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—— Abstract

Over the last 10 years, the automatic partitioning of texts has raised the interest of the community.

The automatic identification of parts of texts can provide a faster and easier access to textual analysis.
We introduce here an exploratory work for multi-part book identification. In an early attempt, we
focus on Gutenberg.org which is one of the projects that has received the largest public support
in recent years. The purpose of this article is to present a preliminary system that automatically
classifies parts of texts into 35 semantic categories. An accuracy of more than 93% on the test set
was achieved. We are planning to extend this effort to other repositories in the future.
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1 Introduction

Over the last 10 years, the automatic partitioning of texts has raised the interest of the
community [6]. In fact, while humans perform text segmentation smoothly during reading,
automatic approaches struggle with the problem of inferring the paragraphemic uses of signs.
The need for this type of research is also driven by the compelling use of computational
methods for literary texts that often do not meet formatting standards [13, 3, 8, 14]. In fact,
such an identification would make a finer textual analysis possible, based on the narrative
parts of the text (i.e., direct speech, footnote, etc.). Nonetheless, there is a twofold difficulty
in this field: on the one hand, the heterogeneity of the encoding methods, which do not
adhere to a general standard, and, on the other hand, the diversity of literary repositories
making it more complex to provide a general method that fits any repository. In order to
tackle this issue, we introduce here an exploratory work for multi-part book identification.
In a first attempt to address the problem, we focus on Gutenberg.org' which is one of the
projects that has received the largest public support in recent years [9, 21, 16]. The purpose
of this article is to present a preliminary system that automatically classifies parts of text
into 35 semantic categories, listed in Table 1. We are planning to extend this effort to other
repositories in the future.

2 Related Work

The tracks proposed by the INEX and ICDAR book structure extraction competitions [6, 15, 7]
share with our paper the same general topic. In these tracks, participants are asked to
submit automated methods for more accurate identification of text parts such as Abstract,
Introduction, Methods, References. Nonetheless, with respect to these challenges, our work
aims to use a manually pre-defined set of categories, which is more related to the work
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proposed by [18]. Our article differs in two main respects: on the one hand, we introduce
a finer definition of the structural categories extending them from 10 to 35 and, on the
other hand, we focus on classifying the parts of the text rather than classifying the pages
themselves. Other authors such as [10, 5, 22] also introduce works whose systems rely on
parsing the table of contents rather than relying on the content of the book itself. Most
of the contributions analyzing the textual content is related to phrases and paragraphs
segmentation [20, 2, 17]. Although the task has a relatively solid tradition, it focuses on
identifying a specific part of the book’s content without taking into account the 35 categories
as shown in Table 1. The choice to consider a broader spectrum of categories has a twofold
reason. On the one hand, the frequency of each of these categories (See Figure 1) justifies the
interest of counting them as relevant. In this way, we also assume that we cover a sufficiently
large number of possibilities should these categories be expanded to include other repositories
of literary texts. On the other hand, the choice is motivated by the fact that some minor
categories (such as epigraphs or figure captions) play a major role in the study of certain
literary and linguistic phenomena. Indeed, a great deal of information relevant to scholars
working in the literary field resides in very fine-grained categories. By having introduced
some subcategories to the macro-categories defined in the Table 1, even though they are
widely less used, we believe we are encouraging scholars in such fields to use this tool for
their research.

3 Experiment

3.1 Dataset construction

For the experiment, we rely on the Gutenberg Project repository since it is one of the most
used repositories in the Digital Humanities [11, 12, 4], with a variety and well-balanced
composition of texts. In fact, it consists of more than 50,000 eBooks (i.e., raw text files) of
many different genres, like fiction, poetry, journal articles or scientific papers. A corpus of
169 texts was randomly collected by Project Gutenberg using the DHTK library provided
by [19]. The corpus includes texts from different eras, genres and authors, to avoid any bias.
Out of 169 texts, 111 have finally been retained, so as to have only texts in English 2. Each
text has been downloaded as a .tzt file.

An initial manual analysis was performed to identify regular patterns to mark the
categories. Then, an automatic file segmentation was applied using regular expressions with
the intention of capturing the 35 categories. Finally, an annotator checked the entire dataset
for double-checking. On the one hand, the annotator checked the accuracy of the algorithm
in capturing each category, and on the other hand, it evaluated the recall of the algorithm
in order to check that the algorithm did not miss any relevant categories. Since the task
was performed by only one annotator, no measure of agreement between annotators was
performed, but each part of the texts was labeled according to one of the categories described
in the Table 1 until the entire corpus were labeled. A final distribution of the 35 selected
categories is shown in Figure 1.

2 Dataset and code are freely available here https://gitlab.com/cgaycrol/gutenberg-files-tagging.
git. A request access can be sent through the gitlab platform
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Table 1 Parts of text identified in the corpus, sorted by category.

Gutenberg header/footer | Book header/footer Section Editorial Text Layout
footer author chapter number caption date layout
footer license bibliography chapter title character direct speech list
footer start book info part number editorial paragraph table
header book title part title footnote place
header end epigraph section number note place and date
header info glossary subtitle play info quote
index
table of contents

3.1.1 Features Engineering.

A selection of 17 features was used. In order to assess their importance, some of them were
manually chosen based on observations during the corpus annotation, others were drawn

from the McConnaughey’s work [18]. The 17 features can be split into three different groups:

textual features, boolean features and numerical features as listed here under.

Textual features:
TFIDF: This is the raw text processed using TFIDF method. This is the most common
feature used in NLP tasks.

First characters: This feature returns the first five characters of a text, including spaces.

This feature seems to be very useful for identifying titles and paragraph.

Last characters : This feature returns the last five characters of a text, including spaces. As
the previous one, this feature seems to be very useful for identifying titles and paragraph.

Class of next part: This feature returns the target class of the next part of text in the
document. Most of the time there exists a repetitive pattern in the classes’ sequence.

Class of previous part: This feature returns the target class of the previous part of text in
the document.

Boolean features:

Ends with punctuation: This feature returns True if the last character of the text part is a
punctuation mark. The parts paragraph, direct speech and quote often end with a punctuation
mark.

First word in capital letters: This feature returns True if the first word of the text part is in
capital letters. The parts chapter number, part number, header end, footer end and book title
often have their first word in capital letters.

Has asterisk : This feature returns True if there is an asterisk in the text part. The parts
header end, footer start and layout often have at least an asterisk.

Has bracket: This feature returns True if there is one bracket in the text part. The parts
footnote, note and caption often have at least one bracket.

Has quote : This feature returns True if there is one quotation mark in the text part. The
parts direct speech and quote have at least one quotation mark.

Has reporting verbs: This feature returns True if there is one reporting verb in the text part.

W

Reporting verbs are verbs transmitting the action of speaking, such as “say”, “explain” or

“think”. The part direct speech often has one reporting verb.
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Numerical features:
Part length: This feature returns the length of the text part as an integer. The parts
paragraph are often longer than other parts.

Ratio symbol: This feature returns the ratio in the text part between the number of symbols
and the total number of characters. Symbols are for example currency symbols and hashtags.

Ratio uppercase : This feature returns the ratio in the text part between the number of
uppercase letters and the total number of letters. The parts header info, book title, chapter
title and part title often have words in uppercase letters.

Ratio word/lemma: This feature returns the ratio between the number of lemmas and the
number of words.

Ratio word with first capital letter: This feature returns the ratio in the text part between
the number of words with their first letter in uppercase and the total number of words. In
English, words in titles begin usually with a capital letter. Therefore, the parts header info,
book title, chapter title and part title often have words with their first letter in uppercase.

Relative position : This feature returns the relative position of the text part in the document.

3.2 Experiment and Results

We approached the problem as a multi-class classification task. The 102,461 target classes of
text found in the 111 texts of the corpus (as described in 3.1) were randomly assigned into a
training and a test set, given a ratio of 0.33 with the distribution shown in Figure 1

Distribuition on a log scale
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Figure 1 Distribution of target classes on a log scale.

To explore the problem we compared four inherently multiclass classifiers as suggested
by [1] and shown in Table 2. Moreover, in order to offset the class imbalance, where possible,
we weighed the classes using the following formula: % where X is the cardinality of
samples, T" is the total number of target classes and f is a function counting the number of
elements ¢t € T" whose values lie in successive integer bins.

Three algorithms out of four achieve an overall accuracy of 93% on the test set as shown
in Table 2. It can be noticed that, with the exception of the Bernoulli Naive-Bayes classifier,
all other classifiers perform encouragingly for each category, crossing an F-Measure of over
90% for almost every class.
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The only classes for which the classifiers do not perform well are dates and places, likely
due to the paucity of examples in the training set.

One-feature classifiers and combined-features classifiers were built to compare the per-
formance of individual features on the classification process, similarly as proposed by [20].

Table 2 F-Measure for each classifier based only on one-group feature and all-combined features.

LinearSVC | KNeighbors | DecisionTree | BernoulliNB
Textual features 0.940526 0.876941 0.865288 0.59276
Boolean features 0.584775 0.621152 0.647887 0.611008
Numerical features | 0.42253 0.721438 0.765327 0.483542
All features 0.953125 0.946322 0.933369 0.657085

Table 2 shows the F-Measure scores of the three feature groups and all combined features
respectively.

Figure 2 shows the F-Measure report for each target class and for each classifier. The
classes date, place, place and date are poorly predicted likely due to the lack of support items.
While there is room for improvement, the reliability of currently available NERs mitigates
the severity of such a negative result. Looking at Table 2, we notice that not all features
work equally well. There is a clear distinction between textual and non-textual features.
While textual attributes correctly predict almost 9 times out of 10, Boolean features have
an overall accuracy of 63% and numeric features hardly get close to 50% for LinerSVC and
BernoulliNB.
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Figure 2 Comparison of F1 Measure on target classes for each classifier.

If we analyze the importance of features by group, we clearly notice that the textual
features (see Figure 3) achieve an accuracy of more than 75% and can accommodate almost
any class reflecting the importance of the spelling and textual features for this task.

In particular, the textual features Type of the previous part and Type of the next part
help to classify the sections according to their location and the surrounding parts in the text.
For example, these two features identify the indexr with almost perfect accuracy, while other
textual features do not work well for that specific class.
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Figure 3 F1 measure for textual features.

Then, Boolean features (see Figure 4) do not perform well on the majority of classes.
Those features were developed primarily to identify specific parts of the text.
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Figure 4 F'1 measure for Boolean features.

The feature Has asterisk was meant to identify the layout, as there are almost always
asterisks. According to the table, it predicts a layout category with an accuracy of 98%.
Similarly, the Boolean feature Has quote is effective to identifying direct speeches thanks
to the presence of quotation marks. Other Boolean features were not able to predict other
classes. This is the case for the feature Has bracket, which was meant to identify footnotes
and captions, as these parts are almost always contained between brackets in Gutenberg
texts.
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Like boolean features, numerical features (see Figure 5) fail to predict the majority of text
parts. Interestingly, as far as numerical features are concerned, they have a different effect
depending on the algorithm used. In fact, they seem to perform better with the DecisionTree
algorithm than the others. Just as the BernoulliNB algorithm seems to outperform with the
Boolean features.
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Figure 5 F1 measure for numeric features.

It is interesting to note that parts such as direct speeches or quotes, which in principle
are similar in spelling, achieve results with a high percentage deviation due most likely to
the lower number of supports for quotations.

However the general system shows very good results reaching scores above 90% for many
classes. In particular, looking more closely at Figure 2, we can observe that some specific
parts such as captions, numbers and titles of the chapter, as well as the direct speeches and
footers achieve results above 90%.

4  Conclusion and Future Work

This paper presents a system for the automatic identification of parts of literary texts in
the Gutenberg repository. Its aim is to provide scientists in the field of humanities with
a tool to ease and fasten the access to textual analysis by identifying the narrative parts
that are relevant to the textual analysis. With an overall accuracy of 93%, the system offers
satisfying results.

The best performing features are the textual ones, which succeed in predicting almost all
classes. Boolean and numerical features did not have a major influence on the classification,
but help to identify specific parts of text. The two most recurrent classes, direct speech and
paragraph, have been identified with a degree of precision of 95%. This high precision score
is an encouraging result, as these two classes are the most relevant parts for textual analysis
in literature.

In the future, further attention will be given to textual features. It would be interesting to
explore these results further, by adding new textual features in order to improve the overall
classification accuracy. In addition, we are planning to implement a systematic comparison
between different classification algorithms. Our aim is to explore thoroughly the influence of
each text feature in order to gain a better comprehension of the phenomenon.
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