
Towards Symbolic State Traversal for Efficient WCET Analysis of Abstract
Pipeline and Cache Models∗

Stephan Wilhelm
AbsInt GmbH and Saarland University

Saarbrücken, Germany
sw@absint.com

Björn Wachter
Saarland University

Saarbrücken, Germany
bwachter@cs.uni-sb.de

Abstract

Static program analysis is a proven approach for obtain-
ing safe and tight upper bounds on the worst-case execu-
tion time (WCET) of program tasks. It requires an analysis
on the microarchitectural level, most notably pipeline and
cache analysis. In our approach, the integrated pipeline
and cache analysis operates on sets of possible abstract
hardware states. Due to the growth of CPU complexity and
the existence of timing anomalies, the analysis must handle
an increasing number of possible abstract states for each
program point. Symbolic methods have been proposed as
a way to reduce memory consumption and improve runtime
in order to keep pace with the growing hardware complex-
ity. This paper presents the advances made since the origi-
nal proposal and discusses a compact representation of ab-
stract caches for integration with symbolic pipeline analy-
sis.

1. Introduction

Finding the worst-case execution time (WCET) for all
tasks of a software is an important requirement in the design
of hard real-time systems. A proven approach for obtaining
tight upper bounds of the WCET, based onabstract inter-
pretation (AI), has been presented in [9]. It employs sev-
eral semantics-based static program analyses on the assem-
bly level control flow graph (CFG) of the input program.
First, thevalue analysis computes possible register contents
for each program point in order to determine the address
ranges for instructions accessing memory. Then, an inte-
gratedpipeline and cache analysis, operating on safe ap-
proximations of the possible pipeline and cache states, com-
putes a WCET bound for each basic block of the CFG. Safe

∗This work has been funded in part by the ARTIST2 Network of Ex-
cellence (http://www.artist-embedded.org/) and by the Transregional Col-
laborative Research Center 14 AVACS (http://www.avacs.org/).

approximation means, that the analysis might only consider
too many states, i. e. the WCET state is always included.
The correctness of this approach has been proven [8] [15].
Finally, apath analysis computes the global worst-case path
using the WCET bounds for basic blocks determined by the
pipeline and cache analysis [14]. The AI approach has been
used very successfully for various complex, real-life archi-
tectures [16] [13].

Unfortunately, CPUs using modern techniques for reduc-
ing the average execution time, such as caches, pipelined
execution, branch prediction, speculative execution, and
out-of-order execution, are often subject totiming anoma-
lies. A timing anomaly is a local worst-case behavior, e. g.
a cache miss, that does not contribute to the global worst-
case [11]. As a consequence, abstract interpretation of the
pipeline behavior must consider a large number of possible
abstract pipeline states for each program point. This prob-
lem is also known asstate explosion. In certain cases, the
analysis can even become infeasible because of the increase
in memory consumption and computation time [15].

Measurement-based approaches for computing the
WCET avoid the high cost of microarchitectural modeling
and are therefore not affected by the problem of state explo-
sion. However, measurement-based approaches are often
not suitable for safety critical applications since an underes-
timation of the WCET cannot be excluded [2]. Furthermore,
using measurement-based methods for complex architec-
tures can lead to a high overestimation of the WCET [7].

Symbolic methods have been proposed recently as a way
to handle sets of abstract pipeline states efficiently, reduc-
ing memory consumption and improving runtime, in order
to keep pace with the growing hardware complexity [17]. In
the past, such methods have been used successfully for sim-
ilar problems in model checking [5]. This paper presents an
extension of the AI approach for pipeline analysis, using a
symbolic representation of abstract pipeline states.

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1190

Our Contribution. We propose an improved algorithm
for symbolic state traversal of abstract pipeline models that
overcomes limitations of the algorithm presented in [17].
Furthermore, we discuss a compact encoding of abstract
caches that admits an integration of pipeline and cache anal-
ysis.

The paper is organized as follows. Section 2 briefly in-
troduces the required terminology and section 3 gives an
informal overview of the abstraction techniques used for
deriving abstract pipeline models. Then, we review the al-
gorithm for computing state transitions for sets of abstract
pipeline states, using a small example (section 4). Using
the same example, section 5 shows that the algorithm does
not handle all cases correctly and proposes a solution for
this problem. Section 6 discusses the performance of the
approach and section 7 presents the current state of our im-
plementation and gives first performance numbers. Finally,
section 8 discusses the integration with a cache analysis.

2. Background

Given a finite state machine (FSM) with a set of statesQ,
a set of input valuesI, and a transition relationT , each set
of FSM statesA ⊆ Q can be associated to itscharacteristic
function A : Q → {0, 1}; A(x) = 1 ⇔ x ∈ A. In the same
way, thetransition relation T can be associated to the func-
tion T : Q× I ×Q → {0, 1}; T(x, i, y) = 1 ⇔ (x, i, y) ∈
T . It is common practice to represent FSM state sets and
the FSM transition relation by their characteristic functions
encoded asbinary decision diagrams (BDDs). BDDs are
usually more compact than explicit representations and ef-
ficient implementations of useful operations such as nega-
tion, conjunction and existential quantification exist [4].

Given a set of FSM statesA ⊆ Q, the image of A,
Img(A) ⊆ Q, is the set of states that is reachable fromA

underT . Image computation is the core operation of sym-
bolic model checking algorithms and can be efficiently im-
plemented using BDDs [12].

Pipeline analysis is a static program analysis which per-
forms a fixed point iteration on the domain of abstract
pipeline states. The least fixed point (LFP) is the solution
to the data flow problem containing all states that are reach-
able for a given program point including the WCET state.
The result is a maximum number of cycles for each basic
block.

Symbolic pipeline analysis is an implementation of
pipeline analysis using BDDs for representing sets of ab-
stract pipeline states (an abstract pipeline model is an FSM).
In addition to the standard BDD operations provided by any
BDD library, it uses the image computation engine from a
model checker for efficiently computing the reachable ab-
stract pipeline states.

3. Abstract Pipeline Models

Implementation of an abstract pipeline model requires
detailed knowledge about the internal working and timing
behavior of a CPU. This knowledge can be obtained from
written documentation or hardware traces of bus signals
or from the original Verilog or VHDL implementation (al-
though the latter is often not available). Using any of this
information, an abstract pipeline model can be derived by

1. Omission of timing-irrelevant implementation details.

2. Omission of data paths.
Operations on the register file are already handled by
the value analysis. Possible register values are there-
fore available during pipeline analysis without model-
ing register file and ALU.

3. Use of instruction addresses in all pipeline stages.

The last two points require a detailed discussion because
they are crucial for understanding the difference between
model checking and pipeline analysis. Model checking ex-
plores the state space of a model in order to prove or reject
a statement in temporal logic. All information is contained
in the model and state space exploration is guided by the
transition relation and by the logic statement. In contrast,
pipeline analysis explores the model’s state space guided
by the transition relation and the structure of a program and
by additional information from other analyses. Thus, the
model doesnot contain all information because we have
delegated some of it, e. g. to the value analysis. In order
to obtain this information during the analysis, we need to
establish a relationship between abstract states and program
points. This is achieved by the use of instruction addresses
in all pipeline stages (see item 3 above). The same rela-
tionship can be used to annotate the analysis result, i. e. the
WCET for each basic block.

Reading the delegated information during state transition
is trivial for implementations operating on an explicit rep-
resentation of abstract states, because the transition is com-
puted individually for each abstract state [15]. On the other
hand, symbolic pipeline analysis gains efficiency by using
BDD operations on sets of abstract states. Explicitly ex-
tracting and recoding single states has to be avoided or min-
imized. An algorithm for computing state transitions on sets
using image computation and encoding the delegated infor-
mation using BDD operations has been presented in [17].
In the next section, we will illustrate the key ideas using a
simplified abstract pipeline model.

4. An Illustrated Example

Figure 1 shows a simplified extract from our abstract
pipeline model for a subset of the Infineon Tricore [18]. The

2

Figure 1: Extract from Tricore model.

architecture features two pipelines, calledInteger-Pipeline
(IP) andLoad/Store-Pipeline (LSP), which share the same
fetch unit. Each pipeline has its dedicated decode unit.1

The state of each unit is held in a few variables which are
updated in each cycle. The Verilog code below the unit’s
name shows the update for three selected variables. The cur-
rent value of each variable is communicated to other units
using1- or n-bit wide wires, wheren is the number of bits
used for encoding instruction addresses.

Let us examine what happens if we analyze this subset
of our abstract model. The fetch unit sends instruction ad-
dresses to the bus unit viabu adr which returns the sig-
nal bu ack when the instruction data arrives. The fetch
unit controls an 8 byte prefetch buffer (not shown in the
example) and dispatches its contents to the decode units.
The fetch unit sends only instruction addresses viai addr
andls addr instead of sending instruction data (remem-
ber that data paths have been removed). The decode units
are responsible for detecting structural pipeline hazards(not
shown here) and for computing targets of control-flow in-
structions. Target addresses are stored in thei tgt and
ls tgt buffers where the special value0 indicates that the
buffer does not contain a valid target. Whenever the fetch
unit is about to request a new address from the bus unit,
it checks whether any of the two buffers contains a valid
address and in that case it overwritesbu addr with that
address and redirects the next fetch to the branch, return or
call target. Otherwise, the new value ofbu addr is calcu-
lated by the functionupdate depending on the state of the
prefetch buffer.

1The third pipeline for handling zero-overhead loops sharesits decode
stage with the LSP.

0xd4000056 mov d15, +21649

0xd400005a j 0xd4000068

Figure 2: Tricore assembly.

Pipeline analysis starts from the initial state where
bu addr contains the start address andi tgt and
ls tgt are set to zero. The reachable pipeline states
are computed by repeated image computation, but at cer-
tain points we require some of the delegated information
(from now on, we will refer to such cases asexternal re-
quests). E. g. in a stateq where the condition(i req &&
i addr) holds, we require the possible control-flow tar-
gets for the instruction at addressi addr in order to up-
date the variablei tgt. The update rule2 for this variable,
i tgt = $ND, states thati tgt may adopt any possible
value in the next cycle ($ND stands for non-deterministic
values). Thus, the image ofq is a set of2n states that differ
only in the value ofi tgt.

Consider the assembly code of figure 2 and let us assume
that the value ofi addr in stateq ∈ Q is 0xd400005a.
A lookup of this address from the assembly program shows
that it is an unconditional jump to address0xd4000068.
The key idea presented in [17] is to partition a set of ab-
stract states according to different external requests. Com-
puting the image of each partition yields all possible succes-
sor states for that request, which can be restricted using the
external information. The set of successor states for the next
analysis cycle is the disjunction of the restricted images for
each partition.

5. Concurrent External Requests

Consider again the assembly code of figure 2. The
Tricore fetch unit can issue such a pair of instructions
concurrently by assigning the move instruction to the IP
and the unconditional jump to the LSP. If the signals
i req andls req are active during the next cycle, then
both conditions(i req && i addr) and(ls req &&
ls addr) hold. This means that we have two external re-
quests in the same stater ∈ Q andImg(r) produces22n

successor states, becauseboth target buffers may adopt any
value. The original algorithm as proposed in [17] handles
each external request individually and therefore fails to cre-
ate a correct restriction for this case. Thus, if restrict(A,v)
denotes the restriction of variablev in the subsetA ⊆ Q,
then the algorithm effectively computes

restrict(Img({r}),i tgt) ∪ restrict(Img({r}),ls tgt)

This computation yields2 · 2n states instead of the single
state wherei tgt equals0 (the move has no branch target)
andls tgt equals0xd4000068.

2Depicted in the left decode unit in figure 1.

3

We therefore propose a slightly different algorithm for
partitioning the set of abstract pipeline states, in order to
simplify finding all restrictions for concurrent external re-
quests. It involves the computation of allcofactors of the
variables controlling external requests. Computing a cofac-
tor means restricting a binary variable to either1 or 0. We
define an ordering on the decision variables for external re-
quests, e. g.

i req →
1

i addr[n] → . . . i addr[0]

↓
ls req →

1

ls addr[n] → . . . ls addr[0]

All decision variables for a single external request appearin
a single line and their ordering is indicated by arrows. Using
this ordering, we compute a tree of cofactors as shown in
figure 3. The leaves of the tree are the required partitions
for external requests. In some cases, we do not need to
consider the cofactors of all variables in a line. E. g. we
skip cofactoring the variablesi addr[n] . . .i addr[0]
for cofactors wherei req = 0 because the expression

i req ∧ (i addr[n] ∨ . . . ∨ i addr[0])

evaluates to false for all assignments ofi addr[n] . . .

i addr[0]. This shortcut is indicated by the1 below the
ordering arrow betweeni req andi addr[n]. Short-
cuts can be found easily because of the regular structure of
external requests. They usually rely on the state of very few
signals (likei req) and the address part must be different
from 0 (invalid address). The partitions depicted in figure 3
are

(A) States without external requests.
(B) States requestingi tgt.
(C, D) States requestingi tgt andls tgt.

The states (C) and (D) differ in the instruction address
ls addr for the external request ofls tgt. In practice,
most of the possible cofactors will be empty, which means
that it suffices to consider a fraction of the possible paths
through the partitioning tree. The efficiency of the parti-
tioning can be further improved by choosing a variable or-
dering that allows for the definition of many early shortcuts.
Furthermore, the use of shortcuts avoids the partitioning of
states with different addresses but without active external
requests, e. g. fori addr if i reg = 0. A tree walk from
the root to a leaf defines an assignment of all decision vari-
ables for all active external requests in that partition. Using
this information, we can lookup the results for all active
external requests of a partition and restrict the possible suc-
cessor states as described in section 4.

ls_req

ls_addr[n]

ls_addr[n−1] ls_addr[n−1]

...

i_req

...

...

...

i_addr[0]

ls_req

0

0

1 1

1

1

0 1

0

1

0 1

0

...

1 0

1

ls_addr[0] ...

i_addr[n]

0

0 1

...

0 110

C D

B

A

...

Figure 3: Partitioning tree.

6. Performance Considerations

The performance of BDD-based algorithms depends on
the number of BDD variables and on their ordering. The
number of BDD variables is equivalent to the number of bits
needed for all variables in the abstract model. Therefore, in-
troducing instruction addresses into all pipeline stages cre-
ates a serious problem if we use all 31 bits needed for ad-
dressing the whole address space (for Tricore, we can omit 1
bit because of alignment restrictions). We can significantly
reduce the number of bits by enumerating all instructions
used in the program. For external requests, we translate
the numbers back using a simple table lookup. The same
method can be used for compactly encoding data addresses.

The problem of finding a good variable ordering for ob-
taining small BDDs has been studied extensively and many
heuristics exist [10]. However, finding a good ordering re-
quires careful engineering and knowledge about the imple-
mentation of a concrete abstract model. Thus, it must be
determined for each abstract pipeline model.

The number of partitions generated by our traversal al-
gorithm depends on the number and placement of external
requests in the abstract pipeline model. A large number of
external requests can lead tofragmentation of the symbolic
representation, e. g. if each state issues a different external
request, we have to separate all states into singular parti-
tions. However, we believe that the worst case is unlikely in
practice and that efficient designs can be found.

7. Implementation and Experimental Results

The presented approach for symbolic pipeline analysis
has been implemented in theaiT-framework [1], using the
VIS [3] model checker for image computation and BDD op-
erations. An abstract pipeline model for a subset of the Infi-
neon Tricore has been implemented in Verilog. It comprises
the shared fetch unit (fully implemented) and simplified im-

4

Figure 4: Cycle update times compared to number of states.

plementations of the two main pipelines (altogether about
500 lines of Verilog). The Verilog specification is trans-
lated to a netlist for VIS, using thevl2mv compiler [6]. The
interface to aiT’s program analysis framework, including
the handling of external requests, is implemented in C++.
The analysis has been tested successfully on several small
benchmarks, e. g. dhrystone.

In order to assess the efficiency of our approach, we
have increased the number of abstract states considered by
the analysis by assuming different latencies for instruction
fetches. This is similar to real-world problems since state
explosion is often caused by uncertain information about
the timing of memory accesses (e. g. cache-hit or miss).
Using 63 possible latencies for each instruction fetch, we
obtained the results presented in figure 4 by analyzing a pro-
gram for calculating prime numbers. The solid bold curve
indicates the time required for computing a cycle update for
all possible abstract states at a program point. The dotted
curve below shows the number of partitions generated by
our algorithm and the dashed curve shows the number of
BDD nodes (divided by 10). Considering that the repre-
sentation of a single state requires 192 BDD nodes and ap-
proximately 10 msecs per cycle update, figure 4 shows that
memory consumption (number of required BDD nodes) and
computation time for cycle updates only grow slowly with
the number of states. We expect that the symbolic approach
will outperform an explicit implementation, as soon as the
number of states reaches a break-even point.

8. Integrating Cache Analysis

We have mentioned that the AI approach uses anin-
tegrated cache and pipeline analysis (see section 1). In
fact, the analysis operates on tuples of abstract pipeline-
and cache states because of their interdependence, i. e. the
order of memory accesses depends on pipeline effects and
the timing of memory accesses depends on the cache state.
We propose a symbolic implementation of an integrated

pipeline and cache analysis such that the extra number
of BDD variables for representing abstract caches remains
small. Let us start by recalling some notions of cache anal-
ysis as defined in [8].

Abstract Cache Model. We deal withA-way associative
caches. LetA denote the associativity of the cache. We
denote byM the set of memory locations that are mapped
into the cache. Lets be a cache set andS the set of cache
sets. Each memory location falls into a particular cache set.

The setM decomposes into disjoint setsM =
.⋃

s∈SMs

whereMs are the memory locations falling into sets. Ab-
stract caches are typically based on the concept of age. A
memory location is either not in the cache, i.e. has age⊥,
or it is in one of theA many lines of its cache set, i.e. has
agek wherek ∈ {1, . . . , A}. The age of a memory location
is an element ofA = {1, . . . , A,⊥}. An abstract state of a
cache set is a total function[Ms → A]. An abstract cache
state is the collection of the states of its sets:

Ĉache =
⊎

s∈S

[Ms → A]

Symbolic Representation. We exploit knowledge about
the program and approximations to arrive at a compact sym-
bolic encoding. As noted earlier, we know the memory lo-
cations that will be accessed by the program in advance,
as they can be determined by value analysis. In general, the
set of accessed memory locationsM is significantly smaller
than the full address space and depends on the program un-
der analysis. Note that we encode functions that keep track
of the age of particular memory locations. A straightfor-
ward encoding would be to extend the state vector by|M|
many entries, one for each memory location, that record the
age of each memory location. An advantage of this encod-
ing is that it can be implemented using off-the-shelf image
computation. However, the number of required state bits
would be too high, as e. g. a data cache typically may con-
tain tens of thousands of memory locations.

The problem with the naive encoding is that it unrolls the
domain of the functions that represent cache state. In our
encoding, we exploit that BDDs can encode functions di-
rectly and without unrolling, so that the number of required
boolean variables is logarithmic in the number of memory
locations rather than linear. For simplicity, we can assume
that only one cache state is stored per pipeline state. States
that agree in terms of pipeline state can be merged to one
state by using the join operator for abstract caches. The
symbolic domain consists of partial functions from pipeline
to cache state:

P̂ ipe ↪→ Ĉache

An element of this domain represents a set of abstract states
and is stored in a single BDD. The BDD contains the

5

boolean variables of the pipeline state plus boolean vari-
ables that address a particular cache set, a memory location,
and age, respectively. One can use binary encoding for the
set of cache sets, the sets of memory locations and ages, re-
spectively. One obtains the following number of required
boolean variables in the BDD:

‖P̂ ipe‖ + dlog
2
Se + dlog

2
max
s∈S

|Ms|e + dlog
2
|A|

︸ ︷︷ ︸

‖Ĉache‖

e (1)

where ‖P̂ ipe‖ denotes the number of bits required for
pipeline state.

As mentioned earlier, BDDs typically represent charac-
teristic functions in symbolic state traversal [5]. This is
not the case for the proposed symbolic representation and
therefore a modified image computation algorithm is re-
quired. However, space precludes us from discussing this
algorithm.

Let us briefly assess the compactness of the represen-
tation on a real-life example, a task set obtained from an
industry project. The task set was compiled for a Pow-
erPC 755 processor featuring a 2-way associative cache
with 128 sets and 32 bytes line size. We obtained (an over-
approximation of) the set of accessed memory locationsM
by value analysis. The maximum number of memory loca-
tions that fall into a cache set is 94 in this example. Overall
there are about ten thousand memory locations. Using for-
mula 1, we see that the extra number of bits required for the
data cache is 16 (|S| = 128, maxs∈S |Ms| = 94,|A| = 3).
In the example, the instruction cache can potentially con-
tain only about a thousand locations. Thus we only need
one more bit to switch between instruction and data cache
in the representation (analogously to how we use bits to ad-
dress different sets in a cache). The overall number of bits
required for the cache is thus 17.

9. Conclusion

We have shown that symbolic pipeline analysis is a static
program analysis which uses the same abstractions as pro-
posed in [15]. The use of a symbolic representation for ab-
stract pipeline states requires algorithms for efficientlyen-
coding delegated information when computing state transi-
tions. We have illustrated our solution using the notion of
external requests (sections 4 and 5) and described its effects
on the performance of the analysis.

Currently, our implementation only supports a pipeline
analysis. We have outlined ideas that admit an integrated
cache and pipeline analysis without significantly increasing
the number of state bits compared to stand-alone pipeline
analysis (section 8). In the future, we will implement the
integrated analysis.

References

[1] http://www.absint.com/aiT/.
[2] A. Betts, G. Bernat, R. Kirner, P. Puschner, and I. Wenzel.

WCET Coverage for Pipelines. Technical report, 2006.
[3] R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli,

F. Somenzi, A. Aziz, S.-T. Cheng, S. A. Edwards, S. P. Kha-
tri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sar-
wary, T. R. Shiple, G. Swamy, and T. Villa. VIS: A System
for Verification and Synthesis. InCAV, pages 428–432, 1996.

[4] R. Bryant. Graph based algorithms for boolean function ma-
nipulation. InIEEE Transactions on Computers, 1986.

[5] J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang.
Symbolic model checking:1020 states and beyond. IEEE
Comp. Soc. Press, 1990.

[6] S.-T. Cheng. Compiling Verilog into Automata. Technical
report, Electronics Research Lab, Univ. of California, Berke-
ley, CA 94720, 1994.

[7] A. Colin and S. M. Petters. Experimental Evaluation of Code
Properties for WCET Analysis. InRTSS ’03: Proceedings of
the 24th IEEE International Real-Time Systems Symposium,
page 190, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[8] C. Ferdinand.Cache Behavior Prediction for Real-Time Sys-
tems. PhD thesis, Saarland University, 1997.

[9] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm. Reli-
able and Precise WCET Determination for a Real-Life Pro-
cessor. InProceedings of EMSOFT 2001, LNCS 2211, 2001.

[10] S.-W. Jeong, B. Plessier, G. Hachtel, and F. Somenzi. Vari-
able Ordering for FSM Traversal. InProceedings of the In-
ternational Conference on Computer-Aided Design, 1991.

[11] T. Lundquist and P. Stenström. Timing Anomalies in Dy-
namically Scheduled Microprocessors. InProceedings of the
20th IEEE Real-Time Systems Symposium, 1999.

[12] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley.
Efficient BDD Algorithms for FSM Synthesis and Verifica-
tion, 1995.

[13] J. Souyris, E. Le Pavec, G. Himbert, V. Jgu, G. Borios, and
R. Heckmann. Computing the Worst Case Execution Time
of an Avionics Program by Abstract Interpretation. InPro-
ceedings of the 5th Intl Workshop on Worst-Case Execution
Time (WCET) Analysis, pages 21–24, 2005.

[14] H. Theiling. ILP-based Interprocedural Path Analysis. In
Proceedings of the Workshop on Embedded Software, Greno-
ble, France, 2002.

[15] S. Thesing.Safe and Precise WCET Determination by Ab-
stract Interpretation of Pipeline Models. PhD thesis, Saar-
land University, 2004.

[16] S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona,
M. Langenbach, R. Wilhelm, and C. Ferdinand. An Ab-
stract Interpretation-Based Timing Validation of Hard Real-
Time Avionics Software. InProceedings of the 2003 Inter-
national Conference on Dependable Systems and Networks
(DSN 2003), pages 625–632. IEEE Computer Society, 2003.

[17] S. Wilhelm. Efficient Analysis of Pipeline Models for WCET
Computation. InProceedings of the 5th Intl. Workshop on
Worst-Case Execution Time Analysis, 2005.

[18] S. Zarnescu.TriCore Pipeline Behaviour & Instruction Exe-
cution Timing. Infineon Technologies, 2001.

6

