Timing Analysis of Body Area Network Applications

Yun Liang Abhik Roychoudhury Tulika Mitra
Department of Computer Science, National University of Singapore
{liangyun,abhik,tulika}@comp.nus.edu.sg

Abstract

Body area network (BAN) applications have stringent
timing requirements. The timing behavior of a BAN ap-
plication is determined not only by the software complex-
ity, inputs, and architecture, but also by the timing behav-
ior of the peripherals. This paper presents systematic tim-
ing analysis of such applications, deployed for health-care
monitoring of patients staying at home. This monitoring
1s used to achieve prompt notification of the hospital when
a patient shows abnormal vital signs. Due to the safety-
critical nature of these applications, worst-case execution
time (WCET) analysis is extremely important.

1. Introduction

Embedded systems based on sensor networks are
widely used in many contexts. Many applications run-
ning on sensor networks have real-time constraints. For
example, Body Area Network (BAN) technologies are
often applied in the health-care domain. Usually, the
use of BAN in health care involves several low capacity
sensor nodes on the human body and a powerful gate-
way device like a mobile phone or PDA. The nodes in
this body area sensor network communicate through
wireless connections and send data to the gateway. The
gateway device can monitor the situation of the patient
and inform the hospital if necessary in a timely fash-
ion. Such sensor network based applications have strin-
gent timing requirements.

Worst-Case Execution Time (WCET) is a required
input to provide timing predictability in a system with
timing constraints. Therefore, given an architecture
and an application, estimating the WCET is very im-
portant for the system designer. In health-care do-
main, monitoring the patient’s situation accurately
and timely is so vital that the designer must perform
WCET analysis for BAN applications.

In recent times, low-end sensor nodes such as the
ones from Berkeley [3] have become popular and have

ECRTS 2007

7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis

http://drops.dagstuhl.de/opus/volltexte/2007/1192

been deployed in many applications. A typical exam-
ple of a platform used by the sensor nodes is Tmote
Sky [1]. Tmote Sky is a wireless sensor module for sen-
sor network applications that require ultra low-power
and high-reliability. A number of integrated peripher-
als including Timer, UART bus protocols, and DMA
controller are provided by Tmote Sky.

The timing behavior of a BAN application on such
sensor node architectures is determined by software
complexity, program inputs, hardware and timing be-
havior of its peripherals. Hence, timing analysis for
such sensor node architectures is non-trivial. This pa-
per presents systematic timing analysis for BAN appli-
cations by integrating the timing behavior of each com-
ponent on the platform and estimating the WCET of
the application. First, the timing behavior of applica-
tion code is analyzed through static timing analysis.
This is done by extending Chronos, an existing tim-
ing analyzer for embedded software [4]. Next, the tim-
ing behavior of the peripheral devices are taken into ac-
count by analyzing the interrupt handler code and es-
timating the number of interrupts. This turns out to
be extremely important in the context of WCET anal-
ysis of applications running on BAN.

The context of our work on BAN is a major pro-
gramme on health-care monitoring being funded and
carried out by Singapore’s Agency of Science Technol-
ogy and Research (A*STAR). The programme involves
collaboration among many different projects — core
technologies, middleware and applications. The aim is
to develop and exploit embedded system technologies
for health-care monitoring of patients staying at home
(such that the hospital can be notified whenever any
“unusual activity” in the patient’s body is detected).
Typical monitoring applications that we are studying
include blood-pressure computation/detection (possi-
bly for patients with cardio-vascular disease), fall de-
tection (monitoring for elderly patients falling to the
ground) and others.

The work described in this paper focuses on (a) the
typical micro-architecture deployed in sensor nodes put
on the patient’s body, (b) modeling and timing analy-

sis of monitoring applications running on such sensor
nodes, and (c) the significance of modeling the periph-
erals’ timing behavior to accomplish a full-system tim-
ing analysis of such applications.

Related Work We are aware of one recent work
on WCET analysis of applications running on sen-
sor nodes [7]. The focus of this work is on the processor
modeling and handling of nesC code. The applica-
tions considered are standard ones (sorting, sum, en-
cryption, etc.) rather than from a specific domain.
In terms of peripheral modeling, we know of one re-
cent work on modeling a system controller [8] where
the author develops a timing model for WCET analy-
sis from the VHDL description of the system.

Organization of the paper The use of BAN for health-
care is outlined in Section 2. Section 3 presents a typ-
ical application based on BAN. Section 4 summarizes
the key feature of Tmote sky architecture, which is
a widely used sensor network platform. Static timing
analysis based on Chronos is presented in Section 5. Fi-
nally, we present the results in Section 6 and provide
concluding remarks in Section 7.

2. Body Area Network for Health Care

For some patients, their health conditions need to
be monitored not only when they are at hospital, but
also when they stay at home. Such daily medical re-
port is very crucial for the doctors to diagnose some
chronological diseases. Wearable systems can monitor
the patients’s condition by sensors placed on the body.
Body Area Network technologies are used in such sit-
uations.

A Body Area Network comprises of some intelli-
gent low-power devices including biomedical sensors
and storage devices. The BAN works around the hu-
man body. The sensors are able to monitor and store
important biomedical information and data. The BAN
can also send information to the external world through
a gateway, e.g, a PDA or mobile phone.

The overall architecture in which a BAN is de-
ployed/used is shown in Figure 1, sensors on the hu-
man body communicate with both the gateway and
other sensors.

3. BAN Applications

BAN applications are low-power applications.
Hence, these applications keep the processor in
low-power mode as much as possible and use inter-
rupts to wake up the processor when data process-
ing is required. Also, the peripherals are switched
on only when needed in order to save energy. The

Q
t
[
LN |
k1
]
e —— E,
e " o
I Gateway
LR Device
Vo
Q9 le

Body Area Network

Figure 1: Body Area Network technologies for health-
care applications

high-level work-flow of a BAN application is as fol-
lows: initialization, followed by a loop consisting of
sampling and processing, that is

initialization,

sampling, processing,

sampling, processing,

During sampling, the CPU could be turned off to save
energy. When the sampled data is ready, it is processed
by the application, and appropriate data is transmit-
ted to remote devices. For analyzing such applications,
we need to analyze the timing behavior of the main ap-
plication and the interrupt handlers through static tim-
ing analysis.

The BAN application we analyze here continuously
monitors the blood oxygen saturation level (SpO2) of a
patient with non-invasive optical plethysmography also
known as pulsoximeter. This measurement of the oxy-
gen level and heart rate can be used to sound an alarm
if they drop below a pre-determined level. This type
of monitoring is specially useful in neonatal care and
post-operative recovery. In a pulsoximeter, the estima-
tion of blood oxygen saturation level (SpO2) is based
on measuring the intensity of light that has been at-
tenuated by body tissue. The amount of light absorbed
by the body tissue depends on the oxygenation level of
blood that is passing through it. Two different wave-
lengths of light are used — visible red wavelength and
infrared wavelength.

The light intensity is sampled at a regular interval of
16ms. Every 16ms, first the red LED is turned on and
the light passes through the finger of the patient to a
photodiode. The intensity of light at the photodiode is

PN

Figure 2: The waveform of sensor data.

Clock ACLK Flash! : 1 -
. ROM RAM Peripheral . Per\pharal_ Peripheral

MCLK

RISC CPU
16-Bit

JTAG/Debug

WIDE & Bit)

y

ACLK —™ — — —]

SMCLK = \aichdog || Peripheral| | Peripheral[| Peripheral[| Peripheral

JTAG

F——————————————— — ——

R

Figure 3: MSP430 Architecture (©Texas Instruments

sampled 16 times and the average value is taken. Next,
the infrared LED is turned on and again the intensity
of light at the photodiode is sampled 16 times to obtain
an average. This process is repeated every 16ms. Fig-
ure 2 shows this average value of red light intensity at-
tenuated by body tissue over time. The heart rate and
SpO2 are estimated from these two waveforms corre-
sponding to red and infrared light intensity. A window
of a particular size is defined and the window slides on
the waveforms. The application detects peaks in the
waveforms inside the current window. The time inter-
val between two peaks is used to measure both heart
rate and SpO2 of the patient. These values are subse-
quently sent to some gateway device such as PDA that
can detect abnormalities and send information to the
hospital or health care provider.

4. Features of Tmote Sky Architecture

In this section, we outline the underlying micro-
architecture of the sensor node platforms used by the
BAN applications. Specifically, we describe the Tmote
Sky platform [1], which employs the MSP430 proces-
sor from Texas Instruments. The MSP430 has a simple
micro-architecture and a reduced instruction set with
only 27 instructions. So, for WCET analysis, the focus
s not so much on the processor modeling. Instead, mod-
eling the timing effects of the peripherals turns out to
be extremely important. We now describe the platform
architecture in detail.

Tmote Sky is a mote platform designed for ex-
tremely low power, high data-rate, sensor network
applications. The micro-controller present in Tmote
Sky note is Texas Instruments’s MSP430 F1611. The
MSP430 incorporates a 16-bit RISC CPU, peripherals

(12-bit ADC and DAC, Timer, USART, and a perfor-
mance boosting DMA controller) and a flexible clock
system. The architecture of MSP430 is shown in Fig-
ure 3. The current consumption of the micro-controller
in low active and sleep mode is so small that an appli-
cation can run for a very long time with only a single
pair of AA batteries.

The features of Tmote sky platform with significant
impact on the timing behavior of a BAN application
are the following.

e Flexible Clock System: The platform includes a
low-frequency auxiliary clock (ACLK) and a high-
frequency master clock (MCLK). The peripherals
can use different clocks.

e Operating Modes: MSP430 is designed for ex-
tremely low-power applications and features differ-
ent operating modes distinguished by power, speed
and current consumption. Operating mode can be
selected by setting mode-control bits.

e 16-bit RISC CPU: The number of CPU clock
cycles required to execute an instruction de-
pends on the instruction format and the address-
ing mode. All jumps instructions take two cy-
cles to execute, regardless of whether the jump
is taken or not. When computing execution cy-
cles for interrupt handlers, the additional cy-
cles due to interrupt overhead and reset should
be taken into account.

e Timer_A: Timer_A is an asynchronous 16-bit
timer counter with four operating modes. Clock
source is configurable.

e Timer_B: Timer_B is identical to Timer_A with
the exception that it can be programmed as 8, 10,
12, or 16 bit timer.

e USART: USART is used for asynchronous serial
transmission and reception of characters to/from
another device. The time to send/receive one char-
acter is based on the selected baud rate of the US-
ART. Baud rate frequency is the same for both
transmit and receive functions.

e Hardware Multiplier: The hardware multiplier
is a peripheral and is not part of the 16-bit RISC
CPU. The registers used by hardware multiplier
are special peripheral registers.

The SpO2 application uses Timer_B, Timer_A and
universal synchronous/asynchronous receive/transmit
(USART). Timer_B is used to wake up the CPU and
trigger Timer_A every 16ms. Timer_A is used to take
32 samples from the photodiode (16 for the red light
and 16 for the infrared light) as discussed in Section 3.
Timer_B and Timer_A use different clocks. USART is

used to send the heart rate and SpO2 measurements of
the patient to some gateway device such as PDA.

5. Static Timing Analysis

The execution time of a program is determined by
the program path taken during execution. If worst
case input is known, then simulating the system with
the worst case input will result in worst case execu-
tion time. However, determining the worst case in-
put is very difficult when the application is non-trivial.
Hence, static timing analysis is widely used technique
to estimate worst case execution time. While many
approaches have been proposed, we use Chronos [4,
5, 6] — an open-source timing analysis tool with de-
tailed micro-architectural modeling developed by our
research group. Given an architecture and an appli-
cation, Chronos returns an upper bound on the ex-
ecution time across all the inputs. WCET analysis
in Chronos proceeds in two phases: path-analysis and
micro-architecture modeling. The interested reader can
get more details about (or even download) the Chronos
toolkit from its website

http://www.comp.nus.edu.sg/~rpembed/chronos

An overview of the framework of Chronos is illus-
trated in Figure 4. During path analysis, Chronos con-
structs the control flow graph (CFG) of the application
and generates functional constraints like loop bounds
and flow constraints. In micro-architecture model-
ing, Chronos models complex micro-architectural fea-
tures such as cache, pipeline, branch prediction and
generate micro-architectural constraints. Follow-
ing that, Chronos represents the execution time of the
whole program through an Integer Linear Program-
ming (ILP) formulation, and uses ILP/LP solver to
find the maximum execution time.

We modify the Chronos toolkit in order to model
the micro-controller MSP430. Chronos is targeted to-
wards SimpleScalar PISA instruction-set architecture
(ISA). As MSP430 has a different ISA, the control flow
graph construction is modified. The other components
in path analysis such as flow constraints generation and
loop bound detection remain the same. While Chronos
models cache, pipeline, branch prediction, these model-
ing are omitted here as MSP430 processor does not sup-
port these features. The execution cycles corresponding
to an instruction is obtained by a simple table look-up
with the corresponding instruction format and address-
ing mode. Then, the execution time of a basic block is
simply the sum of the execution time of the instruc-
tions within the basic block.

The main contribution of this work is that we ex-
tend Chronos to model and analyze the timing behav-

Binary Cade

Analysis

Microarchitecture
Modeling

Microarch Cons

Functional
Cons

ILP Problem

CPLEX/
p_solve
Est. WCET

Figure 4: Workflow of Chronos Timing Analysis Tool

ior of the peripherals. For SpO2 application, the pe-
ripherals include Timer_B, Timer_A and USART. The
next section describes the modeling of the peripher-
als in detail.

6. System-Level Modeling for BAN Ap-
plication

The interesting aspect of any BAN application is
that the sensor nodes are sampled at regular intervals
through the use of timers. In other words, the number
of interrupts can be estimated accurately. Therefore,
the timing behavior of the main application and the in-
terrupt handlers for Timer_A and Timer_B can be ana-
lyzed separately. We use Chronos to perform static tim-
ing analysis of the interrupt handlers and the main ap-
plication individually. However, we should ensure that
the timing overheads due to interrupt acceptance and
return are taken into account. Finally, summing up the
WCET of all the sub components yields the WCET of
the whole system. Here, we define WCET as the to-
tal time required to acquire and process the samples
every 16ms. The timing analysis of the interrupt han-
dlers and the main application for SpO2 are illustrated

Component Clock System \ WCET cycles | WCET | WCET Percentage | ACET
Processing High Speed (8 MHz) 64352 8.044 ms 61.73% 0.586 ms
Timer_B Low Frequency (32 KHz) 38 4.75 ps 0% 4.75 ps
Timer_A High Speed (8 MHz) 35724 4.4655 ms 34.27% 3.766 ms
USART Asynchronous Transmission 0.52ms 4% 0.52 ms

’ Total \ \ \ 13.03ms 100% 4.872 ms

Table 1: Results of Timing Analysis of SpO2 application with interrupt

in the following.

Timer_B: Timer_B uses the low frequency auxil-
iary clock (ACLK) running at 32 KHz. The counter
for this timer is set such that it generates an inter-
rupt every 16ms. The functionality of Timer_B inter-
rupt handler is to simply enable Timer_A to sample
data. The WCET of Timer_B interrupt handler rou-
tine is shown in Table 1.

Timer_A: Timer_A is enabled by Timer_B. As men-
tioned earlier, each time Timer_A takes 32 samples
from the photodiode (16 at red light wavelength and
16 at infrared wavelength). Finally, two average values
are computed from these samples. The interrupt han-
dler is invoked for each sample. However, only 2 out
of these 32 invocations lead to average value computa-
tion, which is more time consuming. So, the call con-
text is taken into account when analyzing the worst
case execution time of the Timer_A interrupt handler.
The WCET of Timer_A handler routine for one round
(i.e., 32 samples) is shown in Table 1. When the aver-
age values have been computed, the CPU exits the low
power mode and returns to active mode for data pro-
cessing.

Processing: In the main application, the average
values obtained from Timer_A are filtered and stored
into a window. Then, the application tries to detect
a peak in the middle of this window. If a new peak
is detected, heart rate and SpO2 are calculated using
the peak value. Finally, USART is called to send some
feedback to the gateway device. From the description
above, it is obvious that the worst case behavior hap-
pens when a peak is detected. The WCET of the main
application (Processing) is shown in Table 1.

USART: The USART takes 1/115200 second to
send 1 bit and SpO2 needs to transmit 6 bytes per
round. In the USART, for every byte of data, two more
bits (start bit and stop bit) are added. Therefore, a to-
tal of 60 bits are transmitted per round. The time spent
in the USART is shown in Table 1. In SpO2 applica-
tion, the USART transmission takes place via polling;
so the time spent in the USART is the blocking time
due to transmission.

From the Ratio column in Table 1, we find that the
time consumed in peripherals is 38.27% for one round
of acquisition and processing. Clearly, if the timing ef-
fects of the peripherals are not modeled, the WCET of the
whole system will be an under-estimation.

The average case execution time (ACET) is shown in
Table 1 too. In terms of ACET, the time for one round
of data acquisition and processing is close to 4.872 ms.
Clearly, the WCET value is essential here to claim that
timing constraint is satisfied.

7. Conclusion

In this work, we present a systematic timing analy-
sis framework for BAN applications. BAN applications
are safety-critical and have stringent timing require-
ments. We analyze the timing behavior of application
code and interrupt handlers for peripherals separately.
Finally, the WCET of the interrupt handlers are mul-
tiplied by the number of interrupts during one round
of processing and summed up with the WCET of the
main data processing part to estimate the WCET of
the entire system.

TinyOS [3] is an operating system designed for wire-
less embedded sensor networks and has been used
widely for sensor nodes. NesC [2] is the correspond-
ing language for programming sensor network applica-
tions in TinyOS. In the future, we plan to adapt our
framework to provide WCET analysis for NesC code
along with modeling of TinyOS.

Acknowledgments

This work was supported by NUS project R252-000-
171-112 and A*Star SERC EHS-II project R-252-000-
258-305.

References

[1] Tmotesky platform. http://www.moteiv.com/products/.

[2] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer,
and D. Culler. The nesc language: A holistic approach

to networked embedded systems. In PLDI ’03: Proceed-
ings of the ACM SIGPLAN 2003 conference on Program-
ming language design and implementation, pages 1-11,
New York, NY, USA, 2003. ACM Press.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. In ASPLOS-IX: Proceedings of the ninth inter-
national conference on Architectural support for program-
ming languages and operating systems, pages 93—104, New
York, NY, USA, 2000. ACM Press.

X.Li, Y. Liang, T. Mitra, and A. Roychoudhury. Chronos:
A timing analyzer for embedded software. Science of
Computer Programming, 2007.

X. Li, T. Mitra, and A. Roychoudhury. Modeling con-
trol speculation for timing analysis. Real-Time System.,
29(1):27-58, 2005.

X. Li, A. Roychoudhury, and T. Mitra. Modeling out-of-
order processors for wcet analysis. Real-Time System.,
34(3):195-227, 2006.

S. Mohan, F. Mueller, D. Whalley, and C. Healy. Timing
analysis for sensor network nodes of the atmega processor
family. In RTAS ’05: Proceedings of the 11th IEEE Real
Time on Embedded Technology and Applications Sympo-
sium, pages 405—414, Washington, DC, USA, 2005. IEEE
Computer Society.

S. Thesing. Modeling a system controller for Timing
Analysis. In EMSOFT ’06: Proceedings of the 6th ACM
& IEEFE International conference on Embedded software,
pages 292-300, New York, NY, USA, 2006. ACM Press.

