
On the Spanning and Routing Ratios of the
Yao-Four Graph
Prosenjit Bose
Carleton University, Ottawa, Canada

Darryl Hill
Carleton University, Ottawa, Canada

Michiel Smid
Carleton University, Ottawa, Canada

Tyler Tuttle
Carleton University, Ottawa, Canada

Abstract
The Yao graph is a geometric spanner that was independently introduced by Yao [SIAM J. Comput.,
1982] and Flinchbaugh and Jones [SIAM J. Algebr. Discret. Appl., 1981]. We prove that for any
two vertices of the undirected version of the Yao graph with four cones, there is a path between
them with length at most 13 + 5/

√
2 ≈ 16.54 times the Euclidean distance between the vertices,

improving the previous best bound of approximately 54.62. We also present an online routing
algorithm for the directed Yao graph with four cones that constructs a path between any two vertices
with length at most 17 + 9/

√
2 ≈ 23.36 times the Euclidean distance between the vertices. This

is the first routing algorithm for a directed Yao graph with fewer than six cones. The algorithm
uses knowledge of the coordinates of the current vertex, the (up to) four neighbours of the current
vertex, and the destination vertex to make a routing decision. It also uses one additional bit of
memory. We show how to dispense with this single bit at the cost of increasing the length of the
path to

√
331 + 154

√
2 ≈ 23.43 times the Euclidean distance between the vertices.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Yao graph, online routing, geometric spanners

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2024.15

Acknowledgements We would like to thank an anonymous reviewer for suggestions to improve the
presentation and for pointing out an error in our original proof of Lemma 7.

1 Background

Online routing is the problem of constructing a path in a graph from some current vertex to
a given destination vertex, without knowing the entire graph ahead of time. The path must
be constructed one vertex at a time. A routing algorithm computes, given some vertex, the
next vertex on the path.

The information available to a routing algorithm is of great importance. We say that a
routing algorithm is local if the only information available to it is knowledge of the current
vertex, the immediate neighbours of the current vertex, the destination vertex, plus a constant
amount of extra information.

In this paper we will consider routing algorithms for a specific type of geometric graph
called a Yao graph. A geometric graph is a graph whose vertex set is a set of points in the
plane, and whose edges are weighted by the Euclidean distance between their endpoints. We
will consider both directed and undirected graphs. Since the vertices of a geometric graph
are points, we will assume that the routing algorithm has access to their coordinates.

© Prosenjit Bose, Darryl Hill, Michiel Smid, and Tyler Tuttle;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Algorithms and Computation (ISAAC 2024).
Editors: Julián Mestre and Anthony Wirth; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8906-0573
https://doi.org/10.4230/LIPIcs.ISAAC.2024.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 On the Spanning and Routing Ratios of the Yao-Four Graph

Let u and v be two points in the plane. Define dx(u, v) and dy(u, v) to be the horizontal
and vertical distances between u and v. In this paper we will make use of three different
distance functions, or metrics, on R2. They are the L1 metric, the L2 (or Euclidean) metric,
and the L∞ metric.

∥uv∥1 = dx(u, v) + dy(u, v)

∥uv∥2 =
√

dx(u, v)2 + dy(u, v)2

∥uv∥∞ = max{dx(u, v), dy(u, v)} (1)

All of the results will be in terms of the standard Euclidean distance, but the analysis will
make use of the other metrics.

Let G = (V, E) be a geometric graph, directed or undirected. Let dG(u, v) denote the
length of the shortest path from u to v in G. For a real number t, we say that G is a t-spanner
if dG(u, v) ≤ t∥uv∥2 for all u and v in V . The spanning ratio (also called the stretch factor)
of G is the minimum such t.

Let A be a routing algorithm, and let dA
G(u, v) denote the length of the path from u to v

in G constructed by algorithm A. We say that A is t-competitive if dA
G(u, v) ≤ t∥uv∥2 for

all u and v in G. The routing ratio of A is the smallest such t. If A is t-competitive for all
graphs in some class G, then we say that A is t-competitive on G. The precise definition of
an online routing algorithm will be given in Section 1.2.

1.1 Yao graphs
The results of this paper are about the spanning and routing ratios of a specific class of
geometric graph known as Yao graphs. We begin by defining these graphs.

Fix an integer k ≥ 3. Let Ri be the ray emanating from the origin making an angle of
2πi/k with the positive x-axis1. The region between two consecutive rays is called a cone.
Specifically, let Ci be the region between Ri and Ri+1, including Ri but not Ri+1. The k

cones C0 through Ck−1 partition the plane (minus the origin) into k regions. Let Ci(p) and
Ri(p) be Ci and Ri translated so that the rays emanate from p rather than the origin.

Given a set P of n points in the plane, we construct a directed graph in the following
way. For each point p in P , we add at most k edges to the graph, one edge per cone Ci(p) of
p. Let q be the point in P ∩ Ci(p) that minimizes the distance ∥pq∥2. Add a directed edge
from p to q. See Figure 1 for an example. Repeating this for every point and every cone
adds at most kn edges to the graph. The resulting graph is called the (directed) Yao-k graph
of P , denoted Y⃗k(P ) or simply Y⃗k if the set P is clear from context. The undirected Yao-k
graph Yk(P ) (or Yk if the set P is clear) is obtained by forgetting the direction of each edge
of Y⃗k(P ).

Notice that the vertices of a directed Yao-k graph have outdegree bounded by k. The
vertices of an undirected Yao-k graph can have unbounded degree.

The Yao graph was first defined in the early 1980s independently by Flinchbaugh and
Jones [1] and Yao [13]. Althöfer et al. first proved that Yao graphs are spanners in 1993 [6].
Specifically, they showed that for any set P of points and any t ≥ 1, there is an integer k

such that Yk(P ) is a t-spanner of P .
Later work found specific bounds for spanning ratios of Yao graphs. Bose et al. showed

that the spanning ratio of Yk(P ) is at most 1/(cos θ−sin θ) for all k ≥ 9 [11], where θ = 2π/k.
This was later improved to 1/(1− 2 sin(θ/2)) for all k ≥ 7 [12]. Finally, Barba et al. showed
that the spanning ratio is at most 1/(1− 2 sin(3θ/8)) for odd values of k ≥ 5 [2].

1 Angles are measured counterclockwise.



P. Bose, D. Hill, M. Smid, and T. Tuttle 15:3

C0C1

C2 C3

Figure 1 The four cones used to define the Y⃗4 graph.

The techniques used to bound the spanning ratio of Yao graphs with many cones do not
directly translate to Yao graphs with very few cones. For these, more specific arguments are
required. For Y6, the first published bound was by Damian and Raudonis, who showed that
the spanning ratio is at most 17.64 [9]. This was later improved by Barba et al. to 5.8 [2].

In the same paper that gives a bound of 1/(1− 2 sin(3θ/8)) on the spanning ratio of Y5,
Barba et al. [2] give a more precise argument that the spanning ratio of Y5 is at most 2 +

√
3.

For Y4, the first bound was by Bose et al. [12], who showed that the spanning ratio is at
most 662. This was improved by Damian and Nelavalli to 54.62 [10].

For fewer than four cones Yao graphs are not necessarily spanners [5]. In fact, the
Y1 graph is equivalent to the (directed) nearest-neighbour graph, which may not even be
connected. The Y2 and Y3 graphs are connected, but the directed versions are not necessarily
strongly connected. These results are summarized in Table 1.

For more than six cones, the proofs that Yao graphs are spanners give a routing algorithm
called cone routing: always move to the neighbour in the cone that contains the destination.
This gives a routing ratio equal to the spanning ratio. For Y⃗6, a local routing algorithm is
known with a routing ratio of 1 + 38/

√
3 ≈ 22.94 [7]. For four or five cones, however, no

local routing algorithms are known.
Theta graphs [4, 8] are a class of graphs that are similar to Yao graphs. The construction

begins the same way, by partitioning space into cones, but instead of adding an edge from a
vertex to its nearest neighbour in each cone, the vertices in each cone are projected onto
the bisector of the cone and an edge is added to whichever vertex has the closest projection.
Like Yao graphs, Theta graphs are spanners, and routing algorithms for Theta graphs have
been studied. In this paper we will present an online routing algorithm for Y⃗4(P ) that is a
modification of the best-known routing algorithm for Θ⃗4(P ) [3]. Although the algorithm is
similar, some care must be taken since every edge of a Theta graph defines an empty triangle,
whereas every edge of a Yao graph defines an empty sector of a circle. More importantly, our
analysis of the algorithm is novel and we believe it is much simpler than the analysis for the
Θ⃗4(P ) routing algorithm.

1.2 Local routing
Let G = (V, E) be a graph. An online routing algorithm on G can be modelled as a function
f : V × V × P (V )× {0, 1}∗ → V × {0, 1}∗, where P (V ) is the power set of V .

The first two parameters of f are the current vertex u and the target vertex v. The third
parameter is the set of vertices we can use to make a routing decision. We will focus on local
routing, where this parameter is the set of neighbours of u. The fourth parameter is a finite
bitstring called the header, which a routing algorithm can use to store arbitrary information
as it constructs a path.

ISAAC 2024



15:4 On the Spanning and Routing Ratios of the Yao-Four Graph

Table 1 Lower and upper bounds for spanning ratios of Yao graphs (θ = 2π/k). Our improved
upper bound for k = 4 is highlighted in bold. In the bottom four rows, m is a positive integer.

Number of cones k Lower bound Upper bound
3 or fewer ∞ ∞

4 Open 16.54
5 2.87 3.74
6 2 5.8

4m + 2 1 + 2 sin(θ/2) 1
1 − 2 sin(θ/2)

4m + 3 1 + 2 sin
(

3θ
8

)(
1 + 2

(
sin

(
13θ
16

)
+ sin

(
19θ
16

)) sin(θ/16)
sin(2θ)

) 1
1 − 2 sin(3θ/8)

4m + 4 1 + 2 sin(θ/2)(1 + tan(θ/2)) 1
1 − 2 sin(θ/2)

4m + 5 1 + 2 sin(3θ/8) + 4 sin(5θ/16) sin(3θ/8) 1
1 − 2 sin(3θ/8)

A routing algorithm must take these four parameters and decide which neighbour of u

should come next on the path, and potentially modify the header in some way. These are
the two outputs of the function f . A path from a vertex u to a vertex v is constructed in
the following way. Let u0 = u and h0 be some initial header that the routing algorithm is
allowed to compute before constructing the path. Then we get a sequence of vertices and
headers defined by (ui+1, hi+1) = f(ui, t, N(ui), hi). If ui = v for some i, we stop as the
routing algorithm has successfully found a path from u to v.

If, for any two vertices u and v in G, a routing algorithm A constructs a path from
u to v, then we say that A guarantees delivery on the graph G. Let dA

G(u, v) denote the
Euclidean length of the path from u to v in G constructed by algorithm A. We say that A is
t-competitive if dA

G(u, v) ≤ t∥uv∥2. The routing ratio of A on G is the smallest t such that
A is t-competitive.

If hi is the empty bitstring for all i, then we say that A is memoryless. If hi = h0 for
all i, then we say that A uses a static header. That is, the header is computed before the
routing algorithm begins and never modified. Otherwise we say that A uses a dynamic
header. The memory usage of a routing algorithm is the maximum length of hi at any point
during construction of a path from u to v, over all pairs of vertices in G.

2 The greedy-sweep algorithm

Let P be a finite set of points in the plane. To avoid tedious case analysis, we will make a
general position assumption that no two points have the same x or y coordinate, and that no
two points lie on a line with slope +1 or −1. Let s and t be two points of P . In this section
we will describe the routing algorithm for constructing a path from s to t in the directed
graph Y⃗4(P ). First, we give some definitions that will be needed to describe and analyze the
algorithm.

Let p be any point in the plane. For another point q, define Wpq to be the quarter-circle
in Ci(p) that is centred at p with q on its boundary contained in Ci(p). Define the diagonals
of p to be the lines through p with slope +1 and −1. Denote the diagonals of p by d+(p) and
d−(p). The first step is to choose one of the two diagonals of t. Given the positions of s and
t, choose whichever diagonal is closer to s. This can be determined by checking which cone
of t contains s. If s is in C0(t) or in C2(t), then choose d+(t). Otherwise, choose d−(t). Let
d denote the chosen diagonal. Knowledge of this diagonal will be needed to make routing



P. Bose, D. Hill, M. Smid, and T. Tuttle 15:5

decisions. The choice of diagonal needs exactly one bit of memory to be remembered. Later
we will see that this bit can be dispensed with, at the cost of a slightly higher routing ratio.
Finally, define the height of a point p, denoted h(p), to be the L1 distance from p to d.

For any point p of P , exactly one of the cones of p has a nonempty, bounded intersection
with d. We say that this cone of p faces d. The intersection of the halfplane of d that contains
p and the cone forms a right triangle. Denote this triangle by T (p, d).

Algorithm 1 Pseudocode for the greedy-sweep algorithm.
▷ The procedure Greedy(p, t, d) returns the neighbour of p in the cone that

contains t, and the procedure Sweep(p, t, d) returns the neighbour of p in the cone that
faces diagonal d, or null if such a neighbour does not exist.
procedure GreedySweep(p, t, d)

q ← Greedy(p, t, d)
r ← Sweep(p, t, d)
if r = null or ∥pr∥2 > h(p) then

return q

else
return r

end if
end procedure

To make a routing decision at a point p, we have a choice of up to four neighbours. We
will determine where to go in the following way. Consider the triangle T (p, d). If T (p, d)
is empty of points of P , then we say that it is clean, or that p is clean with respect to d.
Given the information at p, it might not be possible to determine if T (p, d) is clean or not.
However, if r is the neighbour of p in the cone containing T (p, d), and ∥pr∥2 > h(p), then
T (p, d) must be clean. Also, if p does not have a neighbour in the cone that faces d, then
T (p, d) is clean. If either of these two conditions are met, then move from p to the neighbour
of p in whichever cone contains t. This is called a greedy step. Otherwise, move from p to its
neighbour in the cone that faces d. This is called a sweeping step. See Figure 2.

In two cones of t, a sweeping step and a greedy step are identical, in the sense that they
both select the same neighbour of p. For example, if d = d−(t) and if p is in C0(t), then a
greedy step and a sweeping step will both choose the neighbour of p in C2(p). In this case we
will consider the move to be a sweeping step. This means that greedy steps are only possible
in two cones of t. Which two cones will depend on whether d = d−(t) or d = d+(t).

All of the information necessary to make a routing decision can be determined solely
from the coordinates of p, the neighbours of p, and t, as well as the slope of the diagonal d.
See Algorithm 1 for a pseudocode description of the algorithm.

3 Analysis

We begin by stating a lemma that will be very useful in our analysis, relating the three
different metrics under consideration.

▶ Lemma 1. For any points u and v in the plane, the following chain of inequalities holds:

∥uv∥∞ ≤ ∥uv∥2 ≤ ∥uv∥1 ≤
√

2∥uv∥2 ≤ 2∥uv∥∞. (2)

ISAAC 2024



15:6 On the Spanning and Routing Ratios of the Yao-Four Graph

h(p)

p
T (p, d)

p′

T (p′, d)r
r′

q

d d

t t

Figure 2 From p, a greedy step to q would be taken since ∥pr∥2 > h(p). This implies that T (p, d)
is empty. From p′ a sweeping step to r′ would be taken since ∥p′r′∥2 < h(p′). There is not enough
information at p′ to determine if T (p′, d) is empty or not, since part of T (p′, d) is outside of the
quarter circle defined by p′ and r′.

Let P be a finite set of points in the plane, and let s and t be points in P . In this section
we will analyze the path in Y⃗4(P ) constructed by the greedy-sweep algorithm starting from s,
with t as the destination. We begin the analysis by proving that the greedy-sweep algorithm
guarantees delivery, by eventually reaching t. For the remainder of this section, we will
assume without loss of generality that s is in C1(t), so d = d−(t), and that s is below d.

▶ Lemma 2. Let s and t be different vertices of a Y⃗4 graph, and consider the path constructed
by the greedy-sweep algorithm starting at s with t as the destination. Let u and v be two
consecutive vertices on this path. Then v is inside the square centred at t with u on its
boundary, and so ∥ut∥∞ > ∥vt∥∞.

This lemma immediately implies that the algorithm terminates.

▶ Corollary 3. The greedy-sweep algorithm guarantees delivery on the Y⃗4 graph.

To analyze the routing ratio of the greedy-sweep algorithm, we will consider greedy steps
and sweeping steps separately. Recall that d is the diagonal fixed by the algorithm.

Consider an edge uv traversed while routing. Since no two points lie on a common
diagonal by our general position assumption, the height change h(v)− h(u) must be either
positive or negative. Let D be the set of edges uv such that the height decreases from u to v,
meaning h(u) > h(v), and let I be the set of edges such that the height increases from u to
v. Since h(t) = 0 because t lies on d, we know that the total decrease in height must equal
the total increase in height plus the height of the initial point s. That is,∑

uv∈D

(
h(u)− h(v)

)
= h(s) +

∑
uv∈I

(
h(v)− h(u)

)
. (3)

The next two lemmas show that a sweeping step will always result in a height decrease that
is at least proportional to the length of the edge, and that the length of a greedy edge is at
least equal to the change in height.

▶ Lemma 4. Let uv be an edge taken during a sweeping step. We have h(u) − h(v) ≥
(2−

√
2)∥uv∥2.

Proof. We will consider two cases. See Figure 3. First, if uv does not cross d, then
h(v) = h(u)− ∥uv∥1 and we have h(u)− h(v) = ∥uv∥1 ≥ ∥uv∥2 by Lemma 1.



P. Bose, D. Hill, M. Smid, and T. Tuttle 15:7

u
d

u′
d

v v′

Figure 3 Illustration of Lemma 4. The edge uv does not cross d, and the edge u′v′ does. In both
cases the height decreases when traversing the edge.

Suppose uv crosses d, and that v is in Ci(u). Let θ be the angle made by the edge
uv with the ray Ri(u). We have h(v) = ∥uv∥1 − h(u), so Suppose uv crosses d, and that
uv is an i-edge. Let θ be the angle made by the edge uv with the ray Ri(u). We have
h(v) = ∥uv∥1 − h(u), so

h(u)− h(v) = 2h(u)− ∥uv∥1

≥ 2∥uv∥2 − (sin θ + cos θ)∥uv∥2

= (2− (sin θ + cos θ))∥uv∥2

≥ (2−
√

2)∥uv∥2. ◀

▶ Lemma 5. Let uv be an edge taken during a greedy step. We have h(v)− h(u) ≤ ∥uv∥2.

Proof. Assume without loss of generality that u is in C1(t) and that d = d−(t). If h(v) < h(u),
then the inequality is trivially satisfied. If h(v) > h(u), then we have h(v)−h(u) = dy(u, v) ≤
∥uv∥2. ◀

Now let S be the set of sweeping edges and G be the set of greedy edges. Lemma 4
implies S ⊆ D, so we must have I ⊆ G. In other words a sweeping edge will always decrease
the height, so if an edge increases the height it must be a greedy edge.

▶ Lemma 6. The total length of all the sweeping edges is at most (1+ 1√
2 )(h(s)+

∑
uv∈G∥uv∥2).

Proof. The proof follows from Lemmas 4 and 5, and some simple manipulations:∑
uv∈S

∥uv∥2 ≤
∑

uv∈D

1
2−
√

2
(
h(u)− h(v)

)
= 1

2−
√

2

∑
uv∈D

(
h(u)− h(v)

)
= 1

2−
√

2

(
h(s) +

∑
uv∈I

(
h(v)− h(u)

))
≤ 1

2−
√

2

(
h(s) +

∑
uv∈G

∥uv∥2

)
. ◀

Finally we will bound the total length of the greedy edges in terms of ∥st∥∞. For any
point u, let u be the projection of u onto d. Define the footprint of an edge uv in the following
way. Let w be the point along either ray bounding the cone Ci(u) that contains v such that
∥uw∥2 = ∥uv∥2. The footprint of uv is the segment uw. See Figure 4. It does not matter
which ray we chose since the projection of w would be the same in both cases. Note that we
have ∥uv∥2 =

√
2∥uw∥2.

ISAAC 2024



15:8 On the Spanning and Routing Ratios of the Yao-Four Graph

u

u

v
w

w

t

Figure 4 A greedy edge uv. Its footprint is the segment uw. The blue triangle is empty because
uv is a greedy edge, and the orange region is empty because it is contained in Wuv, the empty
quarter circle defined by the edge uv. For any greedy edge u′v′ such that u′ is in C1(t), u′ is below
d, and u′ comes after u in the routing path, we must have u′ in the indicated triangle. The footprint
of u′v′ must be disjoint from the footprint of uv.

Recall that there are only two cones of t where greedy edges can originate, since in two
of the cones of t a greedy step would be the same thing as a sweeping step. In both of these
cones, the greedy edge can begin either above or below d. Split the set greedy edges into four
subsets, depending on which cone of t the edge originates in and whether the edge begins
above or below d. We will show that, for any two edges that are in the same subset of G,
their footprints are disjoint (except possibly at a single point).

▶ Lemma 7. Let uv and u′v′ be two greedy edges such that u and u′ are in the same cone of
t, and both are either above or below d. Then the footprints of these two edges are disjoint.

Proof. Let uw and u′w′ be the footprints of the edges uv and u′v′, respectively. Assume
without loss of generality that u appears before u′ on the routing path, and that u and u′

are in C1(t) and below d. We will show that the points u, w, u′, w′, and t appear in exactly
that order along d. To do this, we show that uw and u′w′ are contained in C1(t) and that

∥ut∥1 > ∥wt∥1 ≥ ∥u′t∥1 > ∥w′t∥1. (4)

First note that w must be in C1(t), since otherwise t would be in Wuv, which is empty. Recall
that Wuv is the quarter-circle in Ci(p) that is centred at p with q on its boundary contained
in Ci(p). Therefore we have ∥tu∥1 > ∥tw∥1. The same reasoning shows that ∥tu′∥1 > ∥tw′∥1.

Since u′ comes after u on the routing path, we know that it is inside the square centred
at t with u on its boundary by Lemma 2. The point u′ must be inside the intersection of this
square with C1(t), and below d. If ∥vt∥1 < ∥u′t∥1, then u′ would either have to be inside
T (u, d) or Wuv. Both of these two regions are empty, so we must have ∥vt∥1 ≥ ∥u′t∥1. See
Figure 4. ◀

We can use this lemma and the fact that greedy edges can only originate in two cones of
t to bound the total length of the greedy edges.

▶ Lemma 8. The total L2 length of the greedy edges is at most 8∥st∥∞.



P. Bose, D. Hill, M. Smid, and T. Tuttle 15:9

Proof. Let G1, . . . , G4 be the four sets of greedy edges defined above. The total length of
the footprints in one such set cannot be more than

√
2∥st∥∞, since that is the length of d

that lies inside the intersection of one of the cones of t with the square centred at t with s

on its boundary. Therefore,

∑
uv∈G

∥uv∥2 =
4∑

i=1

∑
uv∈Gi

∥uv∥2 =
4∑

i=1

∑
uv∈Gi

√
2∥uu∥2 ≤

4∑
i=1

2∥st∥∞ = 8∥st∥∞. ◀

Now that we have a bound on the length of the greedy edges in terms of ∥st∥∞, we can
combine that with our bound on the length of the sweeping edges to get a bound on the
total length of the path, and therefore the routing ratio.

▶ Theorem 9. The routing ratio of the greedy-sweep algorithm is at most 17 + 9/
√

2.

3.1 Removing the diagonal bit

In the greedy-sweep algorithm, one bit of memory is required to remember the choice of
diagonal. Removing the single bit of memory just requires us to fix a diagonal ahead of time,
without knowledge of s and t. We will choose d−(t) as our diagonal. The proof of Lemma 2
does not depend on our choice of d at all, so the routing algorithm will still terminate with
this modification.

A few changes to the analysis have to be made, however. The initial height h(s) can now
be larger. The height of s for the one bit greedy-sweep is at most ∥st∥∞, because we chose d

to be whichever diagonal of t is closer to s. Now, however, since we fix the diagonal ahead of
time the height of s is at most 2∥st∥∞. The proofs of Lemmas 6 and 8 do not depend on the
choice of diagonal, and so they remain unchanged. Notice how increasing h(s) beyond ∥st∥∞
also increases the distance ∥st∥2. This results in the routing ratio being a unimodal function
of ∥st∥∞, where at a certain point increasing h(s) actually decreases the routing ratio since
∥st∥∞ increases too quickly. The routing ratio will increase slightly, from 17 + 9/

√
2 ≈ 23.36

to
√

331 + 154
√

2 ≈ 23.43.

▶ Theorem 10. The memoryless version of the greedy-sweep algorithm has a routing ratio
of at most

√
331 + 154

√
2.

Proof. Assume without loss of generality that s lies on the left edge of the square centred at
t with s on the boundary. By Lemmas 6 and 8 we know that the length of the routing path
is at most αh(s) + (8α + 8)∥st∥∞, where α = 1 + 1√

2 . If h(s) ≤ ∥st∥∞ then we can proceed
as we did for the proof of Theorem 9.

If h(s) > ∥st∥∞, then let θ be the angle made by the segment st with the ray R2(t) and
let ρ be the routing ratio. Notice that 0 < θ < π

4 . Then

ρ ≤ αh(s) + (8α + 8)∥st∥∞

∥st∥2

= α sin θ + (9α + 8) cos θ.

This is maximized when θ = arctan(α/(9α + 8)) with a value of ρ =
√

331 + 154
√

2. ◀

ISAAC 2024



15:10 On the Spanning and Routing Ratios of the Yao-Four Graph

4 Spanning ratio

We now turn our attention to the undirected Yao-4 graph. Let s and t be two vertices of a Y⃗4
graph, and let P be the path from s to t constructed by the greedy-sweep algorithm. Notice
that this is also a path in the undirected Y4 graph. This already gives an upper bound of
23.36 on the spanning ratio of the undirected Y4 graph. In this section, we will improve this
upper bound to 16.95.

First, define Pi(p) to be the path constructed by starting at p and following edges
in cone i repeatedly, until a point is reached that has no neighbour in cone i. Also,
given two points p and q define R(p, q) to be the axis-aligned rectangle that has p and q

at opposite corners. The side lengths of this rectangle are dx(p, q) and dy(p, q). Define
SS(p, q) = min{dx(p, q), dy(p, q)} and LS(p, q) = max{dx(p, q), dy(p, q)}.

Assume without loss of generality that s is in C1(t), and that it is below d−(t). In this
situation, greedy edges can only originate in C1(t) and in C3(t), not C0(t) or C2(t). The key
point of this section is that if any edge of P originates in C3(t), then P must intersect at
least one of P0(t) and P2(t). We will show that if two edges of a Y4 graph intersect, then
there is a short path between the endpoints of the two edges. This means we can take a
“shortcut” and only use the subpath of P before its intersection with P0(t) or P2(t).

Before proving the main result of this section, we will characterize the possible intersections
in a Y4 graph. First, some definitions. An edge pq is called an i-edge if q is in Ci(p). If pq is
an i-edge and uv is an (i± 1)-edge, then we say that pq and uv are in adjacent cones. If uv

is an (i + 2)-edge, then we say that they are in opposite cones. Note that an i-edge is the
same thing as an (i mod 4)-edge.

▶ Lemma 11. Let pq and uv be i-edges such that p is not in Ci(u) and u is not in Ci(p).
Then pq and uv cannot intersect except if q = v.

The previous lemma implies that edges in the same cone can only intersect at their
endpoints. We will characterize intersections of edges in opposite or adjacent cones into two
categories: short side and long side crossings. See Figure 5.

If pq and uv are in opposite cones and pq intersects the short side of R(p, u), then we say
that pq short side crosses uv. Notice that two edges in opposite cones do not have to actually
intersect for us to say that they short side cross. If the edges are in adjacent cones and pq

intersects the short side of R(p, v), then we say that pq short side crosses uv. If it intersects
the long side of R(p, v), then we say that pq long side crosses uv. Edges in adjacent cones
must intersect if they short or long side cross. If the edges are in adjacent cones and q = v,
then we will consider the intersection to be a short side crossing.

If pq and uv are in opposite cones and intersect, then we always consider this a short side
crossing since one of the edges will short side cross R(p, u), as the next lemma shows.

▶ Lemma 12. Let pq and uv be edges in opposite cones that intersect. Then either pq short
side crosses uv, or uv short side crosses pq.

Note the slight difference in definitions for opposite and adjacent cones. If pq short side
crosses uv and they are in adjacent cones, then pq intersects the short side of R(p, v). But
if they are in opposite cones, then pq intersects the short side of R(p, u). We will call the
second point (other than p) that defines this rectangle the visible vertex, so that we can say
pq short side crosses an edge with visible vertex u.



P. Bose, D. Hill, M. Smid, and T. Tuttle 15:11

p

q

u v

p

q
u

v

p

u

v

q

R(p, u)
R(p, v) R(p, v)

Figure 5 Three different crossings. From left to right: pq opposite cone short side crosses uv

with visible vertex u, pq adjacent cone short side crosses uv with visible vertex v, and pq long side
crosses uv.

4.1 Short side crossings
In this section we will prove that if an edge short side crosses another edge, then we can find
a short undirected path between them. Long side crossings will be considered in the next
section. The following two lemmas are simply geometric facts that will be needed to prove
the main result of this section.

▶ Lemma 13. Let p and q be two distinct points. Then ∥pq∥2 ≤ LS(p, q) + (
√

2− 1)SS(p, q).

Proof. Consider a right triangle with legs LS(p, q) and SS(p, q). Let θ be the angle adjacent
to the hypotenuse and the leg with length LS(p, q). We have SS(p, q) = ∥pq∥2 sin θ and
LS(p, q) = ∥pq∥2 cos θ.

(
√

2− 1)SS(p, q) + LS(p, q) = ∥pq∥2((
√

2− 1) sin θ + cos θ). (5)

The function (
√

2− 1) sin θ + cos θ is at least 1 on the interval [0, π/4]. ◀

▶ Lemma 14. Let pq be an edge that short side crosses an edge with visible vertex u. Then
(1) LS(q, u) ≤ SS(p, u), and
(2) SS(q, u) ≤ (

√
2− 1)SS(p, u).

Now we are ready to state the main result of this section.

▶ Lemma 15. Let pq be an edge of a Y4 graph that short side crosses another edge with
visible vertex u. Then there is an undirected path from p to u with length at most LS(p, u) +
(
√

2 + 1)SS(p, u).

Proof. The proof is by induction on all pairs of points p ̸= u such that there is an edge pq

that short side crosses an edge with visible vertex u, ordered by SS(p, u).
Consider one such pair. There are two possibilities. If q = u, then there is a path between

p and u with length ∥pu∥2 ≤ ∥pu∥1 < LS(p, u) + (
√

2 + 1)SS(p, u). Otherwise q ̸= u. Assume
without loss of generality that pq is a 0-edge and that pq crosses the top edge of R(p, u).
Consider P3(q). We claim that this path must exit R(q, u) by the right edge. Since u is in
C3(q), the path must intersect some edge of R(q, u).

If pq adjacent short side crosses an edge vu, then vu must be a 3-edge. Therefore P3(q)
cannot intersect vu by Lemma 11, so it must intersect the right edge of R(q, u) because vu

is above the bottom edge. If pq opposite short side crosses an edge uv, then R(p, u) must be
empty since it is contained in the intersection of Wpq and Wuv. Let q′ be the last point on
P3(q). We have dy(p, q′) < dx(q′, u), so the path P3(q) must exit R(q, u) to the right.

ISAAC 2024



15:12 On the Spanning and Routing Ratios of the Yao-Four Graph

p

q

u

P3(q)

Figure 6 Figure for Lemma 15. Notice that P1(u) must either intersect pq or P3(q). If u′ is the
last vertex on P1(u) inside R(q, u), then the long side of R(q, u′) is horizontal because the shaded
region of R(q, u′) is contained in Wpq.

This implies that P1(u) must either intersect pq or P3(q). Both of these will result in a
short side crossing. Let u′ be the last point on P1(u) that is inside R(q, u). If P1(u) intersects
P3(q), there is a short side crossing since the edges will be in opposite cones, and edges in
opposite cones that intersect always short side cross. Otherwise if P1(u) intersects pq, the
long side of R(q, u′) is horizontal, so we have a short side crossing. Notice that this short
side crossing has a smaller short side length than SS(p, u). See Figure 6.

This implies that in the pair p and u such that SS(p, u) is minimized, there is an edge
from p to u. So in the base case there is a path between p and u with length at most ∥pu∥2.

Now assume for the inductive step that we have a pair of points p and u such that there
is an edge pq that short side crosses an edge with visible vertex u, and that for every other
such pair p′ and u′ such that SS(p′, u′) < SS(p, u), there is a path from p′ to u′ of length
at most LS(p′, u′) + (

√
2 + 1)SS(p′, u′). If P1(u) intersects pq, then construct a path in

the following manner. By induction, there is a path between q and u′ with length at most
LS(q, u′) + (

√
2 + 1)SS(q, u′). Concatenate the edge pq, the path between q and u′, and the

segment of P1(u) up to u′. The resulting path has length at most

dG(p, u) ≤ ∥pq∥2 + LS(q, u′) + (
√

2 + 1)SS(q, u′) + ∥uu′∥1

≤ ∥pq∥2 + LS(q, u) + (
√

2 + 1)SS(q, u).
(6)

Now, if P1(u) intersects P3(q), then

dG(p, u) ≤ ∥pq∥2 + ∥qq′∥1 + LS(q′, u′) + (
√

2 + 1)SS(q′, u′) + ∥uu′∥1

≤ ∥pq∥2 + LS(q, u) + (
√

2 + 1)SS(q, u).
(7)

In both cases we have the same bound on the length of the path. Now, Lemma 13 implies
that ∥pq∥2 ≤ LS(p, u) + (

√
2 − 1)SS(p, u), and Lemma 14 gives bounds on LS(q, u) and

SS(q, u). Putting these together finishes off the proof:

dG(p, u) ≤ ∥pq∥2 + LS(q, u) + (
√

2 + 1)SS(q, u)

≤ LS(p, u) + (
√

2− 1)SS(p, u) + SS(p, u) + (
√

2 + 1)(
√

2− 1)SS(p, u)

= LS(p, u) + (
√

2 + 1)SS(p, u). ◀



P. Bose, D. Hill, M. Smid, and T. Tuttle 15:13

p

q

u

v

ℓ

m

r

Figure 7 Figure for Lemma 17.

4.2 Long side crossings

Suppose we have an edge pq that long side crosses another edge uv. In this section, we will
show that there is a short path from q to u, using the short side crossings from the previous
section. Assume without loss of generality that uv is a 3-edge and pq is a 0-edge. We will
show that from u and q we can find two paths in opposite cones that must intersect, and by
Lemma 12 that intersection must be a short side crossing.

▶ Lemma 16. P0(u) intersects the top edge of R(u, q).

Proof. The path P0(u) cannot intersect the right edge, since then it would have to intersect
the edge pq. But pq is a 0-edge, and two 0-edges cannot intersect by Lemma 11. ◀

▶ Lemma 17. P2(q) intersects the left edge of R(u, q).

Proof. Consider Figure 7. The point ℓ is directly above p and on the arc of Wuv. The point
r is the other intersection of the line d+(ℓ) with the arc of Wuv.

Every point on the arc of Wpq is below d−(m), including q. The point r is above d+(p)
and on the arc of Wuv. This means that r must be above and to the right of m. Therefore q

is also below d−(r).
Since q is above r but below d−(r), it must be the case that q is to the left of r. In other

words, we have dx(u, q) < dx(u, r) = dx(u, y), which is what we wanted to show.
We have shown that dy(u, ℓ) > dx(u, q). That implies that the rectangle R with u as its

upper-left corner, with width dx(u, q) and height dy(u, ℓ), is taller than it is wide. Notice
that R is contained in Wpq ∪Wuv, meaning that it is empty of points. Consider an edge xy

on P2(q) such that x is in R(u, q). If y is below ℓ, then we must have

∥xy∥2 > dy(x, y) > dy(x, ℓ) > dy(x, u) + dx(x, u) > ∥xu∥2,

a contradiction since both y and u are in C2(x). Therefore no edge of P2(q) can span R in
this sense, and P2(q) must intersect the left edge of R(u, q). ◀

These two lemmas imply the main result of this section.

▶ Lemma 18. Let pq be an edge of a Y4 graph that long side crosses another edge uv. Then
there is an undirected path between u and q with length at most LS(u, q) + (

√
2 + 1)SS(u, q).

ISAAC 2024



15:14 On the Spanning and Routing Ratios of the Yao-Four Graph

4.3 Constructing a path

In this section we describe how to construct a path between two vertices of an undirected Y4
graph. Let s and t be the endpoints of our path. Let P be the path from s to t constructed
by the greedy sweep algorithm in the directed Y⃗4 graph. This is also a path in the undirected
Y4 graph. For the remainder of this section, assume without loss of generality that s is above
and to the left of t, and that s is below the diagonal d−(t).

We consider three cases, based on the observation that if some vertex of P lies in C3(t),
then P must intersect at least one of P0(t) or P2(t). We will construct a path in a different
way for each of the three cases. The cases that we consider then are:
1. The path P does not intersect P0(t) ∪ P2(t), except for at t

2. The first intersection of P with P0(t) ∪ P2(t) is a short side crossing
3. The first intersection of P with P0(t) ∪ P2(t) is a long side crossing

In the first case, the path between s and t is P itself.
In the second case, let uv be the first edge of P that intersects Pi(t), where i ∈ {0, 2}.

If u is in Ci(t), then uv must be an (i + 2)-edge, so the edge pq that it intersects is in the
opposite cone. Therefore by Lemma 15 there is a path between u and p with length at most
LS(p, u) + (

√
2 + 1)SS(p, u). Otherwise, if u is in C1(t), then uv must be a 3-edge and we

have edges in adjacent cones that intersect. In this case we must have pq short side crossing
uv, with visible vertex v. By Lemma 15 there is a path between v and p with length at most
LS(p, v) + (

√
2 + 1)SS(p, v). In either case concatenating the subpath of P from s to the

visible vertex (u in the case of an opposite cone short side crossing, and v in the case of an
adjacent cone short side crossing), the path from the visible vertex to p of Lemma 15, and
the subpath of Pi(t) from t to p (in reverse) gives a path between s and t.

The third case is similar to the second. Let uv be the first edge of P that intersects Pi(t),
where i ∈ {0, 2}. In this case pq long side crosses uv, meaning they must be in adjacent
cones, and so uv is a 3-edge, and u is in C1(t). By Lemma 18 there is a path between u and
q. Concatenate the subpath of P from s to u, the path from u to q, and the subpath of Pi(t)
from t to q (in reverse).

▶ Theorem 19. Let P be a set of points. For any two points s and t in P , there is a path in
Y4(P ) with length at most (13 + 5/

√
2)∥st∥2.

Proof. The path is constructed as previously described. We will bound the length for each
case separately.

Case 1. Since no edge of P originates in C3(t), we know that any greedy edge of P will
have to originate in C1(t). We can modify the proof of Lemma 8 using this fact. Now there
are only two subsets of greedy edges to consider, depending on whether they originate above
or below the diagonal. This results in a total length of 4∥st∥∞ for the greedy edges. The
proof of Lemma 6 does not need to change at all, giving a total length for P of

∑
uv∈S

∥uv∥2 +
∑

uv∈G

∥uv∥2 ≤
(

1 + 1√
2

)(
h(s) +

∑
uv∈G

∥uv∥2

)
+

∑
uv∈G

∥uv∥2

≤
(

1 + 1√
2

)(
∥st∥∞ + 4∥st∥∞

)
+ 4∥st∥∞

≤
(

9 + 5√
2

)
∥st∥2.



P. Bose, D. Hill, M. Smid, and T. Tuttle 15:15

Case 2. Let u be the vertex of P that is the visible vertex of the first intersection of P

with Pi(t). Let P ′ be the subpath of P from s to u. Notice P ′ does not have any edges
originating in C3(t). Therefore the total length of the greedy edges on this subpath is at
most 4∥st∥∞ as in case 1. Now we modify the proof of Lemma 6 by noting that∑

pq∈D′

(h(p)− h(q)) = h(s)− h(u) +
∑

pq∈I′

(h(q)− h(p)) (8)

where D′ and I ′ are the sets of edges of P ′ where the height decreases and increases,
respectively, as in the proof of Lemma 6. Using that fact we see that the length of P ′ is at
most (8 + 4/

√
2)∥st∥∞ + (1 + 1/

√
2)(h(s)− h(u)).

Next, we know the length of the path between u and p by Lemma 15: at most (
√

2 +
1)SS(u, p) + LS(u, p). And finally the length of the subpath of Pi(t) is at most ∥pt∥1. Notice
that p is inside R(t, u), so we have

(
√

2 + 1)SS(u, p) + LS(u, p) + ∥pt∥1 = (
√

2 + 1)SS(u, p) + LS(u, p) + SS(p, t) + LS(p, t)

≤ (
√

2 + 1)SS(t, u) + LS(t, u).

Now, we have SS(t, u) + LS(t, u) = h(u). Furthermore, h(u)/2 ≤ LS(t, u) ≤ h(u). Therefore,

(
√

2 + 1)SS(t, u) + LS(t, u) = (
√

2 + 1)(h(u)− LS(t, u)) + LS(t, u)

= (
√

2 + 1)h(u)−
√

2LS(t, u)

≤ (
√

2 + 1)h(u)−
√

2
2 h(u)

=
(

1 + 1√
2

)
h(u).

Adding this to the length of P ′, we see that the length of the path between s and t is at most(
8 + 4√

2

)
∥st∥∞+

(
1 + 1√

2

)(
h(s)− h(u)

)
+

(
1 + 1√

2

)
h(u)

=
(

8 + 4√
2

)
∥st∥∞ +

(
1 + 1√

2

)
h(s)

≤
(

9 + 5√
2

)
∥st∥∞

≤
(

9 + 5√
2

)
∥st∥2.

Interestingly, this is the same bound as in case 1.
Case 3. Just like in case 2, the subpath P ′ from s to u has length at most 4∥st∥∞ + (1 +

1/
√

2)(4∥st∥∞ + h(s) − h(u)) ≤ (9 + 5/
√

2)∥st∥∞. By Lemma 18, the length of the path
between u and q is at most LS(u, q) + (

√
2 + 1)SS(u, q). Finally, the subpath of Pi(t) from t

to q has length at most ∥tq∥1.
We will show that LS(u, q) ≤ dy(u, p) and SS(u, q) ≤ (

√
2− 1)dy(u, p). That will imply

that the length of the subpath between u and q has length at most dy(u, p) + (
√

2 + 1)(
√

2−
1)dy(u, p) = 2dy(u, p) ≤ 2dy(u, t) ≤ 2∥st∥∞. We also have ∥qt∥1 ≤ 2∥qt∥∞ ≤ 2∥st∥∞. So
the total length of the subpath between u and t is at most 4∥st∥∞. Adding that to the length
of P ′ gives a total of (13 + 5/

√
2)∥st∥∞.

Consider Figure 8. Without loss of generality, we assume that pq is an edge on P0(t). Let
x = dx(u, p) and y = dy(u, p). Let u′ be the point directly above p such that dy(u′, p) = y.

ISAAC 2024



15:16 On the Spanning and Routing Ratios of the Yao-Four Graph

u u′ w

w′

v′

p

θ

q′

Figure 8 Case 3 of Theorem 19.

Let v′ be the point of the bisector of C0(p) such that dx(v′, p) = dy(v′, p) = y. Let w be the
point between u′ and v′ such that dx(w, v′) = x. Let w′ be the point on the bisector of C0(t)
such that ∥pw′∥2 = ∥pw∥2. Finally, let q′ be the point above v′ such that dy(p, q′) = ∥pv′∥2.

First, some observations. The point v must be to the left of v′ since ∥uv′∥2 = ∥up∥1 ≥
∥uv∥2. The point q must be inside R(u′, q′), since q is above u and right of p, but if it were
outside of the rectangle then it would contain v′ and the point v could not exist, because
Wpq is empty of points.

We will show that LS(u, q) ≤ LS(u′, q′) and SS(u, q) ≤ SS(u′, q′). Then, since
LS(u′, q′) = y and SS(u′, q′) = dy(u′, q′) = (

√
2− 1)y, we will have completed the proof.

First since q is inside R(u′, q′) we must have dy(u, q) ≤ dy(u′, q′). Next we show that
dx(u, q) ≤ dx(u′, q′). To do this we will show that q is to the left of w. Then we would
have dx(u, q) ≤ dx(u, w) = dx(u′, q′). We know that ∥uv∥2 < ∥up∥2, so if we can show that
∥up∥2 < ∥uw′∥2 then we will know that v cannot lie in the shaded region of Figure 8. That
would mean that Wpq is inside Wpw, so ∥pq∥2 < ∥pw∥2, and since q is above w this must
mean that q is left of w.

Now we prove that ∥up∥2 < ∥uw′∥2. Let r = dx(p, w′) = dy(p, w′). Notice that
∥up∥2

2 = x2 + y2 and ∥uw′∥2
2 = (x + r)2 + (y − r)2. If we can show that the inequality

x2 + y2 < (x + r)2 + (y − r)2 holds, we will be done. The inequality can be simplified to
x + r > y. This holds since w is left of w′, so x + r = dx(u, w′) > dx(u, w) = y.

Therefore ∥uw′∥2 > ∥up∥2, which implies that q is to the left of w, which implies that
dx(u, q) ≤ dx(u′, q′). This together with the fact that dy(u, q) ≤ dy(u′, q′) means we must
have LS(u, q) ≤ LS(u′, q′) = dy(u, p) and SS(u, q) ≤ SS(u′, q′) = (

√
2 − 1)dy(u, p). As we

have previously shown, this means the length of the path between s and t has length at most
(13 + 5/

√
2)∥st∥2 ≈ 16.54∥st∥2. Notice that the bound in this case is greater than the bound

for the other two cases, by exactly 4∥st∥2. ◀

5 Conclusion

We have presented a local routing algorithm for the directed Y⃗4 graph, the first such routing
algorithm for this class of graphs. The routing ratio of this algorithm is 17 + 9/

√
2 ≈ 23.36.

The algorithm requires one bit of memory, and we showed that this can be dispensed with at
the cost of increasing the routing ratio to

√
331 + 154

√
2 ≈ 23.42. Our result also lowers

the best-known upper bound on the spanning ratio of the directed Y⃗4 graph from 54.82 to



P. Bose, D. Hill, M. Smid, and T. Tuttle 15:17

23.36. We also used the routing algorithm to bound the spanning ratio of the undirected Y4
graph to be at most 16.54. To do so we showed that if two edges of a Y4 graph intersect,
then there must be a short path between the endpoints of these edges.

References
1 B. E. Flinchbaugh and L. K. Jones. Strong connectivity in directional nearest-neighbour graphs.

SIAM Journal on Algebraic Discrete Methods, 2(4):461–463, 1981. doi:10.1137/0602049.
2 Luis Barba, Prosenjit Bose, Mirela Damian, Rolf Fagerberg, Wah Loon Keng, Joseph O’Rourke,

André van Renssen, Perouz Taslakian, Sander Verdonschot, and Ge Xia. New and improved
spanning ratios for Yao graphs. In Proceedings of the Thirtieth Annual Symposium on
Computational Geometry, SOCG’14, pages 30–39, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2582112.2582143.

3 Prosenjit Bose, Jean-Lou De Carufel, Darryl Hill, and Michiel Smid. On the spanning and
routing ratio of theta-four. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2361–2370. SIAM, 2019. doi:10.1137/1.9781611975482.144.

4 Kenneth L. Clarkson. Approximation algorithms for shortest path motion planning. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages 56–65,
1987. doi:10.1145/28395.28402.

5 Nawar M El Molla. Yao spanners for wireless ad hoc networks. Villanova University, 2009.
6 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse

spanners of weighted graphs. Discrete & Computational Geometry, 9:81–100, 1993. doi:
10.1007/BF02189308.

7 William Michael Zoltan Kalnay. Routing Ratio of the Directed Yao-6 Graphs. Carleton
University, 2023.

8 J. Mark Keil. Approximating the complete Euclidean graph. In 1st Scandinavian Workshop
on Algorithm Theory, volume 318 of Lecture Nodes in Computer Science, pages 208–213, 1988.
doi:10.1007/3-540-19487-8_23.

9 Mirela Damian and Kristin Raudonis. Yao graphs span theta graphs. In Combinatorial
Optimization and Applications COCOA 2010, volume 6509 of Lecture Nodes in Computer
Science, pages 181–194, 2010. doi:10.1007/978-3-642-17461-2_15.

10 Mirela Damian and Naresh Nelavalli. Improved bounds on the stretch factor of Y4. Computa-
tional Geometry, 62:14–24, 2017. doi:j.comgeo.2016.12.001.

11 Prosenjit Bose, Anil Maheshwari, Giri Narasimhan, Michiel Smid, and Norbert Zeh. Approx-
imating geometric bottleneck shortest paths. Computational Geometry, 29(3):233–249, 2004.
doi:10.1016/j.comgeo.2004.04.003.

12 Prosenjit Bose, Mirela Damian, Karim Douïeb, Joseph O’Rourke, Ben Seamone, Michiel Smid,
and Stefanie Wuhrer. π/2-angle Yao graphs are spanners. In Algorithms and Computation
– 21st International Symposium, ISAAC 2010, volume 6507 of Lecture Nodes in Computer
Science, pages 446–457, 2010. doi:10.1007/978-3-642-17514-5_38.

13 Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces and
related problems. SIAM Journal on Computing, 11(4):721–736, 1982. doi:10.1137/0211059.

ISAAC 2024

https://doi.org/10.1137/0602049
https://doi.org/10.1145/2582112.2582143
https://doi.org/10.1137/1.9781611975482.144
https://doi.org/10.1145/28395.28402
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/3-540-19487-8_23
https://doi.org/10.1007/978-3-642-17461-2_15
https://doi.org/j.comgeo.2016.12.001
https://doi.org/10.1016/j.comgeo.2004.04.003
https://doi.org/10.1007/978-3-642-17514-5_38
https://doi.org/10.1137/0211059

	1 Background
	1.1 Yao graphs
	1.2 Local routing

	2 The greedy-sweep algorithm
	3 Analysis
	3.1 Removing the diagonal bit

	4 Spanning ratio
	4.1 Short side crossings
	4.2 Long side crossings
	4.3 Constructing a path

	5 Conclusion

