Analysing Switch-Case Tables by Partial Evaluation

Niklas Holsti

Tidorum Ltd
Tiirasaarentie 32, FI 00200 Helsinki, Finland
niklas.holsti@tidorum.fi

Abstract

Tracing the flow of control in code generated from
switch-case statements is difficult for static program
analysis tools when the code contains jumps to
dynamically computed target addresses. Analytical
methods such as abstract interpretation using integer
intervals can work for some forms of switch-case code,
for example a jump via a table of addresses indexed
1.. n, but fail when the target compiler encodes the
switch-case structure in a ROM table with a complex
format and uses a library routine to interpret the
table at run-time.

This paper shows how to extract the flow of control
from such switch-case tables by partial evaluation of
the table-interpreting routine. The resulting control-
flow graph allows accurate analysis of the execution
time and the logical conditions for reaching each case
in the switch-case statement.

The method is implemented in Tidorum's Bound-T
tool for worst-case execution-time analysis. The imple-
mentation builds on some basic Bound-T features for
modeling program states in the flow-graph and propa-
gating constant values through the graph.

1. Introduction

Static analysis of the worst-case execution time
(WCET) of a program usually begins by building the
control-flow graph (CFG). On the machine code
level, where most WCET tools work, the tool has to
find the possible successor instructions of each
instruction under analysis. This is easy when the
instruction defines its successors statically but hard
for control-transfer instructions with dynamic target
addresses, for example register-indirect jumps. Such
dynamic transfer of control (DTC) instructions often
result from switch-case statements [1, 6, 8].

The switch-case statement in languages such as
C or Ada is a very flexible control structure. The
programmer can choose the type of the switch
index, for example an 8-bit or a 32-bit number;
whether the cases are numbered densely 1..n or
are a sparse subset of a large range; whether each
case is reached by a unique index value or by a set
or range of values; and whether there is a default
case or not. Compilers often generate quite different

ECRTS 2007
7th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/1195

kinds of code to implement different kinds of
switch-case statements.

For small target processors such as the Intel 8051
or Atmel AVR some compilers try to reduce code
size by encoding the switch-case statement into a
ROM switch table and generating a call or jump to a
switch handler routine that interprets the table at
run-time. There may be several types of switch
table, for example depending on the index type,
each with its own switch handler.

This paper describes a way to find the full
control-flow graph for code that uses switch tables
and switch handlers. Section 2 defines a particular
switch-table structure and the corresponding switch
handler for use in examples. Section 3 states the
problem and the goals for the solution. Section 4
defines the suggested solution as a form of partial
evaluation. Sections 5 and 6 explain how this solu-
tion is implemented in the Bound-T WCET tool [2]
and section 7 shows an example. Section 8 summa-
rises the analysis method. Sections 9 and 10 report
experience from implementation and experiments,
respectively. Section 11 discusses related earlier
work and section 12 concludes the paper.

When discussing the Bound-T implementation I
will use the term “flow-graph” instead of the usual
“control-flow graph”. Section 5 explains why.

2. Example of switch table and handler

The switch-table structure in this example was
chosen to make the switch handler brief but not
trivial. The structure is not taken directly from any
compiler that I know of but is similar to real switch
tables for 8-bit processors. The structure assumes a
type of Atmel AVR processor with a 16-bit program
counter and at most 64 KB of program memory.

In this example a switch table is a sequence of
entries. An entry represents a set of 8-bit switch-
index values that lead to the same case in the
switch-case statement. An entry consists of four
octets: a mask octet, a match octet, and the low and
high octets of the 16-bit address for the case to be
taken when the bit-wise logical “and” of the switch
index and the mask octet equals the match octet.
The order of entries in the table is arbitrary but the
last entry always has a zero mask and match. This

represents the default case if there is one, else fall-
through to the statement after the switch-case.

Consider this C subprogram foo:

void foo (unsigned char k)

{
switch (k) {
case 4:
<statements for k = 4>
case 8: case 9: case 11l:
<statements for k = 8, 9 or 11>
default:
<statements for other values of k>
}
}

The switch table for this switch-case statement is
shown in Table 1 below. It has four entries for a total
size of 16 octets. Note that the second entry matches
both k = 8 and k = 9 because the mask value 254
masks the least significant bit of k.

In this example a switch-case statement is
compiled into code that loads the switch index (the
parameter k in foo) into register rO and calls the
switch handler SwHandler. The switch table is placed
in the program memory immediately after the call so
that the return address points to the first table entry.
SwHandler searches the table for an entry that
matches the switch index, then jumps to the address
of this entry.

SwHandler can be written in AVR assembly
language [3] as shown in Listing 1 below. For later
reference the left margin shows the assumed word
address of the instruction (in hex). Semicolons start
comments that extend to end of line.

Listing 2 below shows the AVR code for function
foo including the code for the switch-case statement
and the hex form of the switch table. Listing 2
assumes that k is passed to foo in register r16 and
some arbitrary amounts of code in the case branches.

Listing 1. Example switch handler

SwHandler:
; Switch-case handler. Entered by call with the
; switch index in r0 and the switch table in
; program memory after the call instruction. Exits
; to the chosen case. Changes rl, r2, and Z.

0100 pop r30 ; low octet of table address
0101 pop r31 ; high octet of table address
; Z =r31:r30 = word address of the switch table.

0102 add r30,r30 ; Multiply Z by two to make
0103 adc r31,r31 ; itan octet address for [pm.
loop: ; Z points at the next switch table entry.
0104 lpm «rl,zZ+ ; rl := entry.mask

0105 lpm r2,%Z+ ; r2:= entry.match

0106 and rl,r0 ; rl := index and mask

0107 cp rl,r2 ; compare to entry.match
0108 breq found ; branch if entry matches index
0109 adiw 7,2 ; no match, point at next entry
010A rjmp loop ; try next entry

found: ; Entry matches. Z points at entry.address.
010B lpm «rl,z+ ; rl := address low octet
010C lpm r31,% ; 131 := address high octet
010D mov r30,rl ; Z := wholeaddress

010E ijmp ; DTC jump to address in Z.

Table 1. Example switch table
mask |match address points to:
255 4 the code for the case k = 4
254 8 the code for the case k = 8,9 or 11
255 11 the code for the case k = 8,9 or 11
0 0 the code for the default case

Listing 2. Example switch-case statement code

foo:
0200 mov rO0,rlé6e ; r0:=k
0201 call SwHandler

; The switch table consists of the following

; 16 octets, shown in hex:
0203 FF 04 OB 02 ; k =4, address = 020B
0205 FE 08 1C 02 ; k =8or9, address = 021C
0207 FF 0B 1C 02 ; k=11, address = 021C
0209 00 00 24 02 ; default, address = 0224
020B < code for the case k = 4 >
021C < code for the casek = 8, 9or 11 >
0224 < code for the default case >
0229 ret ; return from foo.

3. Problem and goals

The problem is to find the full control-flow graph for
machine code that uses switch tables and switch
handlers, for example with the structure described in
section 2 but of course not limited to that example.
The machine code is given as a memory image that is
a mixture of code and data, not clearly demarcated.
The solution should:

e find all cases of all switch-case statements,

* not mix up different switch-case statements to
create false paths in the flow-graph,

+ produce the sequence of instructions that leads to
each case, so that later steps in the analysis can
find an accurate WCET for each case,

» connect each case with the corresponding values of
the switch index, again for use in later analysis
steps (for example to find bounds for a loop that is
nested in a case and depends on the switch index),

 apply uniformly to several kinds of switch tables
and handlers and be robust to changes in their
structure as the compilers evolve.

The solution should also be easy to implement in the
generic, processor-independent parts of a WCET tool,
in my case Bound-T [2], with minimal changes to the
processor-specific parts, for example the parts of
Bound-T that decode AVR instructions.

Bound-T can analyse many aspects of a sub-
program in a (calling-) context-dependent way but
the flow-graph of a subprogram must be independent
of context. Analysing a switch handler (for example
SwHandler) as an ordinary, independent subprogram
cannot give a context-dependent resolution of the
DTC (the ijmp in SwHandler). Instead, a switch
handler must be analysed as an integral part of the
subprogram that contains the switch-case statement
(for example foo). This is similar to in-line expansion
of the call to the switch handler.

The target addresses for the DTC result from exe-
cuting the switch-handler instructions that access the
switch table. The analysis must thus simulate or
execute these instructions. Furthermore, the analysis
must unroll the table-scanning loop in the switch
handler. Each iteration of the loop leads to a different
case; unrolling the loop separates the paths to the
different cases for separate analysis.

4. The solution by partial evaluation

Partial evaluation is the execution of a program with
some inputs bound to concrete values but other
inputs not so bound (free input variables) [4]. The
result is therefore not a concrete output value but a
residual program that still depends on the unbound
inputs. The residual program is a specialization of the
original program: it is specialized to the domain
where the bound inputs have the given values.

The proposed analysis of switch tables and switch
handlers uses partial evaluation of subprograms as
follows. A switch handler is a subprogram with two
inputs: the switch index and the switch table. At
analysis time, in a given invocation of a switch
handler for a given switch-case statement the switch
index is usually unbound (has an unknown, dynamic
value) but the switch table is bound to a static
constant: the table generated for this switch-case
statement.

If we partially evaluate the switch handler under
this binding, the residual subprogram depends only
on the switch index and not on the switch table. The
partial evaluation resolves the DTC instructions into
control transfers with static target addresses, copied
or computed from the switch table.

For the switch handler shown in section 2 partial
evaluation with a known switch table means that we
know the value loaded by the execution of any lpm
instruction. Thus the target address of each possible
execution of the ijmp DTC instruction is known even
if the value of the switch index (r0) is unknown.

Within the Bound-T tool the partial evaluation is
implemented in a way that fits the Bound-T archi-
tecture, not as a general-purpose partial evaluator
such as the mix evaluator described in [4]. In
Bound-T the original, unevaluated subprogram (the

switch handler) is represented implicitly by its entry
address and the instructions in the target program
that can be reached from the entry address. The
residual subprogram (the switch handler specialized
to a given switch table) is represented as a part of the
flow-graph of the subprogram that contains the
switch-case statement. This part is a subgraph rooted
at the node that invokes the switch handler. The
nodes of the subgraph represent (executions of)
instructions in the switch handler; the leaves of the
subgraph represent the DTC leading to each case.

In the terminology of [4] the source language of
this partial evaluator is machine-code program-
memory images and the target language is Bound-T
flow-graphs. (As a part of Bound-T the implemen-
tation language is Ada, but this is not important.)

The next two sections explain how partial
evaluation is implemented in Bound-T and why it is a
natural extension of the way in which Bound-T builds
flow-graphs from machine code. This says more
about Bound-T than about the partial evaluation
method for switch-case analysis. Eager readers may
skip to section 7 for an example of the analysis.

5. Building flow-graphs in Bound-T

This section describes the structure of flow-graphs in
Bound-T and the iterative algorithm for building
flow-graphs from machine code. The next section
extends the algorithm to include partial evaluation.

First a definition of terms. The internal represen-
tation of a subprogram in Bound-T is a flow-graph
(FG). A flow-graph differs from a control-flow graph
(CFG) because (as defined in this paper) a CFG node
represents a given machine instruction in any
program state while an FG node represents a given
instruction in some subset of program states. Thus, a
given instruction is always represented in at most one
CFG node, but can be represented in several FG
nodes when this instruction is modeled separately for
different program states. Bound-T adopted the flow-
graph concept to model complex control mechanisms
such as nested zero-overhead loops in DSPs.

The abstraction of the program state that is used
for flow-graphs is called the flow-state. The program
counter (PC) is always a concrete part of the flow-
state; a flow-state implies a PC value. Each node in a
flow-graph is tagged with a flow-state. No other node
in this flow-graph is tagged with this flow-state.

Each flow-graph node has several attributes to
model the instruction in this node. For this paper the
main attribute is the computational effect: a set of
assignments of expressions to variables (registers or
memory locations). For example, the effect of the
AVR instruction Ipmrl,Z+ is modeled by the
assignments rl :=pml[Z], Z:=Z+1 where pm[Z]
stands for the value of the program memory octet at
address Z. (Ignore the fact that the 16-bit Z pointer is
composed of the two 8-bit registers r30 and r31. This
complication is nasty but not relevant here.)

Each edge in the flow-graph is provided with a
Boolean expression that is a necessary but perhaps

not sufficient condition for taking this edge. For
example, the condition for the branch-taken edge
after the AVR instruction breq is that the “zero” flag
be set, here written as zf = 1. The condition is
evaluated after the effect of the source node.

Bound-T starts the analysis of a subprogram by
building the flow-graph of the subprogram. This is an
iterative algorithm very like the algorithm in [6]. For
each new flow-state the algorithm first adds a blank
node to the flow-graph and then proceeds to fill in
the blank nodes with their attributes. The final flow-
graph contains all flow-states and instructions in the
subprogram that can be reached from the entry
address. The algorithm follows.

Building the flow-graph of a subprogram in Bound-T

Initialization. The flow-graph is initialized to consist of
one blank node tagged with the flow-state that represents
the entry address of the subprogram.

Iteration. The algorithm repeatedly executes the Fill node
step until there are no blank nodes in the flow-graph.

Fill node. Pick a blank node N from the flow-graph. The
flow-state of the node identifies (through its PC value) the
instruction executed in this state. Fetch this instruction
from the memory image of the target program and fill in
the attributes of node N from this instruction.

Determine all successor flow-states for node N. The
successor of a normal call instruction is the return point in
the caller. A normal return instruction has no successors.

For each successor state s of N, if there is not already a
flow-graph node S tagged with s then add such a new
blank node S to the flow-graph. Make a new edge from N
to S.

We can extend this partial evaluation simply by
adding more concrete state components to the flow-
state. Of course, this forces us to compute the effect of
each instruction on these new flow-state components to
find the successor flow-states of the instruction.

To implement this in Bound-T the flow-state type
is extended with a data-state component that is either
null or a pointer to a data-state object. A data-state
object models the values of program variables just
before executing the node tagged with this data-state.

For this paper a data-state object is a partial
mapping of variables to values. In other words a data-
state binds some variables to known values but leaves
all other variables unbound. For example, the data-
state on entry to SwHandler from the call in foo could
bind the variable holding the return address (the top
stack word) to the value 0203 (hex) and leave all
other variables unbound.

The flow-graph building algorithm is extended to
handle data-states as follows. When partial eva-
luation is not in progress the data-state is null and
the algorithm works as before. Otherwise the
algorithm uses the data-state to partially evaluate the
computational effects and edge conditions and uses
the residual effects and conditions to update and
propagate the data-state over nodes and edges.

Handling data-states while building the flow-graph

The analysis of normal subprogram calls in Bound-T
is not relevant to this paper because a call to a switch
handler will be analysed as if the call were in-lined. A
switch-handler call is analysed as a kind of jump
instruction by a simple variation of the above algo-
rithm: the successor of a call to a switch handler is
taken to be the first instruction in the switch handler,
instead of the return point in the callee.

For the example in section 2 the return point
contains the switch table, not AVR instructions, so
control never reaches the return point.

6. Partial evaluation in Bound-T

This section explains how the flow-state concept was
extended to implement partial evaluation during
flow-graph building in Bound-T.

First note that the flow-graph building algorithm
can already be viewed as partial evaluation. The
entry address (initial PC value) is one input for the
target program; building the flow-graph amounts to
partial evaluation of the target program with respect
to this input, keeping all other inputs unbound. The
partial evaluation of an instruction amounts to
finding the effect of the instruction on the PC, in
other words finding the successor instructions.

When filling a node for a given flow-state. If the given flow-
state has a non-null data-state, partially evaluate the
computational effect of the node on this data-state and
store the residual effect in the node. Also create the post-
state of the node as the given data-state updated by the
residual effect: assignment of a constant binds the target
variable, other assignments unbind it. The post-state
models the program state after executing the instruction
in this node.

If the given flow-state has a null data-state make the
post-state null too.

When adding an edge from a source node to a successor
flow-state. If the post-state of the source node has a non-
null data-state, partially evaluate the given edge condition
on this data-state and if the result is false discard the edge
as infeasible. Otherwise store the residual condition in the
edge. If the successor flow-state has a specified data-state
(whether null or not) use it as such (this happens when
starting or stopping partial evaluation). Otherwise use the
post-state of the source node but constrained by the
residual edge condition: if the condition implies a known
value for a variable then update the successor data-state
with this binding.

When filling a DTC node. If the node has a non-null data-
state then try to compute the target address from the
data-state. If this succeeds (ie. if the DTC target depends
only on variables bound to constants in the data-state)
then add the corresponding (static) edge; also, if this DTC
represents an exit from a switch handler then put a null
data-state in the target of the new edge, to stop partial
evaluation on this path.

The extensions to the algorithm use existing Bound-T
services for propagating constant values in flow-

graphs and computational effects. New code was
needed mainly for the container of data-state objects.

Most of the extensions for data-state handling are
implemented in the processor-independent parts of
Bound-T. The processor-specific modules only have to
start and stop the partial evaluation at suitable points
in the analysis. For this paper I assume that the
processor-specific modules detect when a call or
jump instruction enters a switch handler; at that
point these modules start partial evaluation by
putting the initial data-state for the switch handler in
the target of the edge that enters the switch handler.
Likewise, I assume that processor-specific modules
detect when a DTC is an exit from a switch handler.
Section 8 discusses these assumptions.

7. Example

This section shows how the partial evaluation works
for the foo function and the SwHandler from section 2
by a series of snapshots of the growing flow-graph.

Nodes and edges in the flow-graph are drawn as
follows:

[flow-state]
instruction effect

condition [flow-state]
"| instruction effect

The flow-state is shown in brackets [] at the top of
the box that depicts a node. The flow-state starts with
the instruction address (PC) in hex, followed by the
data-state bindings if any. For brevity only relevant
bindings are shown. The AVR instruction is shown
below the flow-state, followed by the relevant parts
of its residual computational effect. An edge with no
condition is unconditional (always taken). Blank
nodes are shown as a bare “[flow-state]” with no box.

The first figure below shows the flow-graph of foo
after the first two instructions are inserted (with null
data-states) and just after detecting that the second
instruction (the call) enters a switch handler. The
AVR-specific modules of Bound-T have accordingly
defined the successor of the call to be the first
instruction in SwHandler (PC = 0100 hex) with a
data-state that binds the return address (top of stack
word, tosw) to 0203 hex. There is one blank node
with this flow-state [0100, tosw = 0203].

[0200]
mov r0,r16

[0201]
call SwHandler

A

—» [0100, tosw = 0203]

As the flow-graph grows I will compress the figures
by showing several successive instructions in one box.

The next figure shows the flow-graph when the
first four instructions from SwHandler have been
inserted. Note how the partial evaluation of the pop
instructions transformed the tosw binding into a
binding for the Z pointer and how the evaluation of
the add and adc instructions doubled the value bound
to Z. (The asterisks indicate a computational effect
that was combined with a preceding instruction to

build a 16-bit operation from two or more 8-bit
operations.) The single blank node shows that the
next instruction to be added is the first instruction in
the loop in SwHandler, at address 0104, with a data-
state binding Z to 0406 hex, the octet address of the
first entry in the switch table.

[0200] [0100, tosw = 0203]
mov r0,rl6 »| pop r30 Z:= 0203
call SwHandler pop r31 *

'

[0102, Z= 0203]
add r30,r30 Z:= 0406
adc r31,r31 *

v

[0104, Z= 0406]

The next figure shows the flow-graph when it
contains all the loop instructions and the first
possible exit from the loop (for k = 4). On the left
the loop exits when zf = 1. The ijmp DTC is resolved
to a static jump because the data-state binds Z to
020B hex. This identifies the first case of the switch.
Partial evaluation in this branch stops because the
successor flow-state [020B] has a null data-state.

On the right, when zf = 0, the loop is about to
repeat (rjmp loop). The successor flow-state contains
the address of the loop-head (0104) which is already
represented by a filled node, but it has a different
data-state: Z is bound to 040A, not 0406 as in the
existing node. The algorithm therefore creates new
nodes for the second iteration of the loop. In fact the
loop will be fully unrolled because the data-state
binds Z to a different value in each iteration of the
loop.

[0100, tosw = 0203]
[0200] pop r30 Z:= 0203

mov r0,rl6 | pop r31 *

call SwHandler add r30,r30 Z:= 0406

adc r31,r31 *

A

[0104, Z= 0406]
=1 Ipm rl,Z+ rl := 255, Z:= 0407
zr= Ipm r2,Z+ r2:=4,Z:= 0408
and rl,r0 rl:=r0
cprl,r2 zf:=rl equals 4
breq found
v zf=0
[010B, Z= 0408, zf = 1]
lpmrl,Z+ Z:=020B v
Ipmr31,Z * [0109, Z= 0408, zf = 0]
mov r30,r1 * adiw Z,2 Z:= 040A
ijmp rimp loop

' '

[020B] [0104, Z= 040A]

The third loop iteration is unrolled in the same way.
The figure below shows the flow-graph parts for the
fourth iteration which accesses the last switch-table
entry (the default case) at octet address 0412 (word
address 0209). The loop-repeating edge with the
original condition zf = O becomes infeasible because
the data-state binds zf to 1, making the residual con-

dition false. This ends the unrolling and also the
partial evaluation.

zf=0 [0109, Z= 0410]

—»adiwzZ2 Z:= 0412
rimp loop

[0104, Z= 0412]
Ipmrl,Z+ rl:=0,Z:= 0413
trueé | \pmr2.z+ r2:=0,Z:= 0414
andrl,r0 rl:=0
cprl,r2 zf:=1
breq found
Y false
[010B, Z= 0414, zf = 1] 1
lomrl,Z+ Z:= 0224 \/
Ipm r31,Z2 *
mov r30,r1 *
ijmp

'

[0224]

The last and largest figure, below, is an overview of
the final flow-graph of foo. The residual form of
SwHandler within this flow-graph is a tree of com-

y

parisons and conditional branches that explicitly
models the sequence of instructions leading to each
case. The edge conditions (not shown in the figure)
define the corresponding index values.

8. Summary

To summarise, this method for finding the flow of
control encoded in switch tables comes in three parts:

1. A flow-graph structure that can model the same
instruction separately in different states (the flow-
state in Bound-T).

2. A state abstraction and transfer functions for data
values (the data-state and computational effects in
Bound-T).

3. Means to detect entry to and exit from a switch
handler in order to start/stop partial evaluation.

The first two points enable partial evaluation of
machine code into parts of flow-graphs. The third
point applies partial evaluation to reveal the flow of
control in switch tables.

residual of SwHandler

| [0200] |——>| [0100, tosw = 0203] |

[0104, Z= 0406]
1st loop iteration

|, [0104, Z= 040A]

2nd loop iteration

»| [0104, Z = 040E]

3rd loop iteration

| ,.|[0104, Z=0412]

4th loop iteration

Y

'

A

A

[010B, Z= 0408]
exit fork =4

[010B, Z= 040C]
exit fork =8 or9

[010B, Z= 0410]
exit fork =11

[010B, Z= 0414]
exit for default

= o— D

case k=8,90r11

[021C] [0224]
default case

[0229] =

This partial-evaluation method largely achieves the
goals listed in section 3. The two main problems left
are processor-specific. The first problem is to model
the computational effects of all instructions so exactly
that the partial evaluation of the switch handler
resolves the DTCs. For example, no version of
Bound-T now models the “half carry” flag for BCD
arithmetic. If a switch handler uses this flag in a DTC
the partial evaluation will not resolve the DTC.

The second problem is to detect when a switch
handler is entered or exited. Bound-T now uses the
compiler-specific identifiers of the switch handlers
and works only if these identifiers are present in the
symbol-table of the program. An alternative could be
to use data-flow analysis or slicing as in [5-9] to
detect that a given DTC is “table driven”.

Other applications of partial evaluation in WCET
analysis can be imagined. For example, the printf
function in C is notoriously difficult for WCET

analysis because it is extremely data-dependent;
printf is really an interpreter driven by the contents of
the format string. Now, the great majority of printf
calls have a constant string as the format parameter,
for example:

printf (“%d and %f\n”, ivar, fvar);

Partial evaluation of such a printf call with respect to
the constant format string should transform the
interpretive loop over the format string into
sequential code in the residual flow-graph. It should
also transform most format-dependent conditional
branches into unconditional flow of control. In the
above example, the residual flow-graph should
contain one %d (decimal integer) formatting action,
followed by formatting of the constant string
“ and ", followed by one %f (decimal floating-
point) formatting action, followed by a new-line

action. Thus, partial evaluation should resolve the
format-dependent aspect of the WCET for printf.

In general, partial evaluation could help the
context-specific analysis of any subprogram that has
control-flow that strongly depends on a parameter
that is often constant, or that can be resolved to a
constant by other analysis.

9. Implementation experience

So far Tidorum has implemented this method of
switch-case analysis in Bound-T for two target
processors: Atmel AVR and Intel 8051. The compilers
currently supported are the IAR and Keil compilers
for the 8051 and the IAR compiler for the AVR. The
method works as expected but the implementation of
course showed that some extensions were necessary.
This section briefly describes the extensions.

Firstly, on the AVR processor some switch handlers
use single-bit load and store instructions that work
with the dedicated “T” bit in the status register. As
foreseen in section 8 it was necessary to extend
Bound-T/AVR with models for this bit and these
instructions, in order to get good residual branch
conditions and to terminate the partial evaluation.

Secondly, some switch handlers call their own
subroutines, for example to load the next entry from
the switch table into registers, compare it to the
switch index, and execute a DTC when they match.
During partial evaluation all calls to these handler
subroutines also have to be in-lined in the flow-graph
of the subprogram that contains the switch-case
statement.

Thirdly, some switch handlers implement DTC by
pushing the target address on the processor stack and
executing a return instruction as if the target address
were a return address. Bound-T was extended to use
data-flow analysis of the stack contents to separate
such DTC “returns” from ordinary returns.

10. Experiments

Testing the method on several AVR and 8051
programs showed that the residual flow-graphs were
less complex than could be feared. The switch
handlers contain many conditional branches within
loops and so loop unrolling could create quite large
residual flow-graphs. However, the partial evaluation
resolves many branch conditions to constants, leaving
unconditional branches. This reduces the number of
basic blocks in the residual flow-graphs (note that
Bound-T allows unconditional branches within basic
blocks) but leaves an unusually large number of
instructions per basic block.

The IAR compiler for the AVR has an option that
controls the kind of code generated for switch-case
statements. This option can force the compiler to use
in-line comparison code, or a switch table with a call
to a shared switch handler, or a switch table with an
in-lined form of the switch handler. Comparing the
first two forms for some switch-case statements with
8-bit index values showed that the WCET for a switch

handler call is usually much larger (by a factor of 10
or so) than the WCET for in-line comparison code.
This is explained by the very general design of the
IAR switch tables and switch handlers. The ratio
would probably be less for multi-octet index-types
where the in-line comparison code must be larger.

11. Related work

Earlier work on switch-case control flow [5-8] uses
program slicing and constant propagation to find
dense tables of addresses or jumps, indexed by the
switch index. This is related to but not the same as
partial evaluation. Only the “hashing form” in [8]
involves run-time search in a table.

Bound-T analyses jumps through dense address
tables with a combination of instruction-pattern
matching, to find these jumps, and data-flow analysis
(based on Presburger Arithmetic) to find the bounds
of the address table. The instruction patterns in
Bound-T are currently target-specific and inflexible;
slicing methods and data-flow patterns as in [5-8]
would be an improvement.

De Sutter et al. in [5] start from a “super-
conservative” control-flow graph in which each DTC
is modeled as an edge to a special, unique “hell node”
that represents an unkown program point. The graph
also has edges from the hell node to every node that
could be the target of a DTC. Constant propagation
then prunes away some of these hell edges. Késtner
and Wilhelm present a similar top-down method [7];
however they identify address tables by their
assembly-language form (lists of label identifiers),
not by their usage.

The drawback of such top-down flow-graph
pruning methods [5, 7] is that they first need some
other method to find all the instructions in the
program. That is impractical in the analysis of
binaries for processors with instructions of different
sizes, because the common executable-file formats
such as ELF do not mark instruction boundaries in
the memory images. Some cross-compilers even
deliberately overlay instructions so that, for example,
the code can jump to the second octet of a 3-octet
instruction to use the last two octets as a 2-octet
instruction. The bottom-up flow-graph extension
methods in Bound-T and [6] work also for such
processors and compilers.

Another problem with some top-down methods is
that they assume that a subprogram consists of
contiguous code. This is is false for several cross-
compilers that implement optimizations such as
shared subprogram epilogues where the code for a
subprogram can jump into the middle of some other
subprogram far away in the address space.

Troger and Cifuentes [9] use slicing to find calls of
virtual functions in the object code of C++ programs,
another form of DTC. They model the computational
effect of instructions in a “High-Level Register
Transfer Language”, HRTL, similar to the formulation
in Bound-T. The static part of their analysis does not
try to find the actual addresses of the callees. Instead,

an HRTL interpreter dynamically executes the
program and records the computed target addresses
of the virtual function calls. However, the interpreter
records only the executed paths, not all possible
paths as in partial evaluation, so the virtual function
tables may not be fully explored.

I know of no other analysis tool that creates
residual subprograms in flow-graph form. However,
this is much like context-specific optimization while
compiling an in-lined subprogram.

The “abstract execution” method in SWEET [10]
creates graphs of data-states (execution histories) but
does not expand the CFG. The current SWEET input
language, NIC, does not use switch tables.

12. Conclusion

I see this switch-case analysis as a small example of
cooperation between the two main approaches to
program analysis, the first being concrete state
enumeration by executing the program and the
second being state comprehension by abstracting the
program. Partial evaluation represents the first
approach. Bound-T uses the second approach to find
loop bounds. I believe that WCET analysis would
benefit from more use of state enumeration. The
problem, of course, is choosing which state compo-
nents to enumerate. Enumerating the states in switch
handlers was an easy instance of this problem.

References

[1] G. Bernat and N. Holsti. Compiler Support for
WCET Analysis: a Wish List. In Proc. of the 3rd
International Workshop on WCET Analysis
(WCET 2003), Porto, July 2003.

[2] Tidorum Ltd. Bound-T Execution Time Analyzer.
http://www.bound-t.com.

[3] Atmel Corporation. 8-bit AVR Instruction Set.
Rev. 0856D-AVR-08/02.

[4] N.D. Jones. An Introduction to Partial
Evaluation. ACM Computing Surveys, Vol. 28,
No. 3, September 1998, pp. 480-503.

[5] B. De Sutter, B. De Bus, K. De Bosschere,

P Keyngnaert and B. Demoen. On the Static
Analysis of Indirect Control Transfers in
Binaries. In Proc. of the International Conference
on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, Nevada, USA,

June 2000, pp. 1013-1019.

[6] H. Theiling. Extracting safe and precise control
flow from binaries. In Proc. of the 7th Internatio-
nal Conference on Real-Time Computing Systems
and Applications, Dec. 2000, pp. 23-30.

[7]1 D. Kastner and S. Wilhelm. Generic Control
Flow Reconstruction from Assembly Code.
Proc. LCTES'02 — SCOPES'02, June 2002,
pp. 46-55.

[8] C. Cifuentes and M. Van Emmerik. Recovery of
Jump Table Case Statements from Binary Code.
In Proc. of the 7th International Workshop on
Program Comprehension, May 1999,
pp. 192-199.

[9] J. Troger and C. Cifuentes. Analysis of Virtual
Method Invocation for Binary Translation.

In Proc. Ninth Working Conference on Reverse
Engineering (WCRE'02), 2002, pp. 65-74.

[10] J. Gustafsson, A. Ermedahl, C. Sandberg and
B. Lisper. Automatic Derivation of Loop Bounds
and Infeasible Paths for WCET Analysis Using
Abstract Execution. In Proc. of the 27th IEEE
International Real-Time Systems Symposium
(RTSS'06), December 2006, pp. 57-66.

http://www.bound-t.com/

	1.Introduction
	2.Example of switch table and handler
	3.Problem and goals
	4.The solution by partial evaluation
	5.Building flow-graphs in Bound-T
	6.Partial evaluation in Bound-T
	7.Example
	8.Summary
	9.Implementation experience
	10.Experiments
	11.Related work
	12.Conclusion

