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—— Abstract

We propose a new live-migration paradigm for virtual machines called zero-copy migration. By making
the working set of the virtual machine available on the destination host through transparently byte-
addressable disaggregated memory, we remove the need for a pre-copy phase while simultaneously
reducing the performance impact of the post-copy phase. We describe an open-source implementation
of the proposed paradigm based on QEMU-KVM and libvirt, and we evaluate the efficiency of the
approach with a deployment on a functional hardware prototype of a memory disaggregation system
realized using ThymesisFlow. Using a series of configurable benchmarks, we show that the lead time
and blackout time of the migration are equal to best-case scenarios of traditional pre-copy, post-copy
and hybrid approaches. Key performance metrics from the perspective of applications running in
the virtual machine, such as memory latency and throughput, are improved by up to three orders of
magnitude, increasing both flexibility and responsiveness of live-migrations in the datacenter.
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1 Introduction & Motivation

Flexibility of deployment and serviceability of the infrastructure are key features of the
cloud datacenter. Workloads are contained in Virtual Machine (VM) instances as a unit of
deployment with diverse resource footprints. This results in an unbalanced allocation of server
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resources that creates fragmentation over time. VM migration is a useful tool to rearrange
workloads, and both mitigate resource fragmentation as well as respond dynamically to
deployment challenges without losing availability. However, live-migrating a virtual machine
between physical machines incurs a severe penalty on the service quality of the contained
workload. Both in literature and in practice it has been established that the performance
implications of migrating VM instances with large memory footprints and write-intensive
guest workloads can be so substantantial as to render the instance un-migratable [17].

However, modern applications such as graph analytics, in-memory databases and artificial
intelligence oriented applications require increasingly large amounts of memory, in the order
of hundreds of Gigabytes[21]. Migrating VMs hosting such workloads and transferring such
large amounts of data over the network saturates the available network bandwidth, interfering
with applications running on the infrastructure, and further exacerbating the performance
issues of traditional live-migration approaches.

Techniques exist that are aimed at mitigating these issues, such as using Remote DMAs
(RDMA) [9]. While these solutions are indeed effective, they don’t completely mitigate the
latency degradation during post-copy transfers, and consequently don’t solve the problem of
migrating very large VM instances.

The advent of Composable Disaggregated Infrastructures (CDI) [3], and in particular
the ability of accessing remote memory over a standard PCle 5.0 fabric thanks to Computer
Express Link (CXL) [5] fabric interconnect standard, opens new avenues for improving
virtual machine migration techniques. In a CDI, the physical boundaries of a server become
indistinct. Memory and compute resources are broken into disaggregated components over
a dedicated network fabric and can be composed via software. Existing prototypes show
that in the near future, systems may become commercially available that have the ability
of transparently accessing memory from a shared pool or from neighboring nodes with a
load/store semantic. CXL also shows promise of breaking the bandwidth bottleneck of
modern x86 based server processors [2] in a similar manner that the introduction of the
Open Memory Interface (OMI) allowed on POWER10™ systems. CXL over ethernet is also
being explored [20], both with the possibility of forming memory pools, but also for allowing
disaggregated access to a nodes private memory.

In this paper we present the first implementation of virtual machine live-migration based
on disaggregated memory. To evaluate the approach on real hardware, we utilize the open-
source disaggregated memory prototype, ThymesisFlow [18] that enables borrowing memory
from a neighboring machine. Although ThymesisFlow relies on the OpenCAPI [14] coherent
interconnect and is targeting IBM POWER9™ based server systems, the approaches outlined
in this paper are independent of the choice of disaggregated memory interconnect and are
applicable to similar architectures created on the basis of CXL or other technologies. We
investigate how traditional live-migrations of virtual machines can utilize disaggregated
memory as a medium for memory access and transfer, in order to improve the performance
metrics from the perspective of both the hypervisor and the guest workload during the
migration.

2 State of the Art

VM live migration was first presented as a response to the necessity for more flexible
workload distribution in the datacenter by Clark et al. and Nelson et al. on both the
Xen and VMWare VSphere virtualization platforms [1][4][12]. Virtual machine instances
present the opportunity of migrating self-contained units of work, mutually independent
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Figure 1 The phases of virtual machine migration, highlighting the duration in which the machine
is paused and thus the service unavailable (blackout time) as well as the duration in which the
service is degraded (brownout time).

and decoupled from the operating system, as opposed to previous work which focused on
the migration of individual processes. Later approaches extended the scope of live virtual
machine migration to new transfer media such as wide area networks [7] and RDMA [19]. To
further mitigate the performance impact of live-migrations, the pre-copy paradigm heavily
utilized in traditional VM migrations has been steadily improved [8, 11] and the post-copy
paradigm was introduced [6], enabling hybrid migrations that combine the benefits of pre-
and post-copy. In 2018, Ruprecht et al. have described the application of VM migration in
Google datacenters and outlined the necessity for an improved deployment flexibility with
minimal application downtime. They have also shown that using state-of-the-art migration
technologies, the performance impact on guest systems is still a relevant concern [16].

2.1 Sequence of a Traditional Hybrid VM Live-Migration

Figure 1 outlines the sequence of a standard virtual machine live-migration utilizing both a
pre- and post-copy phase and summarizes their associated impact on the guest. First is a
pre-copy phase, in which memory pages are transferred concurrently from the source to the
destination host. The degradation of the guest system due to the introduced contention on
the memory subsystem is described as a pre-copy brownout.

After concluding the pre-copy phase, the virtual machine is paused on the source and the
state of the runtime is transferred to the destination to be resumed there. In the blackout
time between pausing and resuming the virtual machine, the services provided by the guest

are unavailable.

Lastly, when the guest has been successfully resumed on the destination, the remaining
memory pages are transferred in a post-copy phase. During this phase the guest performance
can be degraded significantly if memory pages are accessed that are not yet locally available
on the destination, leading to a post-copy brownout where the application must wait for the
memory to be transferred from the source before execution can continue.
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2.2 Beyond State of the Art

While both post-copy and pre-copy phases of the virtual machine migration have been shown
to be useful techniques to reduce the duration of the blackout time and increase service
availability, both techniques have disadvantages. During the pre-copy phase, pages that are
overwritten (dirtied) by the guest after successful transfer to the destination will need to be
invalidated, and eventually re-transferred. As a consequence, workloads that produce frequent
write accesses drastically reduce the effectiveness of a pre-copy phase[10]. Conceptually, the
pre-copy phase also introduces a lead-time delay between initiating the migration and the
release of the compute resources on the source, which may be undesirable when the migration
needs to be performed quickly, for example to reduce thermal load.

Similarly, the post-copy phase can cause severe performance issues if the guest frequently
needs to wait for the remote memory to become available. Access to pages not yet migrated
would require the generation of traffic on the network, a physical link characterized by much
higher latency compared to the memory bus. As a consequence, applications that exhibit
unfavorable memory access patterns can become unresponsive during traditional migrations,
leading to service downtime much longer than the machines apparent blackout time.

The introduction of disaggregated memory with the paradigm of zero-copy live-migrations
allows the migration of virtual machines unimpeded by these issues. Zero-copy live-migration
means that the memory of the guest can be made immediately and transparently byte-
addressable on the destination without the need to pre-copy any memory, and without
incurring expensive page-faults when accessing remote memory. The virtual machine can be
paused on the source and immediately resumed on the destination, eliminating the lead-time
delay and minimizing the blackout time. Coupled with a modified post-copy phase also
utilizing the disaggregated memory to efficiently copy and re-map the memory from the
source to the destination, the virtual machine can be migrated completely with greatly
reduced performance degradation during the post-copy brownout phase when compared to
traditional live-migrations.

Very recently, first steps have been made to design a virtual machine migration over
CXL by the nil-migration project [13], utilizing CXL 3.0 to create a shared disaggregated
memory pool device. To perform the migration, the working set of the virtual machine on
the source will be transferred to pooled memory, and then transferred back to local memory
on the destination. However, no concrete implementation and evaluation of the technique is
available at the time of writing this article. In our prototype, we don’t use a memory pool
and instead directly promote the private memory of the source machine that contains the
working set of the virtual machine instance to shared memory. However, the same approach
could be used in case of a pooled memory system.

3  Architecture of the Memory Disaggregation Prototype

This work is based on a real hardware-based disaggregated shared memory system, im-
plemented thanks to the ThymesisFlow [15] [18] open-source project. ThymesisFlow is a
HW/SW framework that uses OpenCAPI [14] attached FPGAs to enable memory disaggre-
gation across IBM POWER9™ servers via the memory borrowing template (Figure 2). The
minimum working system is composed of two nodes: a lender and a borrower. The lender
node is capable of reserving a portion of its local main memory for access from a remote
machine. The borrower accesses memory from a remote lender using load/store semantics, as
if the memory was physically attached to it. The remote memory is attached to the lender
machine using either the abstraction of an additional, CPU-less, NUMA node or as a memory
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Figure 2 Abstract representation of the ThymesisFlow HW /SW prototype.

mapped file. On the hardware side, each node part of a ThymesisFlow deployment must
support OpenCAPI and be equipped with a supported FPGA card. In the case of this paper,
we used IBM 1C922 POWER9™ gervers and AlphaData 9V3 FGPAs.

On the software side, ThymesisFlow offers libthymesisflow which consists of a set of
user-space applications that are used for controlling the configuration of the FPGAs and
the actual attachment of memory to the borrower OS memory subsystem. Memory in
ThymesisFlow can be assigned in exclusive mode to the borrower or shared between borrower
and lender machine. In the exclusive mode, the borrower can decide to hotplug the memory
to the OS or to access it via a custom mmap and Linux character device (useful for assigning
memory to a specific application/process). In the shared case, instead, both parties can
either use the shared memory library (libtfshmem) provided as part of the ThymesisFlow
suite or have the memory exposed as a memory mapped file. In this paper we leverage the
shared memory via memory mapped file.

Logically this disaggregated memory architecture is what we call a peer-to-peer approach,
where every node in the system is able to map every other nodes memory. In contrast, there
is the pool architecture with a separate memory pool, which nodes with private memory
can map and share. While we require the former architecture, it is possible to adapt our
prototype to the latter as well. Additionally, even though the underlying technology is
OpenCAPI, which has been merged with the CXL Consortium in 2022, our techniques can
be applied to CXL as well. That said, the integration of CXL in Thymesisflow is beyond the
scope of this work.

4 Design of the VM Migration

We implemented the disaggregated zero-copy virtual machine migration by extending the
open-source virtualization and system emulation software QEMU-KVM'. QEMU-KVM is a
type 1 hypervisor in Linux, capable of supporting both hardware accelerated virtualization
backends, as well as advanced platform and orchestration abstractions such as libvirt. For
the live-migration of virtual machines, QEMU already natively supports the pre- and post-
copy paradigms. The existing advanced migration capabilities of QEMU, coupled with the
well-documented and active open-source codebase and community made it an ideal testbed
for implementing the zero-copy live migration. To implement our prototype, we extended
QEMU to enable a migration from the disaggregated memory lender to the borrower.

L Our modifications to QEMU are also open source and available via https://github.com/disaggr/
gemu/tree/thymesisflow
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Figure 3 A conceptual visualization of the page table mappings provided to QEMU during the
zero-copy migration.

To enable the disaggregated live-migration, we replace the live-migration memory moving
behavior of QEMU both on the source and the destination by supplying the relevant function
tables with custom implementations. We disable the pre-migration handling of all RAM
blocks, so no pre-copy phase can occur on the source, and install a custom handler for the
post-copy phase.

4.1 Organizing the Memory Backing Store

In order to make the disaggregated memory available to the virtual machine on both the
source and destination, we utilize the file-mapped memory backends implemented in QEMU
to provide the VM with the same view of its memory on both the borrower and lender
side. To achieve this, we create a shared memory segment of sufficient size on the lender
side and supply its path to QEMU. This memory segment is shared with the ThymesisFlow
Agent that communicates with the FPGA and that owns the memory that is lent to the
borrower. By using a shared memory segment for this lent memory, we can make sure that
the memory presented on the lender side is consistent with the memory on the borrower side
after migration.

On the borrower, the system is configured with a custom kernel module to interface with
the FPGA and present the remote memory as a special character device that supports the
mmap system call. We configure QEMU to use this character device as mapping file for the
VM memory. This ensures that the order of the memory pages is preserved from lender to
borrower side, making the view on the physical address space from the perspective of the
guest identical on both source and destination. The layout of the addresses and translations
is visualized in Figure 3. This way, with one exception outlined below, all memory remains
transparently accessible to the guest machine at all times, even while the memory is being
copied during the post-copy phase.

4.2 Disaggregated Post-Copy Transfers

To implement a disaggregated post-copy transfer, we start a concurrent thread that incremen-
tally moves the VM memory from the source to the destination by copying and immediately
remapping pages of memory as outlined in Figure 4.
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Figure 4 A conceptual visualization of the RAM transfer in QEMU during the disaggregated
post-copy phase.

Each page is transferred in three steps. Firstly, to avoid data loss during the small time
window of transfer, the page is briefly locked for writing, such that no VM thread may be
modifying a page that is currently being moved from source to destination. This lock causes
an access violation to occur in case the guest does write to the locked memory, upon which
the failed memory access is deferred and retried. Secondly, the page is transferred from the
lender to the borrower. Finally, the page is used to replace the mapping of the corresponding
page of remote memory in the VMs working set, and the write lock is lifted, completing the
page transfer.

4.3 Finishing the Migration

The remainder of the virtual machine state, such as the CPU registers and the device
configurations, are transferred via the network using the existing implementation in QEMU.
If the disaggregated post-copy phase is enabled, all memory of the VM will be local on
the destination after the migration completes. Otherwise, in cpu-only mode, the live-
migration completes with all memory remaining remotely but still entirely transparently
byte-addressable on the borrower machine.

5 Performance Evaluation

In the evaluation of the performance characteristics of the different types of VM migration,
we distinguish between two types of performance metrics that we can observe in our testbed.

Macro-properties of the migration are performance characteristics observable by the host
system and the virtual machine process, including the total time of migration, total ram
transferred and the blackout and pre- and post-brownout times of the guest.
Micro-properties of the migration are performance characteristics that are internal to
the VM and are observable by the guest workload processes. These metrics include the
memory latency and the application throughput during the migration.

To evaluate the performance characteristics of the zero-copy virtual machine migration, we
compare our approach against state-of-the-art hybrid live-migration and analyze individual
migration runs to gain insight on the behavior of the guest in order to determine the impact
of a migration.

3:7

PARMA-DITAM 2024



3:8

Zero-Copy VM Migrations Using Disaggregated Shared Memory

5.1 Infrastructure setup and orchestration

The testbed used for this evaluation is described in Section 3. A third machine on the same
network was used to host the evaluation orchestrator and remotely collect the performance
data of the migration.

We use ansible playbooks and libvirt? to automate repeatable runs of the benchmarks, as
well as orchestrate the virtual machines and make the required hypervisor calls. The virtual
machine subjected to the live-migration is a Debian bullseye GNU/Linuz installation with 2
virtual CPUs, 20GiB of RAM, and configured with an unmodified kernel and firmware3.

5.2 Description of the Benchmarks

One of the most influential factors on the migration of a virtual machine is the memory
behavior of the guest. In particular, the rate at which the guest machine produces dirtied
pages of memory can influence both the macro and micro performance characteristics of
the migration. A second important factor to consider is the memory access pattern of the
guest workload. For this reason, we implemented the SMOG microbenchmark suite* capable
of producing dirtied pages in the guest at a configurable rate. We also extended SMOG
to be capable of accessing memory at configurable access patterns, such as a randomized
pointer-chaser workload. These configurable workloads are a useful tool to examine the micro
performance characteristics of the guest during migration, in particular memory latency and
throughput.

5.3 Memory Latency Degradation during the VM Migration

In this work, we try to investigate the detailed performance characteristics of the guest under
the stress of the migration, where certain areas of the memory may still be unavailable, or
only available at high latency costs.

Figure 5 visualizes the average latency in nanoseconds of the randomized pointer-chasing
workload of SMOG over a 16GiB memory region over the course of the migration. The
graphs show that before the migration starts and after it concludes, the memory latency
rests at a consistent low average of 80 nanoseconds, which is in alignment with the local
memory latency of the machines in our testbed.

During the migration, the impact of the remote memory on the workloads average latency
can be separated into two phases. With the start of the migration at a time of 0.0 seconds, the
measurements show a sharp increase in latency. This is due to the high latency of the memory,
which at this point resides entirely in the remote memory of the lending machine. Since the
caches on the borrowing machine are cold and the page tables of the guest machine, which
are required by the guest to make memory accesses are also not prefetched, the first accesses
to the remote memory are expensive. Through the caching of the page table structures in the
L3 cache as well as the beginning transfer of the physical memory region of the VM, we can
observe a sharp decrease of the memory latency during the first few seconds of the migration.
Once the majority of the page tables used by the benchmark have been transferred or cached,

The playbooks and scripts used to create the performance measurements used in this evaluation are
available on github: https://github.com/disaggr/vm-migration-public

The scripts used to bootstrap and configure the guest systems is available on github via https:
//github.com/disaggr/qemu-image-factory

the SMOG benchmark suite is open-source and available on github via https://github.com/disaggr/
smog
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Figure 5 The memory latency as measured by a randomized pointer-chasing workload during
both state-of-the-art hybrid and disaggregated zero-copy migrations.

the memory latency decrement levels out into the second phase, in which the amount of
transferred working set pages of the pointer chasing workload determines the average latency,
which decreases linearly with the remaining portion of remote pages.

In total, approximately 10 percent of the memory has to be transferred more than once
during the migration. This corresponds to cache lines that are requested by the guest
MMU and provided by ThymesisFlow before the pages are transferred by the RAM mover
thread in gqemu. When compared to the hybrid migration, it becomes evident that the
average memory latency of the guest workload during the zero-copy migration is up to 3
orders of magnitude lower than for the state-of-the-art approach. There are two reasons
for this dramatic difference. Firstly, the post-copy migration relies on expensive page-fault
mechanisms to make the remote memory locally available. Secondly, the disaggregated
memory benefits from a finer granularity of the transferred memory, since only cache-lines of
128 Bytes are transferred for each remote memory request, whereas traditional post-copy

transfers entire pages of 4 KiB of memory, which further impacts the average memory latency.

5.4 Memory Throughput Degradation during the VM Migration

The second metric we investigated is the throughput of SMOG processing a sequential
combined read/write workload with strides equal to the memory page size. For this benchmark,
SMOG was configured to a nominal throughput of 16 GiB/s of memory pages every second,
and we measured the actual throughput during migration and visualized the results in
Figure 6.

Similarly to the compared memory latency metrics, the throughput of the benchmark
running in the disaggregated post-copy phase consistently outperforms the benchmark running
in the traditional post-copy phase. It is noteworthy that the pre-copy phase of the hybrid
migration provides little benefit to both latency and throughput due to the write-heavy
workload configuration.
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Figure 6 The memory throughput as measured sequential memory read/write workload during
both state-of-the-art hybrid and disaggregated zero-copy migrations.

5.5 Analysis of Migration Times and Transferred Ram

We additionally compared two types of performance metrics of the virtual machine migration
from the perspective of the hypervisor. Firstly, the total amount of memory transferred
as an indicator of increased contention on the network, which may be shared between the
implementation of the migration and services running on the same network. In this context,
the following times are particularly of interest.

Total Time of Migration — The time between initiating the migration until it is completed.
Blackout Time — The time in which the guest is paused, and no CPU cycles are allocated
to applications and services running in the guest.

Pre- and Post-Copy Brownout Time — The time in which the performance of the appli-
cations and services running in the guest are degraded because of an active pre-copy or
post-copy transfer.

Migration Delay — The time between initiating the migration until the execution of the
guest is paused and the last CPU cycle is allocated to the guest and its applications and
services running on the source machine.

Some of these metrics are independent of the differences between a zero-copy and a
traditional live-migration. For instance, the blackout time of zero-copy live-migrations is
guaranteed to be equal to the best case of traditional migrations. Also, the total time of
migration as well as the duration of the brownouts will only depend on the size of the VM
working set and the bandwidth of the transfer medium. However, by using a dedicated
medium for the disaggregated memory transfer, we reduce resource contention on the network,
which may be relevant to some applications. A comparison of the total time of migration, and
the related metric of total amount of ram transferred are outlined in Figure 7 for different
amounts of memory dirtying rate by the guest workload, as well as different types of VM
migration.

Our measurements reaffirmed the known issue that pure pre-copy migrations can become
unable to meet the threshold of valid pages on the destination for higher rates of dirtied
memory in the guest. Because these are academic edge-cases, we are not showing the full
extent of these effects on the plots. In real world scenarios, typically a hybrid live-migration
approach is used, which limits the number of passes during the pre-copy phase, but still uses
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Figure 7 A comparison of the total time of migration and total transferred memory during both
traditional and disaggregated virtual machine migrations.

a pre-copy phase to help mitigate the performance impact of the post-copy phase. In our
experiments, the hybrid migration introduced a maximum overhead of the size of the memory
region used by the benchmark. The disaggregated migrations also incur a slight overhead in
transferred ram due to memory that is being accessed remotely by the application before
being transferred to the borrower. This overhead is also visible in the total time of migration,
but this comparison is dominated by a difference in the throughput between our hardware
prototype and the network. We expect that future hardware for disaggregated memory will
show even more impressive results and easily bridge that gap in throughput.

In consequence, the zero-copy virtual machine migration paradigm is capable of migrating
virtual machine instances regardless of working set size or workload behavior with both a
greatly reduced performance impact on the guest, as well as a more predictable runtime
behavior than traditional virtual machine migration techniques, pushing the boundaries for
datacenter workload placement flexibility and transparency of deployment.

6 Conclusions and Future Direction

In this paper, we have introduced the concept of a disaggregated zero-copy virtual machine
migration utilizing byte-addressable, disaggregated shared memory, for which we have used
the ThymesisFlow prototype technology. We have shown that using disaggregated memory
for the resource sharing and transfer during a virtual machine migration is beneficial in
two ways. Firstly, from the perspective of the hypervisor it shows potential to improve the
flexibility of migrating resources through reduced delays, and to mitigate problems with
write-intensive guests. Secondly, from the perspective of the application the degradation of
memory latency and throughput are greatly reduced when compared to traditional post-copy
migrations. In conclusion, we believe that resource migration, and in particular virtual
machine migrations in cloud datacenters are a good use-case for newly emerging memory
disaggregation technologies. In future work, it needs to be evaluated whether memory
pools could also be utilized in a similar manner, and how CXL shared resources as defined
in the recently released CXL 3.0 standard could be utilized to that regard, to make the
concept outlined in this work more widely available. In the future, fully disaggregated virtual
machine working sets could become possible, where the migration could be reduced to merely
reallocating the compute resources of the virtual machine instances inside the datacenter.
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