
On the Representativity of Execution Time
Measurements: Studying Dependence and
Multi-Mode Tasks
Fabrice Guet1, Luca Santinelli2, and Jerome Morio3

1 ONERA Toulouse, Toulouse, France
2 ONERA Toulouse, Toulouse, France
3 ONERA Toulouse, Toulouse, France

Abstract
The Measurement-Based Probabilistic Timing Analysis (MBPTA) infers probabilistic Worst-Case
Execution Time (pWCET) estimates from measurements of tasks execution times; the Extreme
Value Theory (EVT) is the statistical tool that MBPTA applies for inferring worst-cases from ob-
servations/measurements of the actual task behavior. MBPTA and EVT capability of estimating
safe/pessimistic pWCET rely on the quality of the measurements; in particular, execution time
measurements have to be representative of the actual system execution conditions and have to
cover multiple possible execution conditions. In this work, we investigate statistical dependences
between execution time measurements and tasks with multiple runtime operational modes. In
the first case, we outline the effects of dependences on the EVT applicability as well as on the
quality of the pWCET estimates. In the second case, we propose the best approaches to account
for the different task execution modes and guaranteeing safe pWCET estimates that cover them
all. The solutions proposed are validated with test cases.
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1 Introduction

Multi-core and many-core processors are becoming common implementations for real-time
systems. The large amount of available resources allows increasing performance and em-
bedding multiple functionalities within systems. However, real-time modeling and analysis
become more complex due to the increased source of unpredictabilities, [11, 22]; for instance,
tasks execution time exhibits variabilities from the runtime dependence/interference between
system elements which are difficult to model accurately e.g., access to shared mameory, [21].

Probabilistic timing analysis approaches are being proposed to cope with real-time system
unpredictabilities. They consider both the task average execution behavior and the worst-
case execution behavior as random variables. In particular, the probabilistic Worst-Case
Execution Time (pWCET) extends the notion of Worst-Case Execution Time (WCET) as the
worst-case distribution that upper bounds the task execution times. pWCET models have
multiple values, each with an associated probability of being the task worst-case execution
time; very unlikely cases such as faults are included. This makes pWCET task models more
flexible and potentially less pessimistic than classical deterministic WCET (either statically
or measurement-based driven) in representing the task behavior. Figure 1 gives an example
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Figure 1 WCET and pWCET representations.

of pWCET and WCET representations to the task behavior; both upper bound the task
actual execution times which could be different execution time profiles depending on the
system execution conditions.

Measurement-Based Probabilistic Timing Analysis. The Measurement-Based Probabil-
istic Timing Analysis (MBPTA) is a probabilistic timing analysis that makes use of measure-
ments of task execution times for computing pWCET estimates. The Extreme Value Theory
(EVT) applied in the MBPTA allows for inferring the rare events (worst-case bounds) from
observations of the actual task behavior (measurements). MBPTA does not need accurate
system nor task models, instead they demand measurements of execution time representative
of all the system execution behaviors.

A first application of the EVT for the timing analysis of real-time systems considers
Gumbel distributions for the pWCET estimates, [4]. In [6, 1, 5], only artificially1 time
randomized real-time systems are analyzed with the EVT. Last developments in MBPTA
propose a generalized version of the EVT [18, 12] which can be applied to both non-time
randomized real-time systems and artificially time randomized real-time systems.

MBPTA Open Problems. Today’s MBPTA works have completely defined the EVT and its
applicability to the pWCET problem. The hypotheses for applying the EVT have been deeply
investigated, and the quality (as safety and accuracy) of the resulting pWCET estimates
has reached good levels. Actual MBPTA challenges are moving to the representativity of
the execution time measurements, since in order to let the EVT be able to estimate safe
worst-case distributions2, the measurements have to be "good representation" of the system
behavior,[20]. We hereby consider a notion of measurement representativity as the capability
of capturing any event that characterizes the current system behavior. Those events would
be dependence between consecutive executions, pattern of executions e.g., cyclic execution
times or clusters, multiple execution conditions or operational modes, etc..

In [1], the system is artificially randomized in order to make the appearance of worst-case
measurements more probable. For those systems, some works have approached the problem of
measurement representativity [2, 20] where the representativity notion considered restricted

1 By artificially time randomized systems we mean systems where there have been added randomization
mechanisms such as random replacement caches or random task re-mapping in memory at each execution.

2 Safe worst-case execution time distributions (pWCETs) are distributions that upper bound any possible
task execution.
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to the capability of measurements of capturing worst-case events. instead, we hereby consider
a broader notion of representativity that includes the capability of capturing dependence or
pattern of executions.

Full coverage of tasks/system input conditions and measurements, which needs to include
pathological cases and their large execution times, have to be guaranteed to MBPTA. As
today, they remain open problems related to the representativity of the measurements of any
architecture, including artificial randomized real-time systems.

In this paper we focus on two aspects of the representativity which real-time systems face
constantly: statistical dependence between measurements and tasks with multiple operational
modes.

We intend to demonstrate that measurements which are representative of the dependent
system behavior have to be preserved and not modified whatsoever. Instead, with meas-
urements which are representative of multiple execution condition, worst-case behaviors or
modes cannot be neglected.

The statistical dependence between measurements is when from one set of measurements
it is possible to infer future measurements e.g., clusters of measurements or consecut-
ive measurements with similar values appearing periodically. With real-time systems,
examples of dependences are series of specific execution conditions e.g., bursts of inter-
ferences or cache locality, or task inputs/execution conditions that appear periodically.
Would it possible to apply the EVT in case of dependence between measurements? What
is the impact that dependences have on pWCET estimates?
Real-time tasks can be implemented with multiple operational modes e.g., taking-off,
cruising and landing modes which alternate at runtime in avionic systems. More simple
examples are multi-path tasks where, depending on the input applied a path can be
triggered with consequently different execution time. How is it possible to apply the
EVT to multi-mode execution time measurements? What is the pWCET estimate that
guarantees all the modes, a.k.a. a safe pWCET estimates?

If the system shows dependent behavior and multi-mode tasks, the measurements have to
embed such events in order to characterize the system behavior and being representative for
it. To the previous questions we provide answers with this work.

Contributions: We propose guidelines for letting EVT and MBPTA tackle with dependent
measurements of execution times and multi-mode real-time tasks. We describe what has to be
done in both cases in order to correctly apply the EVT and obtain safe and accurate pWCET
estimates. We provide also a statistical analysis to the measurements for identifying the limits
of the EVT application and the conditions for qualitatively defining the representativity of
the measurements in terms of dependence and multi-mode tasks. This would allow to extend
EVT applicability to more realistic real-time systems e.g., with statistical dependence or
multi-path tasks. Our contributions are validated with test cases from industrial applications,
multi- and many-core real-time systems and artificial traces of execution time measurements.

Organization of the paper: In Section 2 we state some background for the MBPTA, the
EVT and the probabilistic modeling of average and worst-case task execution behavior.
Section 3 details the EVT applicability in case of statistical dependent measurements and
the effects that dependence has on pWCET estimates; case studies are applied to validate
the guarantees that EVT offers to task pWCETs in case of dependence. Section 4 approaches
the challenge of EVT applicability to multi-mode tasks; solutions to guarantee pWCET

WCET 2017



3:4 On the Representativity of Execution Time Measurements

estimates with multiple execution conditions are developed and validated with case studies.
Section 5 is for conclusions and future work.

2 Background: Probabilistic Modeling and Extreme Value Theory

A trace T is a collection of execution time measurements Cj , T = {Cj | j ∈ [[1 : n]]}, n is the
size of the trace. Given T , the Execution Time Profile (ETP) C is the discrete random variable
defined on the finite support ΩC of possible execution time values C(k), ΩC = (C(k))k∈[[1:N ]]
with C(k) ∈ T ; N is the number of different value in C. The ETP is an empirical discrete
random variable3 that describes the task actual execution behavior. Representations for C are:
the discrete probability mass function or Probability Distribution Function (PDF) pdfC , such
that pdfC(C(k)) = P (C = C(k)), the empirical Cumulative Distribution Function (CDF) cdfC
as the discrete function cdfC(C) = P (C ≤ C) with cdfC(C) ∈ [0; 1] and the Complementary
Cumulative Distribution Function (CCDF) icdfC defined by the probability of exceeding the
execution time threshold C (risk probability), icdfC(C) = P (C > C) = 1 − cdfC(C) with
icdfC(C) ∈ [0; 1].

Probabilistic timing analysis approaches look for pWCET distribution estimates C that
upper bounds any possible task execution behavior. Representations for C are the PDF
pdfC(C) either continuous or discrete, the CDF cdfC(C) and the CCDF icdfC(C). C has to be
a safe/pessimistic representation of the task worst-case behavior: it has to be larger than or
equal to4 any ETP Cj the task can have, icdfC(c) ≥ icdfCj (c) for every c and every execution
condition j. C has also to be a tight upper bound to the ETPs; the tightness is for the quality
of the pWCET estimates.

2.1 The Extreme Value Theory in a Nutshell
The EVT applies with the Block Maxima (BM) paradigm or with the Peak over Threshold
(PoT) paradigm. The BM EVT models the limit law of execution time maxima of blocks of
execution time measurements; the PoT EVT models the limit law of the execution times
greater than a threshold (peaks above the threshold).

At the infinite (infinite number of block maxima or infinite number of peaks over the
threshold) the law of extreme measurements tends to a Generalized Extreme Distribution
(GED) or a Generalized Pareto Distribution (GPD) if and only if: i) the input TC is composed
of independent and identically distributed (iid) measurements and ii) the resulting distribution
C belongs to the Maximum Domain of Attraction (MDA) of the limit distribution. GED and
GPD are the limit distribution respectively for the BM and the PoT EVT.

The identical distribution hypothesis assumes that all the measurements Cj follow the
same distribution C. The independence hypothesis (statistical independence) assumes that
the individual execution time measurements C1, . . . , Cn are not correlated with each other.
The MDA hypothesis (also named matching) seeks if the limit law of the input distribution
C converges to a GEV or a GPD. The limit law from the EVT is the pWCET estimates C.

Generalized EVT. Recent works prove the EVT applicability with more relaxed hypotheses
than iid and MDA, [17, 12, 18]. They formalize the so called generalized EVT or practical EVT,

3 C is a discrete distribution since execution time Cj can only assume values multiple of the system
tick. Calligraphic letters are for both random variables, discrete or continuous, and traces, C and T .
Non-calligraphic letters are for single value variables Cj and C(k).

4 The partial ordering between distribution is defined according to [8].
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Figure 5 Example
of three-mode task.

since it applies to practical cases of real-time systems e.g., not infinite measurements, system
without artificially time randomization. The generalized EVT relies on: the stationarity
hypothesis h′

1, the short range independence (negation of short range dependence) hypothesis
h′

2.1, the extremal independence (long range dependence) hypothesis h′
2.2 and the matching

hypothesis h′
3. If the EVT follows all the hypothesis, then it provides a safe estimation of

the extreme execution times of C.
The stationarity hypothesis h′

1 tests if the measurements are stationary and follow the
same distribution i.e. the identical distribution. The Kwiatowski Philips Schmidt Shin (KPSS)
test [13] checks if the trace is stationarity.

The dependence between measurements instantiates into local dependence i.e. close
dependent measurements in TC, and dependence between extreme measurements i.e. far
measurements.

The short range dependence (or local dependence) h′
2.1 focuses on the relationship between

measurements close-within-TC . Condition D in [16] formalizes the minimum degree of short
range dependence for the EVT applicability; it ensures that for distant enough dependent
measurements (short range dependence), the limit law of the peaks over a threshold is still a
GPD. A valuable test for the short range dependence h′

2.1 is the Brock Dechert Scheinkman
(BDS) test [3]. Figure 2 gives an example of local dependence between measurements of
execution times: execution times above a threshold can cluster as a result of dependence and
consecutive interferences between system elements.

The long range dependence (or extremal dependence) h′
2.2 focuses on the relationship

between far-in-time measurements. Condition D′ in [16] formalizes the minimum degree
of long range dependence for the EVT applicability. The extremal index θ, θ ∈]0; 1] [9],
indicates the degree of clustering of either the PoT or the BM. θ expresses the probability
of having distant enough measurements which are independent: the more the peaks or the
maxima are distant from each other the more the independence is, and the higher is the
probability of having independence it is. θ, with one of its estimators is applied to verify
the extremal independence h′

2.2 [12, 10]. Figure 3 gives an example of extremal dependence
between measurements of execution times; patterns that repeat are impacted one another.

The matching hypothesis h′
3 is for verifying that C belongs to the MDA of the GPD. A

good matching test is the Cramer Von Mises criterion (CVM) which measures the distance
between the empirical CDF of the extreme measurements and the C estimated. The CVM
test verifies the validity of h′

3 and it has been chosen because it performs well in the case of
extreme value distributions [14].

DIAGXTRM [12] is a MBPTA tool that implements the generalized EVT and we use
it to investigate statistical dependence and multi-mode tasks in this work. It implements
the PoT EVT version as well as the tests previously described. It also defines confidence
levels cli to verify the confidence on the EVT applicability hypotheses, thus the confidence
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on the pWCET estimates; cli defines the confidence level on h′
i ∈ H ′. cli is an integer value,

cli ∈ N , and defined in [0, 4], cli ∈ [0, 4], such that for cli = 0 there is no confidence in
accepting h′

i; for cli = 1 there is moderate confidence in accepting h′
i; for cli = 2 there is

good confidence in accepting h′
i and so until level 4 with the maximum confidence. The

cls are represented with radar plots. Hypothesis testing and other statistics are applied by
diagXtrm to evaluate execution time patterns and other characteristics that traces can
exhibit. diagXtrm is available at https://forge.onera.fr/projects/diagxtrm2.

3 EVT & Dependences

In this section we detail the effects that statistical dependence of measurements has on
pWCET estimates.

The pWCET estimate in case of extremal independence Cei is greater than or equal
to The pWCET estimate in case of independence Ci: icdfCei ≥ icdfCi , [10]. The partial
ordering between Cei and Ci is ensured if and only if both Cei and Ci follow the same average
distribution C.

The inequality states that dependence, up to a certain degree which assure EVT applic-
ability (local dependence and extreme dependence h2,1 ∧ h2,2), provides more pessimistic
pWCET estimates than the independence. In other words, clusters of execution times
within the trace (short range dependences) or patterns between far away measurements
(extremal dependences) make rare events more probable. The EVT accounts for that with
more pessimistic pWCET i.e. more conservative pWCET estimates, and the pWCET with
dependence remains a safe modeling of the task worst-case.

We remark that the former condition poses some issues to works that aim at creating
independence between measurements, [19, 10]. Techniques like re-sampling and de-clustering
that are normally applied in some domains, have to be thoroughly investigated before being
applied to the pWCET problem because they can produce optimistic pWCETs.

Trace TC cannot be changed if we aim at guaranteeing safe pWCET. The representativity
of the measurements in characterizing the actual task behavior with dependence effects cannot
be modified. Eventual changes to assure full statistical independence between measurements
and "better-to-apply-EVT" could produce optimistic pWCETs. The lost of representativity
of the measurements could end up into unsafe pWCET estimates.

Dependence Case Study. Some test cases are applied for validating the dependence impact
on pWCET estimates we propose; each test case is represented by a trace of execution time
measurements. The execution times which are measured with the tools available for the test
cases, are all in CPU cycles.

trace1 is a trace of execution time measurements from an industrial avionic safety-critical
multi-core system, [24]; the task under observation executes on one core while another
core is doing interfering I/O activities. In its original version (V1), trace1 has weak
extreme independence; from V1 we obtain a modified version of trace1, V2 by randomly
re-sampling the measurements; V2 has stronger extreme independence than V1.
trace2 is a trace of execution time from the dijkstra task of the TACLeBench5 executing
on a Kalray many-core platform, [21]. The task under observation executes on one core,
while other cores produce interference through shared memory. In its original version V1,

5 http://www.tacle.eu/index.php/activities/taclebench.

https://forge.onera.fr/projects/diagxtrm2
http://www.tacle.eu/index.php/activities/taclebench


F. Guet, L. Santinelli, and J. Morio 3:7

cl1

cl2.1

cl2.2

cl3

V1
V2

Figure 6 Radar
plot for trace1 with
two degrees of extreme
independence applied.

46500 47500 48500 49500

1e
−

12
1e

−
09

1e
−

06
1e

−
03

1e
+

00

Execution time

P
ro

ba
bi

lit
y

V1
V2

Figure 7 CCDF
representation of pW-
CETs from PoT EVT
applied to trace1.

cl1

cl2.1

cl2.2

cl3

V1
V2
V3
V4
V5

Figure 8 Radar
plot of trace2 : pW-
CET confidence of the
5 versions for trace2.

0 100 200 300 400 500

10
19

38
00

0
10

19
42

00
0

10
19

46
00

0

Instant time

V
al

ue

Figure 9 Portion
of trace of execution
time measurements for
trace2 V1.

trace2 has weak extreme independence. We define 4 more versions of trace2 by randomly
re-sampling the measurements; intermediate versions V2, V3 and V4 have decreasing
degree of extreme dependence (more extreme independence); V5 has full independence
between measurements.
trace3 and trace4 are artificial traces of execution time measurements extracted from
a Gaussian distribution. To trace3 there has been added local dependence between
measurements to reproduce the effect of non-time randomized system elements to the
task execution behavior e.g., locality effects from caches. To trace4 there has been added
extremal dependence between measurements to reproduce the effect of periodic inputs.
trace3 has been modified from its original version V1 with local dependence with 4 more
versions. V5 has full independence obtained by randomly re-sampling measurements in
trace3 while intermediate versions V2, V3 and V4 have decreasing degree of dependence.
trace4 has been modified from its original version V1 with extreme dependence by
randomly re-sampling the measurements; V2 is the least re-sampled version of trace4
with still strong dependence, V3 is more re-sampled than V2 and V4 is an even more
re-sampled version of trace4.

The proposed case study is a small fraction of the benchmarks investigated; it is representative
because the composing traces exhibit dependence and through which it is possible to illustrate
the effects of artificially induced independence on the safety of the pWCETs. The traces are
processed with diagXtrm for deriving safe and confident pWCETs; all of them and more,
except the industrial one, are available at https://forge.onera.fr/projects/diagxtrm2.

Dependence Results. Figure 6 details the confidence level of trace1 in its original version
V1 and for the modified version V2; cl2.2 increases from V1 to V2 as result of the artificially
induced independence on the measurements. Figure 7 illustrates the effect of extreme
independence on the pWCET estimates: by increasing the independence the pWCET estimate
decreases.

To trace1 the EVT is not applicable i.e. the matching hypothesis fails with cl3 = 0;
nonetheless, it helps us to understand the impact of extremal independence on pWCET
estimates. Artificially inducted independence, even if with small effects as for trace1, acts
reducing the pWCET estimates. If the representativity of a system with dependence is not
guaranteed in case of dependent measurements, the risk is to have unsafe pWCET estimates.

Figure 8 details the radar plot for the EVT approach applied to trace2. The confidence
levels for the 5 versions of trace2 are represented and tells that the EVT is confidently
applicable to all the versions, included those with certain degree of dependence; cl2.2 increases
from V1 to V5, meaning that the random re-sampling applied is able to break the extreme
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dependence existing within trace2 V1. For trace2, the pWCET variations due to artificial
induced independence are negligibly small with respect to the dependent case V1: there is no
impact on the pWCET of extreme dependence estimates for trace2. It is a particular case,
due to the trace small variability and the shape of the resulting pWCET.

Figure 9 illustrates a portion of the trace of measurements for trace2 V1; although no
particular input or execution condition are exercised (dijkstra task in a many-core execution
with interference generated from a concurrent task with no particular input imposed, [21]),
the behavior of the peaks over the threshold selected (horizontal line) could follow a oscillatory
periodic pattern, hence some degree of extreme dependence exists. Future work will focus on
defining possible patterns with statistics.

Figure 11 details the PoT EVT approach applied to trace3. The pWCET variations of
the version V2, V3, V4 and V5 are small with respect to the dependent case V1, but they all
act reducing the pWCET estimates. The guarantee of having safe pWCETs from artificially
independent traces reduces because the trace modifications are not conservative. Figure 10
illustrates the radar plot of the confidence levels for the 5 versions of trace3 : the EVT is
confidently applicable to all the versions, including those with certain degree of dependence.

We hereby specialize the comparison between PoT and BM, proposed first in [23], to the
statistical dependence case. The BM EVT is applicable to more dependent cases than the
PoT, since grouping consecutive measurements into blocks and selecting only the maximum
of each block would break possible local dependences and extremal dependences. We say
that the BM EVT is more robust with respect to dependence (local dependence and/or
extremal dependences) than the PoT because of the capacity of block maxima of filtering
measurements. Also, the PoT filters measurements i.e. those below the threshold, but it does
not with respect to dependences. The problem with BM is that filtering dependences with
large block sizes would reduce the impact of dependence on the rare events, thus resulting
into possibly optimistic pWCET estimates. Figure 13 details the BM EVT applied to trace4
with different block sizes. The continuous line pWCET is for block size of 10 measurements,
the dotted line for block size of 20, and so on. The more the block size increases and the
dependence between block maxima decreases, the more the pWCET estimates decreases
augmenting the risk of optimistic pWCET estimates.

Figure 12 details the PoT EVT approach applied to trace4. The pWCET variations
induced by less dependence (versions V2 to V5) are small with respect to V1, but act reducing
the pWCET estimates questioning the safety of pWCET estimates with artificial independent
traces.

By comparing BM and PoT with respect to dependence effects, we observe that the PoT is
a more robust approach than BM to independence effects (artificially created independence).
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Nonetheless, with neither of them it is possible to guarantee safe pWCET estimates if the
traces loose their representativity with artificially reduced dependence. We are currently
employing robustness as intuitive notion, future work will be devoted to formalize it for the
EVT.

Forcing independence into dependent execution time measurements makes the trace not
representative anymore of the dependent system behavior. As a result, the pWCET could
end up into a non safe anymore worst-case estimation of the task execution behavior.

4 EVT & Multi-Mode Tasks

The pWCET estimate depends on the execution conditions applied for the measurements;
the EVT is able to produce the worst-case bound for that condition only.

Measurement-based timing analysis, either probabilistic MBPTA or deterministic [15],
have to cover every possible execution condition and inputs in order to guarantee the absolute
worst-case bound estimate. Thus, the measurements have to be representative of all the
possible execution conditions the system can experience.

With J = {j} the finite set of possible measurement execution conditions for a system,
there exist two ways of integrating all the scenarios into the MBPTA:
Trace-merging consists of merging all the traces TCj ∀j ∈ J within a unique trace TC,
TC

def=
⋃

j∈J TCj ; the EVT is applied to TC for deriving C as the worst-case distribution for J .
Envelope consists of applying the EVT to each measurement condition j and get Cj for
all j ∈ J . The worst-case distribution C that upper bounds every j ∈ J is such that:
C def= maxj∈J{C

j} and icdfC(C) def= maxj∈J{icdfCj (C)}.
Measurements representativity with respect to the system behaviors needs the measure-

ments to include every possible execution behavior for the task. Instead of enumerating
all the possible execution conditions for a system, the dominance between some of them
(icdfC1 ≥ icdfC2) and the knowledge of worst conditions would keep the measurements rep-
resentative and allow for worst/safe pWCET estimates. Both trace-merging and envelope
approaches rely on knowing all the measurement conditions.

Task inputs and operational modes contribute to define the execution conditions of the
system and its tasks. Hence, the behavior of multi-mode tasks is assimilated to multiple
execution conditions; trace-merging and envelope are the approaches that can be applied to
multi-mode tasks for guaranteeing worst pWCET and measurement representativity. Figure 4
presents a trace of execution time measurements for a two-mode task, while Figure 5 presents
the three-mode task case.

Multi-Mode Case Study. Some test cases are applied for validating the multi-mode task
study we propose; each test case is represented by a trace of execution times measurements.
The traces are representative of actual execution conditions; the execution times, which are
measured using the tools available for the test cases, are all in CPU cycles.

trace5 is a trace from an industrial avionic safety-critical embedded system (different
than trace1 ) where the task is a two-mode application executing on a multi-core platform.
The task under observation executes on one core, while another core is doing interfering
I/O activities, [24];
trace6 comes from the ns Mälardalen benchmark task implementation6 executed in

6 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.
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Figure 16 CCDF represent-
ation of trace5 decomposed into
trace5_1 and trace5_2.

isolation on a multi-core real-time system, [12]. trace6 describes a four-mode task where
the 4 inputs (for 4 task paths) are randomly picked at runtime;
trace7 is a trace from a FPGA implementation of a multi-core real-time system; it is
obtained from the lms task of the Malardalen benchmark which trace has been obtained
by running the task under observation with interference from other tasks, [7]. The task
trace results into a two operational mode of execution times not controlled whatsoever
(no particular input exercised), and the measurements capture the two different modes
with their effects on the execution time.

Among the possible benchmarks investigated, we report few representative cases of multi-
mode tasks. The traces are processed with diagXtrm; all of these, except the industrial
one, are available at https://forge.onera.fr/projects/diagxtrm2.

Multi-Mode Results. Figure 14 illustrates the two-mode task represented by trace5 ; Fig-
ure 15 details the first part of the trace trace5_1, which describe task execution mode 1. In
order to apply the EVT, trace5 has to be decomposed into two traces trace5_1 and trace5_2,
respectively for the first mode and for the second mode. Only the envelope approach can
be used with trace5 and the reason is that without decomposing trace5 into two traces, h′

1
and h′

3 cannot be verified since the peaks above the threshold would belong to both modes.
Figure 16 details the pWCETs from the two parts of trace5, with trace5_2 dominating
trace5_1. For trace5 if is sufficient to have measurements representative of the worst mode
to guarantee the worst pWCET.

The two-mode trace6 is illustrated in Figure 17; it is possible to apply the EVT to trace6
with the trace-merging approach, because the peak above the threshold would belong only
to the mode with larger execution times (worst mode). With that, both h′

1 and h′
3 can be

confidently verified. The envelope and the trace-merging approaches produces same pWCETs
for ns (trace6 ) because the worst-case condition dominates all the others. Figure 18 depicts
the pWCET estimate and the perfect fit between the pWCET distribution and the measured
execution time peaks (best fitting the input measurements is a critical element for the EVT
application).

The two-mode trace7 is detailed in Figure 19. In order to apply the EVT, trace7 has
to be decomposed into trace7_1 and trace7_2, respectively for the first mode and for the
second mode. Only the envelope approach can be used with trace7 and the two separated
traces. Figure 20 details the pWCETs from the two parts of trace7. The worst pWCET is
the maximum of the two pWCET because none of the modes dominates; the knowledge of
both modes (representativity) is essential in order to conclude about the worst pWCET.

https://forge.onera.fr/projects/diagxtrm2
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As a marginal note, we observe that diagXtrm infers two different shapes for the
pWCET distributions of trace7_1 and trace7_2 ; this is because diagXtrm applies a best fit
procedure to the input measurements, and in [24] it has been demonstrated that only the best
fit guarantees safe pWCET estimates. Only the best fit allows respecting the representativity
of measurements and seeking for the best pWCET shape to cope with that.

When the EVT is not applicable to the full trace (trace-merging) i.e. trace5 and trace7,
the trace has to be decomposed into sub traces each characterizing a task mode; the
representativity has to be preserved by not neglecting any sub trace/mode. Then, the EVT
can applied to all the sub traces (envelope) and with the guarantee of having inferred the
worst pWCET estimate.

5 Conclusions

MBPTA and EVT demand for representative trace of execution time measurements in order
to provide safe and confident pWCET estimates.

In case of statistical dependence, changing execution time measurements and artificially
create independence in order to have "better EVT applications" may cause the effect of
reducing the safety of the pWCET estimates; this is not affordable with worst-case execution
time estimates. The only allowed modifications to execution time traces are the conservative
ones. Instead, with multi-mode tasks and multiple execution conditions, representative
measurements have to include all the execution conditions in order to be able to infer the
worst pWCET; execution conditions cannot be neglected, especially worst-case conditions.

Full coverage of system execution conditions and the dominance between execution
conditions will be thoughtfully investigated in future work. The representativity of the
measurements will be quantified including also the identical distribution hypothesis and other
system parameters. Statistic metrics will be developed to identify pattern and execution
behavior for real-time task. Moreover, the differences between BM EVT and PoT EVT will
continue to be investigated. Special attention will be given to measurements robustness,
measurements representativity and trace changes.
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