
Data-Flow Based Detection of Loop Bounds

Christoph Cullmann and Florian Martin

AbsInt Angewandte Informatik GmbH

Science Park 1, D-66123 Saarbrücken, Germany

{cullmann,florian}@absint.com, http://www.absint.com

Abstract

To calculate the WCET of a program, safe upper bounds

on the number of loop iterations for all loops in the program

are needed. As the manual annotation of all loops with such

bounds is difficult and time consuming, the WCET analyzer

aiT originally developed by Saarland University and AbsInt

GmbH uses static analysis to determine the needed bounds

as far as possible.

This paper describes a novel data-flow based analysis

for aiT to calculate the needed loop bounds on the assem-

bler level. The new method is compared with a pattern

based loop analysis already in use by this tool.

1. Introduction

To calculate the WCET for a program, safe upper bounds

for the iterations of all included loops must be known. To

get a precise WCET estimation, lower bounds should be

known, too.

As programs tend to contain many loops with bounds de-

pending on the call sites of the surrounding routine, relying

on user annotations for loop bounds would cause too much

work for the user. Beside that, there is also the inherent

danger that user-annotated bounds could contain errors, as

they need to be kept up to date while the application code is

changing. Therefore aiT aims at deriving safe loop bounds

automatically by using a static analysis.

Until now, a pattern-based approach for loop bound de-

tection is used. This method needs adjustments for all sup-

ported compilers and in some cases even different optimiza-

tion levels. While experience has shown that this works

well for many simple loops, no bounds are detectable for

more complex loops with multiple modifications of the loop

counter inside one iteration.

To overcome these restrictions, we introduced a new

method for loop bound detection that uses an interproce-

dural data-flow analysis to derive loop invariants from the

semantics of the instructions. This new analysis does not

depend on the used compiler or optimization level but only

on the semantics of the instruction set for the target ma-

chine. It is able to handle loops with multiple exits and

multiple modifications of the loop counter per iteration in-

cluding modifications in procedures called from the loop.

Additional, it detects and handles overflows of size limited

datatypes.

In this section, we describe the techniques behind the

old and new loop analyses, compare their results, and pro-

vide insight on how the new analysis will be used in aiT.

First we start in Section 2 with introducing the common ba-

sis of both analyses. In Section 3 two small examples for

loops are shown that will be used later as running exam-

ples to illustrate the application of both analyses. Section 4

will cover the pattern-based approach. Then we introduce

the new data-flow based approach in Section 5 and com-

pare both analyses in Section 6. Finally we show how the

new analysis is integrated into the WCET Analyzer aiT in

Section 7.

2. Common Basis for Both Analyses

As both loop analyses have been developed to be used

as part of the WCET Analyzer aiT, they are using the aiT

framework presented in [3]. In particular, they operate on a

control flow graph which is reconstructed from the machine

executable (see [10]) and in which all loops have been trans-

formed to tail-recursive routines by a loop transformation

(described in [7]). The next section will show two example

loop routines, which are used in the subsequent description

of both analyses. A loop iteration equals one execution of

the loop routine.

While the aiT framwork and the presented loop analy-

ses work on the compiled executables, there are other ap-

proachs that work on the level of the programming lan-

guage. For example in [6] and [5] a framework is described

that works on the C sources of a program to calculate a

WCET and the therefore needed loop bounds.

To avoid code duplication, the analyses use the existing

value analyzer of the framework to query the addresses of

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1193



while (r31 < 16) // 0x100044

{

r31 = r31 + 1; // 0x10004c

}

Figure 1. A loop with one loop test and single increment

memory accesses and to obtain knowledge about the con-

tents of accessed registers and memory cells. As the value

analysis produces integer intervals as approximations for

addresses and memory contents, both loop analyses use in-

tervals for their calculations, too. Beside this, the loop

analyses query the value analysis for infeasible control-flow

edges, i.e. edges that are not taken in any run of the pro-

gram. This information is used in both analyses to exclude

unreachable loops from loop bound detection. For more de-

tails about the value analysis please refer to [9]. The value

analysis information allows separate analysis of the loops

for each calling context and monitoring the loop counter

even if it is a global variable, a function parameter or modi-

fied over a pointer, which is important as shown in [8].

The analyses take into account that programs often con-

tain nested loops for which the iteration bounds of the inner

loops depend on the iteration bounds of outer loops. There-

fore both analyses sort the loops by their nesting depth and

analyze them from the outside to the inside. After handling

one nesting depth, value analysis is restarted with the new

derived loop bounds as input to get more precise informa-

tion while looking for the bounds of the inner loops.

As value analysis gets more precise if it also knows the

lower bound of a loop, both analyses output not only the

safe upper bounds needed to calculate any WCET, but in-

tervals that are guaranteed to contain all possibilities for the

number of loop iterations.

3. Running Examples

To illustrate the working of the two loop analyses, two

simple loops found in programs for the PowerPC architec-

ture are chosen as examples. Figures 1 and 2 show the cor-

responding loop routines.

Both loops use machine register 31 as their loop counter.

We assume for the upcoming calculations and analyses that

this register contains the value zero before the first loop it-

eration.

The loop in Figure 1 is a simple loop incrementing its

loop counter in each iteration by exactly one. The loop is

first entered with counter value 0, then with value 1, etc. un-

til it reaches 16. When it is entered with counter value 16,

the test r31 < 16 fails for the first time so that there are no

further loop iterations. Therefore, there are exactly 17 loop

iterations. The loop analysis should thus return the inter-

val [17, 17] (the most precise answer) or any larger interval

containing 17 (correct, but imprecise).

The loop in Figure 2 is similar, but a counter increment

of one or two is possible, as the control flow forks into two

branches inside the loop routine. The safe upper bound is

still 17 as in the first example, but the lower bound is now

only 9. The result of the loop analysis should thus be [9, 17]
or any larger interval.

4. The Pattern-Based Approach

The current loop analysis in aiT uses patterns to detect

the loop bounds for common loop variants. These patterns

are handcrafted for the supported compilers and their dif-

ferent optimization levels. Some intraprocedural analyses

are used to handle the matching, like intraprocedural slic-

ing and dominator/postdominator analysis.

A typical loop pattern to detect loops generated by C

compilers from for-loops consists of the following con-

ditions:

• The loop is only left by one conditional branch;

• the same compare of a register with a constant sets the

condition for this branch in each iteration;

• the register that is compared is incremented by a con-

stant value at the same instruction in each iteration;

• the start value of the register is known by the value

analysis.

2



while (r31 < 16) // 0x100048

{

if (r30 == 0) // 0x100050

{

r31 = r31 + 1; // 0x100058

}

else

{

r31 = r31 + 2; // 0x100060

}

}

Figure 2. A loop with one loop test and two different increments

To match even such a simple pattern, multiple internal

subanalyses must be performed. For this example pattern,

the following steps would be needed:

• Check for a conditional branch instruction that domi-

nates and postdominates the recursive call of the loop

routine;

• slice backwards from the branch inside the loop rou-

tine to find the compare instruction modifying the con-

dition flag evaluated by the branch instruction;

• test whether it is a compare of a register with a con-

stant;

• slice backwards from the compare instruction to find

all instructions modifying the registers/memory cells

used in the compare instruction;

• test whether only one instruction is found in the last

step and whether it is a constant addition/subtraction;

• test whether this one instruction dominates and post-

dominates the compare instruction;

• query the value analysis for the start value of the used

register;

• calculate the bounds by using the now known start/end

value and increment.

If we apply this pattern to our example loop of Figure 1,

we get a match, as this loop is left only by a conditional

branch after the compare of the loop counter with some con-

stant and the loop counter is incremented in each round by

one. The resulting bound would be [17, 17], which is in this

case the optimal solution.

The slightly more complex loop of Figure 2 is not

matched by this pattern, as the loop counter is not incre-

mented in each iteration by the same instruction, but by

two different addi instructions in two different control-

flow branches. Therefore no loop bound can be determined

and thus no WCET is obtained.

Given how many steps are already needed for this sim-

ple pattern and that all this needs to be done by handwritten

code, it is clear that bigger patterns to handle more complex

loops, like the one shown above, are time consuming to im-

plement correctly and to maintain. This illustrates the need

3



for a new kind of loop analysis, which will be presented in

the next section.

5. Improved Loop Analysis Based on Data-

Flow Analysis

To enhance the loop bound detection for more complex

loops and to avoid the dependencies on compiler versions

and optimization levels, a new loop bound analysis based

on data-flow analysis was designed. The following provides

a brief introduction to this new method. More information

can be found in [2].

A run of the new analysis consists of the following

phases:

1. Classification of all loops;

2. Detection of possible loop counters;

3. Data-flow analysis to derive the invariants;

4. Analysis of the loop tests to calculate the loop bounds.

5.1. Loop classification

In the first phase, loops are classified using informa-

tion obtained from value analysis. Loops that can never

be reached are excluded from further analysis and get the

safe bound [0, 0] as the corresponding loop routines are

never called. For the remaining loops, the algorithm checks

whether value analysis already knows after how many re-

cursive calls their loop routine cannot be called again. If

this number is known, it can be taken as a safe upper bound

for the loop, even if the further stages fail to produce results.

5.2. Search for possible loop counters

For the loops that still need to be analyzed, a simple

intraprocedural analysis is run to search all registers and

memory cells accessed inside the loop routine. Then it is

checked whether value analysis knows their start value, i.e.

their value before the first call of the loop routine. The reg-

isters and memory cells with known start value are consid-

ered as potential loop counters. They are further examined

by a data-flow analysis to derive loop invariants (see be-

low). Loops without any detected loop counter must remain

unbounded.

Our first example loop (Figure 1) only accesses register

31. For our second example (Figure 2), the intraprocedu-

ral analysis would find registers 30 and 31. Assuming that

value analysis only knows the start value of register 31, this

register would be the only potential loop counter in both

loops.

5.3. Invariant analysis

This data-flow analysis is the core of the improved loop

analysis. For each potential loop counter detected in the

previous phase, it calculates for each program point of the

loop routine a set of expressions, called invariants, that indi-

cate how the counter is modified from the entry of the loop

routine to this point in each iteration.

The analysis uses a special language for the expressions,

IVALA. Variables in IVALA expressions describe registers

or memory cells, including information about the register

number or memory address and the data size in bytes. The

loop counter in our examples would be expressed in IVALA

as (register , 31, 4), as it is register 31, which is 4 byte wide.

The language allows to express assignment between

variables, assignment of a constant integer interval to a vari-

able, and modification of a variable by adding a constant

integer interval. This seems to be very restrictive, as other

modifications like non-constant addition or any kind of mul-

tiplication are not supported, but the evaluation in the next

section will show that it is sufficient to detect most loop

bounds in a program, as the most common loops are count-

ing loops. Besides, this restriction serves to keep the com-

plexities of invariant analysis and of the subsequent bound

calculation within reasonable bounds.

For the loop routine of our first example shown in Fig-

ure 1 the analysis would e.g. calculate the following expres-

sion set for the ingoing edge of the recursive call of the loop

routine:

{(register , 31, 4) = (register , 31, 4)◦ + [1, 1]}

where (register , 31, 4)◦ is a placeholder for the value of

(register , 31, 4) at the beginning of the loop iteration. The

expression indicates that register 31 is incremented by ex-

actly one in each iteration. For the example in Figure 2 the

analysis would calculate:

{(register , 31, 4) = (register , 31, 4)◦ + [1, 2]}

This provides the information that the register is incre-

mented by one or two.

5.4. Evaluation of the loop tests and bound
calculation

In this phase, for each loop all existing loop tests will be

evaluated. A loop test is a basic block with a conditional

branch leaving the loop routine. For each test a bound will

be calculated. All these bounds are then combined to one

bound for the whole loop. The following steps are needed

to calculate the bound for a loop test:

• The branch type is determined;

4



• the compare instruction evaluating the condition used

by the branch is searched;

• the variables used in the compare instruction are de-

tected;

• the flow-analysis results are used to get expressions for

the found variables;

• an equation system is built and solved to get the con-

crete loop bound.

A detailed description of this process can be found in [2].

For our first example (Figure 1), this process would look

as follows:

• Inspection of the branch in basic block 0x100044

yields that the loop is left on greater-equal.

• A search for the corresponding compare instruction

finds the first instruction in the block.

• As variable (register , 31, 4) and the constant integer

16 are used, the exit expression is (register , 31, 4) ≥
16.

• The flow-analysis will yield that (register , 31, 4) is in-

cremented by one in each iteration.

• The solver will compute the concrete bound [17, 17],
which is the optimal solution.

The handling of the second example is analogous, ex-

cept that the flow-analysis delivers an increment of [1, 2]
and therefore the solver would calculate the bound [9, 17].

Both examples show comparisons with integer constants

as loop test but comparisons of two variables are supported,

too, as long as the value analysis is able to detect a constant

interval for one of them.

6. Practical Evaluation

While the new analysis is more generic by design, we

still need to demonstrate that it is applicable to real-world

programs. Therefore an extensive evaluation with both code

from a compiler benchmarks suite and with real software

from the embedded-system world was performed in [2].

The results show that the new analysis method works

for most loops equally well or better than the pattern-based

method. Only in some corner cases, the old analysis takes

the lead, as it has special patterns for them.

The runtime costs of both analyses are comparable: the

new analysis is slower than the pattern-based approach only

by a constant factor of at most three for some tests. Table 2

shows measured runtimes of both analyses for four differ-

ent tasks out of industrial real-time software for a PowerPC

test optimal old analysis new analysis

do char 001 [1,∞] [1,∞] [1,∞]
do char 008 [16] [16] [16]
do char 009 [16] [16] [1,∞]
do char 010 [1, 16] [1, 16] [1,∞]
for char 001 [17] [1,∞] [17]
for char 017 [17] [17] [17]
for char 049 [1] [1, 17] [1, 17]
for char 058 [17] [1,∞] [17]
for char 061 [9] [1,∞] [9]
for char 062 [17] [1,∞] [17]
for int 001 [17] [1,∞] [17]
for int 017 [17] [17] [17]
for int 049 [1] [1, 17] [1, 17]
for int 058 [17] [1,∞] [17]
for int 061 [9] [1,∞] [9]
for int 062 [17] [1,∞] [17]

Table 1. Single loop synthetic tests, DiabData

test old analysis new analysis

mpc755 1 43.54 63.75

mpc755 2 3.82 9.25

mpc755 3 0.53 0.77

mpc755 4 0.47 0.69

Table 2. Runtimes of analyses in seconds

MPC755. The runtimes were measured on a 3.2 GHz Pen-

tium 4 with 2 GB RAM running Linux.

To show that the new analysis is compiler-independent,

Tables 1 and 3 present the results of both analyses for

code generated by the DiabData ([11]) and GNU C com-

piler ([4]), respectively. While both analyses work reason-

ably well for the DiabData compiler, only the data-flow

based analysis works for the GNU C compiler without ad-

justments. To obtain comparable results, the pattern-based

analysis would require additional effort to develop loop pat-

terns adapted to the code generated by the GNU C compiler.

7. Summary and Outlook

As the evaluation has shown, both analyses have some

benefits in their own areas. While the pattern-based analysis

can keep the lead for special cornercases where handcrafted

patterns can play out their strength, the data-flow based

analysis works best for typical loops occurring in standard

programs. This flexibility of the new analysis is reached

by it’s expressions, which are powerful enough to handle

loops with multiple exits, multiple/conditional changes of

the loop counter and overflows of the used datatypes.

As aiT is aimed to provide the best loop bound detection

possible, both analyses will be used in combination. First

5



test optimal old analysis new analysis

do char 001 [1,∞] [1,∞] [1,∞]
do char 008 [16] [1,∞] [16]
do char 009 [16] [1,∞] [16]
do char 010 [1, 16] [1,∞] [1, 16]
for char 001 [17] [1,∞] [17]
for char 017 [17] [1,∞] [17]
for char 049 [1] [1,∞] [1, 17]
for char 058 [17] [1,∞] [17]
for char 061 [9] [1,∞] [9]
for char 062 [17] [1,∞] [17]
for int 001 [17] [1,∞] [17]
for int 017 [17] [1,∞] [17]
for int 049 [1] [1,∞] [1, 17]
for int 058 [17] [1,∞] [17]
for int 061 [9] [1,∞] [9]
for int 062 [17] [1,∞] [17]

Table 3. Single loop synthetic tests, GNU

the fast pattern-based analysis is applied, and only for the

loops it is not able to handle, the more generic new anal-

ysis is run. This avoids any slow down for the analysis

of programs for which the old analysis already detected all

bounds, and enables the calculation of the WCET for pro-

grams with more complex loops.

This combined strategy is already in use for the PowerPC

and M32 architectures, with plans to extend it to the VAMP

architecture (described in [1]) in the near future.

References

[1] S. Beyer. Putting it all together - Formal Verification of the

VAMP. PhD thesis, Saarland University, Saarbrücken, 2005.

[2] C. Cullmann. Statische Berechnung sicherer Schleifengren-

zen auf Maschinencode. Diploma Thesis, Universität d.

Saarlandes, 2006.

[3] C. Ferdinand, F. Martin, C. Cullmann, M. Schlickling,

I. Stein, S. Thesing, and R. Heckmann. New Developments

in WCET Analysis. In T. Reps, M. Sagiv, and J. Bauer, edi-

tors, Program Analysis and Compilation, Theory and Prac-

tice: Essays dedicated to Reinhard Wilhelm, volume 4444

of LNCS, pages 12–52. Springer Verlag, 2007.

[4] GNU Project. GCC Version 3.3, 2006.

[5] J. Gustafsson, B. Lisper, C. Sandberg, and N. Bermudo. A

tool for automatic flow analysis of c-programs for wcet cal-

culation. In B. Werner, editor, In Eight IEEE International

Workshop on Object-Oriented Real-Time Dependable Sys-

tems, pages 106 – 112, Guadalajara, Mexico, January 2003.

IEEE.

[6] J. Gustafsson, B. Lisper, C. Sandberg, and L. Sjöberg. A

prototype tool for flow analysis of c programs. In G. Bernat,

editor, WCET 2002 Workshop, Vienna, June 2002.

[7] F. Martin, M. Alt, R. Wilhelm, and C. Ferdinand. Analysis

of Loops. In Proceedings of the International Conference

on Compiler Construction (CC’98). Springer-Verlag, 1998.

[8] C. Sandberg. Inspection of industrial code for syntactical

loop analysis. In WCET 2004 Workshop, Catania, July 2004.

[9] M. Sicks. Adreßbestimmung zur Vorhersage des Verhaltens

von Daten-Caches. Diploma Thesis, Universität d. Saarlan-

des, 1997.

[10] H. Theiling. Extracting Safe and Precise Control Flow from

Binaries. In Proceedings of the 7th Conference on Real-

Time Computing Systems and Applications, Cheju-do, South

Korea, December 2000.

[11] Windriver. DiabData C Compiler Version 4.4, 2006.

6


	. Introduction
	. Common Basis for Both Analyses
	. Running Examples
	. The Pattern-Based Approach
	. Improved Loop Analysis Based on Data-Flow Analysis
	. Loop classification
	. Search for possible loop counters
	. Invariant analysis
	. Evaluation of the loop tests and bound calculation

	. Practical Evaluation
	. Summary and Outlook

