Proof. Let n ∈ {5, 6, 7} and let C be the n-gon corresponding to a,b. Let θ := ∠West(C)ab,
and for now assume that South(C) = Cn. This means that π/5 ≤ θ ≤ π/2. Then by
the law of sines, |West(C)South(C)| = |ab| sin(θ)

sin(2π/n) and |aWest(C)| = |ab| sin(2π/n+θ)
sin(2π/n) . Since

| a,b| = |aWest(C)|+ (n− 1)|West(C)South(C)|, then we have

| a,b|
|ab|

= sin(2π/n + θ)
sin(2π/n) + (n− 1) sin(θ)

sin(2π/n) . (6)

Focusing on the numerators, we have
d

dθ

(
sin(2π/n + θ) + (n − 1) sin(θ)

)
= cos(2π/n + θ) + (n − 1) cos(θ)

= (cos(2π/n) cos(θ) − sin(2π/n) sin(θ)) + (n − 1) cos(θ)
= (cos(2π/n) + n − 1) cos(θ) − sin(2π/n) sin(θ).

From there, we get that the critical value of θ is

θ∗ = arctan
(

cos(2π/n) + n− 1
sin(2π/n)

)
.

Therefore the maximum value is

sin
(
2π/n + θ∗)

+ (n− 1) sin
(
θ∗)

sin(2π/n) .

When n is 5, 6 or 7, the maximum value of (6) is approximately 4.640, 6.429, or 8.531
respectively. It is straightforward to verify that the claim still holds when South(C) ̸= Cn.

When n = 8, the analysis is slightly different since we can not have South(C) = Cn.
As before, let C be the 8-gon corresponding to a,b, and let θ := ∠West(C)ab. Then
necessarily, we have South(C) = C7, meaning that ∠bC1a = 3π

8 . By the law of sines,
|C1C7| = |ab| sin(θ)

sin(3π/8) and |aC1| = |ab| sin(3π/8+θ)
sin(3π/8) . Also, |Arc(C, C7, C1)| cos(π/8) = |C1C7|.

Since | a,b| = |aC1|+ 3|Arc(C, C7, C1)|, then we have
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| a,b|
|ab|

= sin(3π/8 + θ)
sin(3π/8) + 3 sin(θ)

sin(3π/8) cos(π/8) where π/4 ≤ θ ≤ π/2,

which reaches a maximum of around 4.054 by a similar analysis to above. ◀

4 Routing Ratio Lower Bound for ⃝5-Delaunay graphs

▶ Lemma 17. Every local routing algorithm for ⃝5-Delaunay graphs must have a routing
ratio of at least 1.995 for any ϵ > 0.

Proof. Consider the construction shown in Figure 10.

s t

a

v1 = C1

v2

v3

C v4

v5

Figure 10 Point set construction obtaining a routing ratio lower bound of approximately 1.995.

Let δ > 0 and let C be a pentagon with |C1C2| = 1 + δ. Define v1 := C1, v2 ∈ C2C3

arbitrarily close to C2, v3 := C3, v4 ∈ C3C4 arbitrarily close to C4, and v5 ∈ C5C1

arbitrarily close to C5. Finally place point a on C1C2 such that |C1a| = 1. Place s outside
C equidistant from v1, a, arbitrarily close to C1C2. Define the point t ∈ C4C5 on the line
perpendicular to C1C2 through s. The point set is S := {s, t, a, v1, v2, v3, v4, v5}. While
S admits many different triangulations, we choose the triangulation from Figure 10. The
edges are sa, sv1, av1, av2, v1v2, v1v3, v1v5, v2v3, v3v4, v3v5, v4v5, v4t, v5t. In particular, the
neighbourhood of s is {a, v1}, however the shortest path from a to t is approximately along
the boundary ∂C. We will analyze the routing ratio of any algorithm that chooses to go to a.
Then, any algorithm that chooses v1 first will perform poorly on a symmetric graph reflected
about the line through st.

We consider the clockwise and counterclockwise arcs from point a to point t. The
counterclockwise arc has length

|Arc(C1, t, a)| = |av1|+ |v1C5|+ |C5t|

= 1 + (1 + δ) +
1
2 + (1 + δ) sin 18

sin 54 .

On the other hand, the clockwise arc from a to t has length

|Arc(C1, a, t)| = |aC2|+ |C2C3|+ |C3C4|+ |C4t|

= δ + (1 + δ) + (1 + δ) + (1 + δ −
1
2 + (1 + δ) sin 18

sin 54 ).
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Finally, we have |st| = |v1C5| cos 18+ |C5t| cos 54 = (1+δ) cos 18+
1
2 +(1+δ) sin 18

tan 54 . This means
that the routing ratio is at least

|sa|+ |ShortestPath(a, t)|
|st|

=
1
2 + min(|Arc(C1, a, t)|, |Arc(C1, t, a)|)

|st|
which reaches approximately 1.995 when δ = 0.447. ◀

5 Spanning Ratio Lower Bound for ⃝5-Delaunay graphs

▶ Lemma 18. For any ϵ > 0, there exists a ⃝5-Delaunay graph with spanning ratio of at
least 5

2+3 sin( π
10 ) − ϵ.

Proof. Let ϵ > 0. We will construct a point set for the ⃝5-Delaunay graph shown in
Figure 11. In particular, let the pentagon C have side length 1, then place a on C1C5

with |C1a| = 1
4 and b on C3C4 with |C3b| = 1

4 . Next, place v1 ∈ C1C2 arbitrarily close to
C1, v2 := C2, v3 ∈ C2C3 arbitrarily close to C3, v4 ∈ C4C5 arbitrarily close to C4, and
v5 ∈ C4C5 arbitrarily close to C5. We define S := {a, b, v1, v2, v3, v4, v5} and consider the
triangulation with edges av1, av5, v1v2, v1v5, v2v3, v2v4, v2v5, v3v4, v3b, v4b, v4v5. The shortest
path from a to b is approximately the boundary ∂C. Therefore the length of the shortest
path from a to b is approximately 5

2 , whereas |ab| = 1 + 3
2 sin( π

10 ). This means that the
spanning ratio of is approximately 1.708. ◀

a b

v1

v2 = C2

v3

v4v5

C

Figure 11 Point set construction obtaining a spanning ratio lower bound of approximately 1.708.
The shortest path between a and b is arbitrarily close to the perimeter of the pentagon.

6 Conclusions

We have dramatically improved the upper bound on the spanning ratio when n ∈ {5, 7, 8}
and on the routing ratio when n ∈ {5, 6, 7, 8}. We also provided matching lower bounds for
the paths output by our routing algorithm, showing that our analysis is tight. Furthermore,
we prove that no routing algorithm for pentagon-Delaunay graphs can have a routing ratio
less than 1.995. Finally, we show that the worst-case spanning ratio is at least 1.708 for the
pentagon-Delaunay graph. We conclude with the following three open questions: (1) Can
we improve the lower bound on the routing ratio for these graphs? (2) Can we provide a
routing algorithm that attains this lower bound? (3) Can our approach be generalized for
regular polygons with more than 8 sides?
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