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Abstract

Our research focuses on formally bounded
WCET analysis, where we aim to provide ab-
solute guarantees on execution time bounds. In
this paper, we describe how amortisation can be
used to improve the quality of the results that
are obtained from a fully-automatic and formally
guaranteed WCET analysis, by delivering analy-
sis results that are parameterised on specific in-
put patterns and which take account of relations
between these patterns. We have implemented
our approach to give a tool that is capable of
predicting execution costs for a typical embedded
system development platform, a Renesas board
with a Renesas M32C/85U processor. We show
that not only is the amortised approach applica-
ble in theory, but that it can be applied auto-
matically to yield good WCET results.

1 Introduction

Worst-case execution time (WCET) analysis is
required for a variety of embedded systems appli-
cations, especially those with safety- or mission-
critical aspects. Common examples include
avionics software and autonomous vehicle con-
trol systems [14]. Our work aims to construct
fully automatic source-level static WCET analy-
ses, that are correlated to actual execution costs.
Since we must provide formal, automatically-
produced guarantees on WCET bounds, we base
our work on a high-quality abstract interpreta-
tion approach (AbsInt GmbH’s aiT tool [5]), to
give low-level timing information for bytecode in-
structions. We combine this with an equally for-
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mal, type-based approach that lifts this informa-
tion to higher-level language constructs so that it
can be applied to source programs. The problem
is to maintain the strong WCET guarantees we
need, while giving good quality information. In
this paper, we consider a new approach to con-
structing WCET analyses, based on the idea of
amortisation [16]. This represents the first at-
tempt of which we are aware to provide an auto-
matic amortised WCET analysis. We have pro-
duced a prototype implementation using our ap-
proach, and we report here on some preliminary
results obtained using this analysis tool.

2 Amortised Time Analysis

Amortised cost approaches [3] allow costs to be
averaged according to use. The basic intuition is
that by amortising over the time costs incurred
by common usage patterns (e.g. that for a stack,
every pop is balanced by a push), we can con-
struct timings that reflect more accurately real
worst-case times. Typically, amortised analysis
is performed by hand to determine the complex-
ity of programs that involve complex data struc-
tures [13]. We have previously, however, applied
the approach to give automatically derived, and
provably correct, upper bounds on space costs for
heap allocations [10]. In both cases, since alter-
native program execution paths may have very
different costs, by amortising over common pat-
terns we can avoid the needless over-estimation
that would otherwise occur.

In this paper, we consider how the same ap-
proach can be applied to WCET. Our thesis
is that such an approach can potentially re-
duce over-estimation without losing formal guar-
antees that the analysis yields a genuine WCET.
We will show below that our amortisation-based
WCET analysis can obtain WCET bounds that
are close to the actual execution time. We first
consider a simple example to illustrate the prin-
ciples of our approach.
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Figure 1: Queue implemented by two stacks

2.1 Example: Implementation of a
Queue by Two Stacks

An example that is often used when teaching
data structure abstraction and encapsulation is
the implementation of a queue as two stacks. We
will use this here to illustrate our amortised ap-
proach. Figure 1 shows a sequence of four queue
configurations, in each of which the left stack is
used to enqueue items and the right one to de-
queue them. A queue abstraction can be built
directly in terms of push and pop operations on
the underlying stacks without needing to break
the stack abstraction.

Enqueuing to a stack and dequeuing from a
non-empty stack takes constant time. When the
dequeuing stack becomes empty after popping C
in (1), the contents of the enqueuing stack in
(2) are popped in turn, and pushed onto the de-
queuing stack as shown in (3). This then allows
element D to be dequeued. Finally, new elements
can be enqueued as shown in (4).

Reversing the stack by elementwise copying
((2)→ (3)), however, takes time proportional to
the number of items on the stack.

There are thus two worst cases. Firstly, the
stack could become as large as the total number
of elements, n, if the final element is enqueued
before the first one is dequeued. The cost for
the reversal would then be proportional to n.
Secondly, each dequeued element could require
a stack reversal if it is dequeued before the next
one is enqueued. This would mean n stack rever-
sals in total. Combining both worst cases would
yield a worst-case estimation proportional to n2.
However, both cases cannot occur at the same
time: as there are more stack reversals, the sizes
of the stacks to be reversed decrease in size.

Amortised analysis treats these two extreme

worst-cases quantitatively: we distribute the cost
for the stack reversal equally among all the ele-
ments. The costs incurred by each element are:
(1) a push for enqueuing; in the stack reversal (2)
a test and (3) a pop followed by (4) a push; and
for dequeuing (5) a test and (6) a pop. To pro-
cess all elements, it follows that 6n basic stack
operations are required.

By considering the queue structure as a whole
rather than the operations of its components
(stacks) in isolation, we have been able to amor-
tise the worst-case cost, and reduce it from a
quadratic cost to a linear cost. We can exploit
this in an automatic analysis by using a model
in which a potential [16] is given to each kind
of data element. This potential represents the
amortised worst-case cost per element of the
structure. In the model (but not, of course, in
an actual execution!), one unit of potential is re-
leased for each operation on an element. The
potential must be sufficient to cover all opera-
tions. In our example, if we take into account
only the stack operations, the potential would
be 6 for each element.

2.2 Type-Based WCET Analysis

Our approach [11] is to analyse source-level con-
structs by building on standard type-checking al-
gorithms. By doing this, we are able to gain
information about programming constructs that
may be lost through a compilation process, and
so to obtain a better quality of analysis. Types
also allow us to construct a compositional analy-
sis, where functions/expressions/modules can be
analysed independently. The flip-side is that we
must have the program source available at anal-
ysis time. However, because we have a composi-
tional analysis, previously obtained analysis in-
formation can be attached in the form of meta-
data to binary programs or library code, and this
will reveal nothing about the source implementa-
tion, apart from its WCET. In order to analyse
source functions that use this code, it is not nec-
essary to be able to read the binary file, or even
to possess it, but only to see the meta-data.

Our work is undertaken in the context of the
domain-specific programming language Hume,
which embeds purely functional expressions in
a powerful automaton-based process notation [9,
8]. We have constructed formally-correct type-
based automatic analyses for determining worst-
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case execution-time costs, based on the amor-
tised cost approach described above [11], and
implemented our rules in a prototype implemen-
tation (available from http://www.embounded.
org). We will show some results that can be ob-
tained from our analysis below.

The analysis works as follows: each construct
in the source program is given a type using a nor-
mal type-inference algorithm. At the same time,
the usage of potential is calculated for that ex-
pression. (Internal) cost variables are automati-
cally associated with each (sub-)expression, and
the analysis will generate a set of constraints over
those variables that give an upper bound on the
WCET. The constraint set is solved using a lin-
ear equation solver, and concrete cost solutions
are mapped back to the source program. In this
way, WCET costs are associated with each ex-
pression and each function that is used in the
program.

Note that, while Hume deliberately simpli-
fies the problem of constructing cost models and
analyses, in order to allow us to focus on key
research questions, rather than worrying about
specific complexities, of e.g. C programming, the
methods we are developing are, in fact, gener-
ally applicable. Hofmann and Jost have shown,
for example, how a formally bounded heap anal-
ysis could be applied in an object-oriented set-
ting such as Java [10]. Note also that, although
our focus is on formally guaranteed WCET, and
we have therefore built on abstract interpreta-
tion and types, amortisation can also, in princi-
ple, apply to other WCET approaches such as
probabilistic approaches [1].

3 Obtaining WCET Bounds
for HAM Instructions

The problem now is one of obtaining reliable
WCET information for simple expressions so
that costs for complex expressions can be con-
structed from the type-based analysis. We do
this by first introducing an abstract machine
(the Hume Abstract Machine or HAM [6]). We
may then systematically determine WCET costs
for each HAM instruction. Having determined
the cost of each HAM instruction for a given
architecture, and knowing how the Hume com-
piler will translate expressions to HAM instruc-
tions, we are able to analyse Hume programs for

that architecture without needing to perform any
compilation (even to HAM code), or any further
analysis on the target machine. This yields a
flexible and highly portable analysis.

The approach can yield an acceptable upper
bound on WCET: we have shown in a previ-
ous paper [2] that composing costs of individual
HAM instructions delivers a WCET result that
can be within 2% of the cost of the WCET for
a sequence of HAM instructions for the Rene-
sas M32C/85U [4] architecture that we will also
use in this paper. Processors such as the M32C,
which have predictable time behaviour and low
power consumption are especially of interest for
use in embedded systems such as automotive ap-
plications. The processor therefore represents an
important class of processor architectures that is
employed in safety- and mission-critical systems.

3.1 Low-Level WCET Analysis

In this paper, we distinguish between measured
WCETs, that are obtained in the obvious way,
and guaranteed WCETs, that provide a formally
guaranteed upper bound on WCET. Probabilis-
tic approaches [1] extend the basic measurement
approach by extrapolating from a set of mea-
sured WCETs to provide a probability function
for the WCET.

Although it can be relatively simple to obtain
time information by measurement, even for com-
plex architectures such as a Pentium IV, this can
be time-consuming, and it is not always straight-
forward to determine that the actual worst-case
has been covered by the test input. Conversely,
for guaranteed WCET obtained by static analy-
sis, it is necessary to formalise the behaviour of
the target processor. It can clearly be costly to
construct such a model, especially where cache
and pipeline effects are involved. For unpre-
dictable architectures, such as the Pentium IV,
even if it is feasible to model such a complex sys-
tem, it may not be possible to construct a model
that gives a tight WCET: the WCET could, in
some cases, be one or two orders of magnitude
greater than the typical execution time. How-
ever, once a model and analysis has been con-
structed, it can be applied repeatedly, and usu-
ally without significant programmer effort. A
more detailed comparison of WCET approaches
up to early 2007 can be found in the paper by
Wilhelm et al. [17].
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3.2 WCET Information for Indi-
vidual HAM instructions

Our type-based approach can exploit informa-
tion obtained using either measured or guar-
anteed WCETs for single HAM instructions.
However, we can only formally guarantee upper
bound times for source programs, if we use a
correspondingly guaranteed approach to obtain-
ing low-level WCET information. In this paper,
we investigate both measured and guaranteed
WCETs of HAM instructions for the Renesas
M32C/85U, using machine code generated from
HAM instructions by the IAR C compiler [15].

Guaranteed WCETs for each HAM instruction
have been obtained using AbsInt GmbH’s aiT
tool [7]. This gives the WCET for each machine
code fragment that is generated for a HAM in-
struction, using a static analysis approach that
computes safe approximations for all possible
cache and pipeline states that can occur at any
given point in the program.

Measured WCETs for each HAM instruction
have been obtained by repeated measurement
of the instruction execution time, taking the
worst case from 10000 runs, and using the cycle-
accurate timer on the M32C to obtain software
timings. To ensure accuracy, we use a “two-
loop benchmarking” approach, which measures
the time required for auxiliary measurement op-
erations separately and subtracts this time from
the measurement of interest. In this way, we
avoid including measurement costs in the worst-
case measurement. In order to guarantee that we
measure the WCET for the program, we must, of
course, provide an input which incurs the WCET
during normal fault-free operation.

4 Example: Drilling Robot

We will now consider a slightly more in-depth
example, to show how our amortised approach
can be exploited to give WCET results and com-
pare the outcome of the analysis with measured
WCET times on the M32C processor.

4.1 Problem description

Our case study here is the simulation of a robot
for drilling printed circuit boards. The robot can
move a drilling head in fixed-sized increments
(here represented as integers) in two dimensions.

pos_ok (xpos, ypos) = if xpos==0 && ypos==0

then 1 else 0;

step (xpos,ypos,actions,dps) =

case actions of

[] -> (dps, pos_ok (xpos, ypos))

| (A:as) -> step (xpos, ypos, as,

((xpos,ypos):dps))

| (L:as) -> step (xpos-1,ypos, as, dps)

| (R:as) -> step (xpos+1,ypos, as, dps)

| (U:as) -> step (xpos, ypos-1, as, dps)

| (D:as) -> step (xpos, ypos+1, as, dps);

Figure 2: Hume code for Drilling Robot

At each position, the drilling head can perform a
drilling action. After all holes have been drilled,
the drilling head is to be moved to its starting
point. A similar application example would be a
camera that can be turned around two axes and
can take photo shots at particular orientations.

The robot can perform five operations: A is
the drilling action; the other actions move the
head by one position: L leftwards, R rightwards,
U up and D down. Operations are described by
the user-defined data type OP in Hume:

data OP = A | L | R | U | D

For example, if the action list is the four-element
list R:(D:(A:(L:(U:[])))) (where [] repre-
sents the empty list and (U:[]) constructs the
one element list with U at the start of the list and
an empty remainder), and the robot starts at po-
sition (0,0), it will move right to (1,0), down
to (1,1), drill, move left to (0,1) and finally up
to (0,0), the starting position.

The Hume function step (Figure 2) simulates
each operation carried out by the drilling robot∗.
step takes four arguments: the current X- and
Y-positions of the (xpos and ypos); the list of
remaining actions to perform (actions); and an
accumulating list that records the positions at
which a drilling action has happened (dps). We
perform case discrimation on the list of actions,
where the list may be either empty, i.e. [], or
else a non-empty list whose first element is some
action (A, L, . . .), and whose remainder is the list
of unprocessed actions (as). The second case
is shown as the pattern (A:as) etc., which de-
constructs the list with A as the first element,

∗Of course, it would not be a major exercise to change
this definition to actually drill a board.
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case [] (A:) (L:) (R:) (U:) (D:)

measured 2512 1563 1533 1728 1932 2137

manual 2970 1891 1855 2109 2363 2617
/measured 1.182 1.210 1.210 1.220 1.223 1.225

automatic 3075 2033 2006 2269 2532 2795
/manual 1.035 1.075 1.081 1.076 1.072 1.068

/measured 1.224 1.301 1.309 1.313 1.311 1.308

Table 1: WCET Measurements and Analysis for each Case

binding the variable as to the rest of the list.
The action list is processed element by element.
There are three basic cases:

[] – the action list has been completely pro-
cessed – we return the accumulated list of
drilling positions, dps, paired with a control
flag (calculated using the pos ok function)
that indicates whether or not the robot has
returned to its initial position;

A:as – the current action is a drilling operation
– having done this, we move on to the next
action by calling step recursively on as, us-
ing the ((xpos,ypos):dps)) expression to
place the current position, (xpos,ypos), at
the front of the list of drilling positions, dps;

L:as, R:as, U:as, D:as – the current action
is a move – either xpos or ypos is changed
as required, and we move on to consider the
rest of the actions (as) recursively.

In the example above, there will be five recursive
calls to step†, starting with the R case, and end-
ing with the [] case. The result will be the list
of drilling positions, ((1,1):[]), paired with an
indicator that the final position is OK.

4.2 Amortised WCET Analysis

As in the queue example, amortisation allows
us to avoid calculating the worst case cost of
a list of actions as the length of the list mul-
tiplied by the worst case cost of any individual
action. Our amortised analysis gives a bound for
the worst-case execution time TWCET in clock cy-
cles depending on the number of occurences #X
of each action constructor X in the input, which

†The compiler will actually optimise these to be tail-
recursive; effectively introducing a goto analogously to
the implementation of an iterative loop in C, so there is
no significant cost associated with this recursion.

is TWCET ≤ 3075+2033∗#A+2006∗#L+2269∗
#R + 2532 ∗ #U + 2795 ∗ #D. This information
is even more precise than expressing the WCET
in terms of the list length, but if we wanted to
reduce the information to this form, we could as-
sume that #U=#D when the robot returns to its
initial position, i.e., TWCET ≤ 3075+b2663.5∗nc
for a list of length n.

Table 1 compares the bound for each construc-
tor with (a) the corresponding bound obtained
from a manual analysis of a trace of the func-
tion step, summing the costs of all HAM instruc-
tions; and (b) the measured WCET. The abso-
lute values given in the table refer to times in
terms of clock cycles on the Renesas M32C/85U
processor. Even for the prototype implementa-
tion of our analysis, we achieve manual analysis
results within 23% of the measured WCET and
automatic analysis results within 8% of our man-
ually obtained results.

5 Conclusions

Amortised WCET analysis offers a way to con-
struct costs that abstract over individual opera-
tions, and also to specialise WCET costs for par-
ticular input cases. Using our amortised WCET
analysis approach for source-code analysis com-
bined with information from the AbsInt aiT tool
for machine-code analysis, we have been able to
produce guaranteed WCET bounds that are rea-
sonably close to measured WCETs (and indeed
average-case times) for a real embedded systems
platform. We are now working on tightening the
bounds on WCET by improving the output of
the automatic analysis and the quality of the
code that is generated for HAM instructions. We
are also applying the analysis to larger exam-
ples, e.g. ones taken from image processing or
autonomous vehicle control [12]. Finally, we are
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working on exploiting high-level control flow in-
formation to guide the aiT analysis of the low-
level compiled code, and so to obtain improved
bounds.

We have explained our approach in terms of
Hume, and have developed our initial analyses
in the same context. Hume is a research no-
tation that allows us to focus on core cost is-
sues without distraction by many of the features
that are found in production languages. How-
ever, now that the fundamentals have been prop-
erly worked out in this setting, the general static
analysis techniques used here could, in princi-
ple, be applied to any other high-level language,
including C. Moreover, the principle of amorti-
sation could be applied to many forms of WCET
analysis, not just the guaranteed WCET analysis
we have described here.
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