
Backdoor Sets for CSP∗

Serge Gaspers1, Sebastian Ordyniak2, and Stefan Szeider3

1 UNSW Australia (The University of New South Wales), Sydney, Australia; and
Data61 (formerly: NICTA), CSIRO, Australia
sergeg@cse.unsw.edu.au

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ordyniak@ac.tuwien.ac.at

3 Algorithms and Complexity Group, TU Wien, Vienna, Austria
szeider@ac.tuwien.ac.at

Abstract
A backdoor set of a CSP instance is a set of variables whose instantiation moves the instance into
a fixed class of tractable instances (an island of tractability). An interesting algorithmic task is
to find a small backdoor set efficiently: once it is found we can solve the instance by solving a
number of tractable instances. Parameterized complexity provides an adequate framework for
studying and solving this algorithmic task, where the size of the backdoor set provides a natural
parameter. In this survey we present some recent parameterized complexity results on CSP
backdoor sets, focusing on backdoor sets into islands of tractability that are defined in terms of
constraint languages.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Backdoor sets, Constraint satisfaction problems, Parameterized complex-
ity, Polymorphisms

Digital Object Identifier 10.4230/DFU.Vol7.15301.137

1 Introduction

The Constraint Satisfaction Problem (CSP) is a central and generic computational problem
which provides a common framework for many theoretical and practical applications [32].
An instance of CSP consists of a collection of variables that must be assigned values subject
to constraints, where each constraint is given in terms of a relation whose tuples specify the
allowed combinations of values for specified variables. The problem was originally formulated
by Montanari [47], and has been found equivalent to the homomorphism problem for relational
structures [19] and the problem of evaluating conjunctive queries on databases [37]. In general,
CSP is NP-complete. A central line of research is concerned with the identification of classes
of instances for which CSP can be solved in polynomial time. Such classes are often called
“islands of tractability” [37, 38].

A prominent way of defining islands of tractability for CSP is to restrict the relations that
may occur in the constraints to a fixed set Γ, called a constraint language. A finite constraint
language is tractable if CSP restricted to instances using only relations from Γ, denoted

∗ NICTA was funded by the Australian Government through the Department of Communications and the
Australian Research Council (ARC) through the ICT Centre of Excellence Program. Serge Gaspers is
the recipient of an ARC Future Fellowship (FT140100048) and acknowledges support under the ARC’s
Discovery Projects funding scheme (DP150101134). Stefan Szeider acknowledges the support by the
Austrian Science Fund (FWF), grant reference P26696.

© Serge Gaspers, Sebastian Ordyniak, and Stefan Szeider;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 137–157

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.137
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3

138 Backdoor Sets for CSP

CSP(Γ), can be solved in polynomial time. Schaefer’s famous Dichotomy Theorem [52]
identifies all islands of tractability in terms of tractable constraint languages over the two-
element domain. Since then, many extensions and generalizations of this result have been
obtained [11, 34, 39, 53]. The Dichotomy Conjecture of Feder and Vardi [18] states that for
every finite constraint language Γ, CSP(Γ) is either NP-complete or solvable in polynomial
time. Schaefer’s Dichotomy Theorem shows that the conjecture holds for two-element
domains; more recently, Bulatov [4] showed the conjecture to be true for three-element
domains.

If a CSP instance does not belong to a known island of tractability, none of the above
tractability results apply. What if an instance does not belong to an island, but is “close” to
an island in a certain way? Can we exploit this closeness algorithmically and possibly scale
the island’s tractability to the considered instance? In order to answer this question one
needs to provide a definition for the distance of a CSP instance from an island of tractability
(or, more generally, from a class H of CSP instances). The notion of (strong or weak)
backdoor sets, introduced by Williams et al. [55], provides natural distance measures. A
strong backdoor set of a CSP instance I into a class H of CSP instances is a set B of variables
of I such that for all instantiations of the variables in B, the reduced instance belongs to H
(we provide a more formal definition in Section 2.5). The set B is a weak backdoor set if for
at least one instantiation the reduced instance is satisfiable and belongs to H.

Once we know a strong backdoor set of size k into an island of tractability H for a
CSP instance I over a finite domain of size d, we can solve I by solving at most dk many
tractable instances that arise by all the possible instantiations of the backdoor set (I is
satisfiable if and only if at least one of the reduced instances is). Similarly, if we know a
weak backdoor set of size k, we can actually find a satisfying assignment again by solving all
reduced instances that arise from instantiating the backdoor set and belong to H. The size
of a smallest backdoor set provides a notion of distance of the instance from H.

Overall, if we can solve an instance I of a class H in polynomial time, say in time p(|I|),
then we can solve an instance for which we know a strong backdoor set of size k into H
in time dkp(|I|). This is an exponential running time with the special feature that it is
exponential not in the instance size |I|, but in the domain size and backdoor set size only.
Problems that admit solution of this type are called fixed-parameter tractable [13]. In fact,
fixed-parameter tractability provides a desirable way of scaling with the parameter (in this
case, the backdoor set size), much preferred over a scaling of the form |I|k, where the order
of the polynomial depends on k.

The backdoor set approach for CSP consistes of two parts, first finding a possibly small
backdoor set and second using the backdoor set to solve the CSP instance.

This brings up the question: under which circumstances one can efficiently detect a weak
or strong backdoor set of size at most k, if one exists? Stated more specifically: under which
circumstances is the problem of detecting a weak or strong backdoor set fixed-parameter
tractable when parameterized by the size of a smallest backdoor set?

The systematic study of the parameterized complexity of this backdoor set detection
problem in the context of propositional satisfiability (SAT) was initiated by Nishimura et
al. [48], and has since then received a lot of attention (see the survey paper [29]). Over the
last few years, this research has been extended to the area of CSP and the present article
provides a survey for some of the results in this direction. Namely we will focus on strong
backdoor sets into classes of CSP instances defined via restrictions on the allowed constraint
languages.

This survey is structured as follows: In Section 2 we provide the preliminaries about
CSP, parameterized complexity, and the backdoor set approach. We also show the first

S. Gaspers, S. Ordyniak, and S. Szeider 139

very general results about the application of the backdoor sets approach to CSP that will
provide the skeleton for the results in the remaining sections. Sections 3–6 cover the main
results of this survey, i.e., they cover the application of strong backdoor sets to CSP using
more and more general and evolved base classes defined via restrictions on the constraint
language. Starting with base classes defined via a single constraint language in Section 3
the exposition goes on to cover bases classes defined via finite and infinite sets of constraint
languages in Sections 4 and 5. The results presented in Sections 3 and 4 are based on [28]
and the results from Section 5 are based on [26]. Section 5.1 then gives an overview how the
results in Section 5 can be applied for Valued CSP and are based on [25]. Section 6 is based
on recent work [27] and outlines how even large backdoor sets can be exploited, as long as
the backdoor set induces a graph with a sufficiently simple structure. Section 7 is devoted to
a brief exposition of related work. We conclude in Section 8.

2 Preliminaries

2.1 Constraint Satisfaction
Let V be an infinite set of variables and D a finite set of values. A constraint of arity ρ over
D is a pair (S,R) where S = (x1, . . . , xρ) is a sequence of variables from V and R ⊆ Dρ is a
ρ-ary relation. The set var(C) = {x1, . . . , xρ} is called the scope of C. A value assignment
(or assignment, for short) α : X → D is a mapping defined on a set X ⊆ V of variables.
An assignment α : X → D satisfies a constraint C = ((x1, . . . , xρ), R) if var(C) ⊆ X and
(α(x1), . . . , α(xρ)) ∈ R. For a set of constraints I we write var(I) =

⋃
C∈I var(C) and

rel(I) = {R : (S,R) ∈ C,C ∈ I }.
A finite set I of constraints is satisfiable if there exists an assignment that satisfies all the

constraints in I. The Constraint Satisfaction Problem (CSP, for short) asks, given a finite
set I of constraints, whether I is satisfiable. Therefore we refer to a finite set of constraints
also as a CSP instance.

Let α : X → D be an assignment. For a ρ-ary constraint C = (S,R) with S = (x1, . . . , xρ)
we denote by C|α the constraint (S′, R′) obtained from C as follows. R′ is obtained from
R by (i) deleting all tuples (d1, . . . , dρ) from R for which there is some 1 ≤ i ≤ ρ such that
xi ∈ X and α(xi) 6= di, and (ii) removing from all remaining tuples all coordinates di with
xi ∈ X. S′ is obtained from S by deleting all variables xi with xi ∈ X. For a set I of
constraints we define I|α as {C|α : C ∈ I }.

A constraint language (or language, for short) Γ over a finite domain D is a set Γ of
relations (of possibly various arities) over D. By CSP(Γ) we denote CSP restricted to
instances I with rel(I) ⊆ Γ. A constraint language Γ is globally tractable if there is a
polynomial-time algorithm solving any CSP instance I ∈ CSP(Γ) in polynomial time. A
constraint language Γ is efficiently recognizable if there is an algorithm, which, for any CSP
instance I, determines whether rel(I) ⊆ Γ in time polynomial in |I|. Clearly, every finite
constraint language is efficiently recognizable.

2.2 Polymorphisms
Here we introduce the concept of polymorphism, one of the most common ways to define
infinite (tractable) constraint languages. Let D be a finite set of values, ρ and n be natural
numbers, let R ⊆ Dρ, and let t ∈ R. We denote by t[i] the i-th coordinate of t, where
i is a natural number with 1 ≤ i ≤ ρ. A n-ary operation over D is a function from Dn
to D. We say R is closed under some n-ary operation ϕ over D if R contains the tuple

Chapte r 05

140 Backdoor Sets for CSP

〈ϕ(t1[1], . . . , tn[1]), . . . , ϕ(t1[ρ], . . . , tn[ρ])〉 for every sequence t1, . . . , tn (of not necessarily
distinct) tuples in R.

For a sequence t1, . . . , tn of tuples of a relation R we will often write ϕ[t1, . . . , tn] to
denote the tuple 〈ϕ(t1[1], . . . , tn[1]), . . . , ϕ(t1[ρ], . . . , tn[ρ])〉. The operation ϕ is also said to
be a polymorphism of R.

Let ϕ be an n-ary operation over D. We denote by Γ(ϕ) the constraint language over D
consisting of all relations that are closed under ϕ and we write CSP(ϕ) as an abbreviation
for CSP(Γ(ϕ)). We say that the operation ϕ is tractable if Γ(ϕ) is globally tractable. We
extend the notion of closedness under the polymorphism ϕ from relations to constraints and
entire CSP instances in the natural way, i.e., we say that a constraint C = (S,R) of a CSP
instance I is closed under the operation ϕ if R ∈ Γ(ϕ) and we say that the same applies to
the CSP instance I if I ∈ CSP(ϕ).

2.3 Base Classes
As base classes for the backdoor set approach we use classes of CSP instances that are
defined via (possibly singular) sets of constraint languages. We will consider two basic
types of constraint languages, finite and infinite constraint languages. Whereas finite
constraint languages will always be represented explicitly, we will characterize infinite
constraint languages via polymorhisms and sets of infinite constraint languages via types of
polymorphisms.

The following are well-known types of operations.
An operation ϕ : D → D is constant if there is a d ∈ D such that for every d′ ∈ D, it
holds that ϕ(d′) = d;
An operation ϕ : Dn → D is idempotent if for every d ∈ D it holds that ϕ(d, . . . , d) = d;
An operation ϕ : Dn → D is conservative if for every d1, . . . , dn ∈ D it holds that
ϕ(d1, . . . , dn) ∈ {d1, . . . , dn};
An operation ϕ : D2 → D is a min/max operation if there is an ordering of the elements
of D such that for every d, d′ ∈ D, it holds that ϕ(d, d′) = ϕ(d′, d) = min{d, d′} or
ϕ(d, d′) = ϕ(d′, d) = max{d, d′}, respectively;
An operation ϕ : D3 → D is a majority operation if for every d, d′ ∈ D it holds that
ϕ(d, d, d′) = ϕ(d, d′, d) = ϕ(d′, d, d) = d;
An operation ϕ : D3 → D is an minority operation if for every d, d′ ∈ D it holds that
ϕ(d, d, d′) = ϕ(d, d′, d) = ϕ(d′, d, d) = d′;
An operation ϕ : D3 → D is a Mal’cev operation if for every d, d′ ∈ D it holds that
ϕ(d, d, d′) = ϕ(d′, d, d) = d′.

We denote by VAL, MINMAX, MAJ, AFF, and MAL the classes of CSP instances I,
which are closed under some constant, min/max, majority, minority, or Mal’cev operation,
respectively. These are some of the most well-known classes of tractable CSP instances and
are closely related to (generalizations of) the well-known Schaefer languages [52].

When applying the backdoor set approach to base classes defined via sets of infinite
constraint languages, it will become convenient to define more general types of operations
than the standard ones introduced above. Namely, we will define predicates of operations
(called tractable polymorphism predicates) allowing us to employ the backdoor set approach.

Let P(ϕ) be a predicate for the operation ϕ. We call P(ϕ) a tractable polymorphism
predicate if the following conditions hold.
N1. There is a constant c(P) such that for all finite domains D, all operations ϕ over D for

which P holds are of arity at most c(P).

S. Gaspers, S. Ordyniak, and S. Szeider 141

N2. Given a operation ϕ and a domain D, one can check in polynomial time whether P(ϕ)
holds on all of the at most |D|c(P) tuples over D,

N3. Every operation for which P holds is tractable.

For a tractable polymorphism predicate P we define ∆(P) to be the set of all constraint
languages that are closed under some operation for which P holds. Note that the classes VAL,
MINMAX, MAJ, AFF, and MAL as well as combination of these classes can easily be defined
via tractable polymorphism predicates. Moreover also much more general types of operations
such as semilattice operations (sometimes called ACI operation) [34] (a generalization of
min/max), k-ary near unanimity operations [35, 19] (a generalization of majority), k-ary
edge operations [33] (a generalization of Mal’cev), and the two operations of arities three and
four [40] that capture the bounded width property [1] (a generalization of semilattice and
near unanimity operations) can be defined via tractable polymorphism predicates. Finally,
we would like to note here that the property of belonging to a tractable algebraic variety [5]
is an example of a tractable polymorphism predicate.

2.4 Parameterized Complexity
A parameterized problem Π is a problem whose instances are tuples (I, k), where k ∈ N is
called the parameter. We say that a parameterized problem is fixed parameter tractable
(FPT in short) if it can be solved by an algorithm which runs in time f(k) · |I|O(1) for some
computable function f ; algorithms with a running time of this form are called FPT algorithms.
FPT also denotes the class of all fixed-parameter tractable decision problems. The notions
of W[i]-hardness (for i ∈ N) are frequently used to show that a parameterized problem is
not likely to be FPT. The W[i] classes and FPT are closed under parameterized reductions,
which are FPT algorithms reducing any instance (I, k) of a parameterized problem Π to
an instance (I ′, k′) of a parameterized problem Π′ such that (I, k) is a yes-instance for Π
if and only if (I ′, k′) is a yes-instance for Π′, and k′ is upper bounded by a function of
k. An FPT algorithm for a W[i]-hard problem would imply that the Exponential Time
Hypothesis fails [9]. We refer the reader to other sources [14, 23] for an in-depth introduction
to parameterized complexity.

We also consider parameterized problems with multiple parameters k1, . . . , k` or param-
eterized by a set T = {k1, . . . , k`} of natural numbers, whose instances are tuples (I, T),
where ki ∈ N, 1 ≤ i ≤ `, are the parameters. Such parameterized problems are equivalent to
parameterized problems with a single parameter k1 + · · ·+ k`.

2.5 Backdoors
Let I be an instance of CSP over D and let H be a class of CSP instances. A set B of
variables of I is called a strong backdoor set into H (or shortly strong H-backdoor set) if for
every assignment α : B → D it holds that I|α ∈ H. Notice that if we are given a strong
backdoor set B of size k into a class H of CSP instances that can be solved in polynomial
time, then it is possible to solve the entire instance in time |D|k · |I|O(1). In general for a
class H of CSP instances the application of the backdoor set approach usually requires the
solution to the following two subproblems.

Strong H-Backdoor Set Detection
Input: A CSP instance I over the same domain as H and a non-negative integer k.
Question: Find a strong H-backdoor set for I of cardinality at most k, or determine
that no such strong backdoor set exists.

Chapte r 05

142 Backdoor Sets for CSP

Strong H-Backdoor Set Evaluation
Input: A CSP instance I over the same domain as H and a strong H-backdoor set for I.
Question: Determine whether I is satisfiable.

We will consider the parameterized complexity of the above problems depending on various
base classes H defined via restrictions on the allowed constraint languages as well as the
following parameters:

arity denoting the maximum arity of the given CSP instance,
dom denoting the maximum domain of the given CSP instance, and
bd-size denoting the bound on the backdoor set size given as an input to the Strong
H-Backdoor Set Detection problem or the size of the backdoor set given as an input
to the Strong H-Backdoor Set Evaluation problem, respectively.
bd-sizeH denoting the smallest size of a strong H-backdoor set for the provided CSP
instance.

As it turns out for all the results surveyed here, the complexity of the above prob-
lems solely depends on the following two properties of the base class H. For a set
T ⊆ {arity, dom, bd-size}, we say that a class of CSP instances H is:

T -tractable if there is an FPT-algorithm parameterized by T that solves every CSP
instance in H.
T -detectable if there is an FPT algorithm parameterized by T , denoted by AH, that, given
a CSP instance I and a set B ⊆ var(I), determines whether B is a strong H-backdoor set
of I, and if not, outputs a set Q ⊆ var(I) \B whose size can be bounded by a function of
T , such that every strong H-backdoor set of I containing B contains at least one variable
in Q.

I Theorem 1. Strong H-Backdoor Set Evaluation is fixed-parameter tractable pa-
rameterized by T ∪ {dom, bd-size} for every T -tractable class H of CSP instances.

Proof. We solve such an instance I ∈ H by going over all of the at most dombd-size assignments
of the variables in the given backdoor set and checking for each of those whether the reduced
instance is satisfiable by using the algorithm implied because H is T -tractable. J

I Theorem 2. Strong H-Backdoor Set Detection is fixed-parameter tractable param-
eterized by T ∪ {bd-size} for every T -detectable class H of CSP instances.

Proof. We will employ a branching algorithm that employs AH as a subroutine. The main
ingredient of the algorithm is a recursive function, which is called with a set B of at most k
variables representing a partial backdoor set. The algorithm simply returns the value of the
recursive function called with the empty set of variables and the recursive function consists
of the following steps.
1. The function executes the algorithm AH on I and B.
2. If Step 1 concludes that B is a strong H-backdoor set, then the function returns Yes,
3. otherwise, let Q be the set of variables returned by the algorithm AH in Step (1). Then,

if |B| = k, the function returns No,
otherwise the function branches on all variables in Q, i.e., for every variable q ∈ Q,
the function calls itself on the set B ∪ {q}. If any of these calls returns Yes, then the
function returns Yes, otherwise it returns No.

This concludes the description of the algorithm. Its correctness follows from the properties of
algorithm AH. Because of the properties of the algorithm AH the number of times that the
recursive function calls itself recursively is bounded by a function of T . Moreover since the

S. Gaspers, S. Ordyniak, and S. Szeider 143

recursive function does not call itself when |B| = k, the depth of the recursion is at most k.
It follows that the total number of calls to the recursive function is bounded by a function of
T ∪{k}. Finally, the time required for each call of the recursive function is dominated by the
time required by AH. This shows that SBD(H) is fixed-parameter tractable parameterized
by T ∪ {bd-size}. J

3 Basic Results

In this section we consider the backdoor set approach for classes H of CSP instances defined
by a single constraint language Γ. It is easy to see that any such class H is ∅-tractable if
and only if the defining constraint language Γ is globally tractable. Hence we obtain from
Theorem 1 that if Γ is globally tractable, then Strong H-Backdoor Set Evaluation
is fixed-parameter tractable parameterized by {dom, bd-size}. We will now show that if
Γ is additionally efficiently recognizable, then Strong H-Backdoor Set Detection is
fixed-parameter tractable parameterized by {arity, bd-size}. Because of Theorem 2 it is
sufficient to show that H is {arity}-detectable.

I Lemma 3. CSP(Γ) is {arity}-detectable for every efficiently recognizable constraint
language Γ.

Proof. Let H = CSP(Γ). It is sufficient to give the algorithm AH. Let I be the given CSP
instance, B be the given set of variables of I, let m and t be the number of constraints and the
maximum number of tuples in any constraint of I, respectively. Observe that B is a strong
H-backdoor set if and only if for every constraint C = (S,R) of I it holds that C|α ∈ H
for every assignment α of the variables in B ∩ S. By ordering the tuples in R according
to the assignments of the variables in B ∩ S, this can be checked in time O(t log t) times
the time required to determine whether I ∈ H. Hence executing this for every constraint
requires O(m · t log t · |I|O(1)) time. If C|α ∈ H for every constraint C = (S,R) and every
such assignment of the variables in B∩S, then the algorithm returns Yes. Otherwise there is
a constraint C = (S,R) and an assignment α of the variables in B ∩S such that C|α /∈ H. In
this case B is not a strong H-backdoor set and the algorithm returns the set S \B, which we
claim satisfies the properties of the set Q given in the statement of the algorithm. Towards
showing this, assume for a contradiction that this is not the case, i.e., there is a strong
H-backdoor set B′ with B ⊆ B′ that does not contain a variable in S \B. Note that because
B ⊆ B′ and B′ does not contain any variable in S \B, it holds that B′ ∩ S = B ∩ S. Hence
the assignment α as given above contradicts our assumption that B′ is a strong H-backdoor
set, because C|α /∈ H. J

As an immediate consequence of the above lemma and Theorem 2 we obtain the following.

I Theorem 4. Strong CSP(Γ)-Backdoor Set Detection is fixed-parameter tractable
parameterized by {arity, bd-size} for every efficiently recognizable constraint language Γ.

This leads to our main result for base classes H defined via single constraint languages.

I Corollary 5. CSP is fixed-parameter tractable parameterized by {arity, dom, bd-sizeH}
for every efficiently recognizable and globally tractable constraint language Γ.

If the constraint language Γ is finite, then the above result can even be improved to
fixed-parameter tractability with respect to the single parameter backdoor set size. This is
because any finite constraint language has bounded domain and bounded arity, i.e., bounded

Chapte r 05

144 Backdoor Sets for CSP

by some fixed constants say D and R, respectively. Hence any input CSP instance with
domain larger than D or with arity at least R+ k (where k is the size of the backdoor set)
can immediately be identified as a No-instance and thus the above algorithm only needs to
be applied to CSP instances of domain at most D and arity at most R+ k. Since all finite
constraint languages are efficiently recognizable, we obtain the following corollary.

I Corollary 6. CSP is fixed-parameter tractable parameterized by bd-sizeCSP(Γ) for every
globally tractable finite constraint language Γ.

In the following we show that when considering infinite constraint languages (in particular
constraint languages defined via polymorphisms), then it is not possible to drop the arity
parameter. In particular, we will show that Strong CSP(ϕ)-Backdoor Set Detection
is not fixed-parameter tractable parameterized by the size of the backdoor set alone for any
tractable idempotent operation ϕ.

I Theorem 7. Strong CSP(ϕ)-Backdoor Set Detection is fixed-parameter intractable
(W[2]-hard) parameterized by bd-size for every tractable idempotent operation ϕ, even for
CSP instances over the Boolean domain.

Proof. We start by introducing what we call “Boolean barriers” of operations since they
form the basis of the proof. Let ϕ : Dn → D be an n-ary operation over D. We say a set λ
of r(λ)-ary tuples over {0, 1} is a Boolean barrier for ϕ if there is a sequence 〈t1, . . . , tn〉 of
(not necessarily distinct) tuples in λ such that ϕ(t1, . . . , tn) /∈ λ. We call a Boolean barrier λ
of ϕ minimal if |λ| is minimal over all Boolean barriers of ϕ. For an operation ϕ, we denote
by λ(ϕ) a minimal Boolean barrier of ϕ. For our reduction below, we will employ the fact
that every tractable operation ϕ has a non-empty Boolean barrier of finite size. The reason
that a Boolean barrier must exist is simply because if ϕ would not have a Boolean barrier
then every Boolean CSP instance would be closed under ϕ and thus tractable, which unless
P = NP is not possible. To see that λ(ϕ) is finite first note that |λ(ϕ)| is at most as large as
the arity rϕ of ϕ. Moreover, r(λ) ≤ 2rϕ because there are at most 2rϕ distinct rϕ-ary tuples
over {0, 1}. Hence the size of λ(ϕ) is at most rϕ · 2rϕ .

We are now ready to show the theorem via a parameterized reduction from the well-known
W[2]-hard Hitting Set problem [13]. Let 〈U,F , k〉 be an instance of Hitting Set, where U
is a set (often refered to as the universe), F is a familly of subsets of U and k is a non-negative
integer. Note that the Hitting Set problem asks whether there is a subsets H ⊆ U of the
universe U with cardinality and most k such that H ∩ F 6= ∅ for every F ∈ F . We construct
a CSP instance I such that (U,F) has a hitting set of size at most k if and only if I has a
strong CSP(ϕ)-backdoor set of size at most k.

In the following let λ(ϕ) = {t1, . . . , tn} and r denote the arity of the tuples in λ(ϕ).
The variables of I are {xu : u ∈ U } ∪ { o1(F), . . . , or(F) : F ∈ F }. Furthermore,
for every F ∈ F with F = {u1, . . . , u|F |}, C contains a constraint R(F) with scope
〈o1(F), . . . , or(F), xu1 , . . . , xu|F |〉 whose relation contains the row

ti[1], . . . , ti[r], 〈i mod 2, . . . , i mod 2︸ ︷︷ ︸
|F | times

〉

for every i in 1 ≤ i ≤ n. This completes the construction of I. Suppose that F has a hitting
set B of size at most k. We claim that Bu = {xu : u ∈ B } is a strong CSP(ϕ)-backdoor set
of I. Let α be an assignment of the variables in B. We claim that I|α is closed under ϕ and
hence Bu is a strong CSP(ϕ)-backdoor set of I. Note that because ϕ is idempotent every
relation containing only a single tuple is closed under ϕ, it holds that |λ(ϕ)| > 1. Because B

S. Gaspers, S. Ordyniak, and S. Szeider 145

is a hitting set of H, it follows that every relation of I|α contains at least one tuple less than
the corresponding relation in I. Hence any relation of I|α contains less tuples than |λ(ϕ)|,
which is the minimal size of any boolean barrier for ϕ, which implies that I|α is closed under
ϕ, as required.

For the reverse direction, suppose that I has a strong CSP(ϕ)-backdoor set B of size
at most k. Because no constraint of I is closed under ϕ, we obtain that B has to contain
at least one variable from every constraint of I. Since the only variables that are shared
between R(F) and R(F ′) for distinct F, F ′ ∈ F are the variables in {xu : u ∈ U }, it follows
that B is a hitting set of size at most k for F , as required. J

4 Heterogeneous Base Classes

In the previous section, we considered so-called homogeneous base classes defined via a single
globally tractable constraint language. In this section we introduce a more general form of
base classes (called heterogeneous base classes) that are defined via a set of globally tractable
constraint languages. In particular, given a set of globally tractable constraint languages ∆,
let CSP(∆) be the class of all CSP instances in

⋃
Γ∈∆ CSP(Γ). The size of a backdoor set

into a heterogeneous base class can be much smaller than the minimum size of a backdoor
set into any of its homogeneous base classes. Therefore, backdoor sets into heterogeneous
base classes are considerably more powerful but also more complicated to handle. Even the
evaluation of backdoor sets into heterogeneous base classes needs to be handled carefully.
Namely, because the given set ∆ can be infinite the class CSP(∆) of CSP instances is not a
priory ∅-tractable even if the considered constraint languages are globally tractable.

We start by showing that backdoor sets into heterogeneous base classes can be arbitrarily
smaller than backdoor sets into their homogeneous counterparts. For the construction of the
example let ϕmin be the min-type operation and let ϕmaj be the majority-type operation
both defined on the ordered domain (0, 1).

I Proposition 8. For every natural number n, there is a CSP instance In such that In has
a strong CSP({ϕmin, ϕmaj})-backdoor set of size one but every strong CSP({ϕmin})-backdoor
set and every strong CSP({ϕmaj})-backdoor set of In has size at least n.

Proof. Let MAJ[a, b, c, d] be the constraint with scope (a, b, c, d) and whose relation contains
all possible tuples that set d to 0 except for the tuple (1, 1, 1, 0). Then MAJ[a, b, c, d] is
not closed under ϕmaj but happens to be closed under ϕmin. Similarly, let MIN[a, b, c]
be the constraint with scope (a, b, c) and whose relation contains the tuples (0, 1, 1) and
(1, 0, 1). Then MIN[a, b, c] is not closed under ϕmin but happens to be closed under ϕmaj.
We claim that the CSP instance In with variables {y1, . . . , y3n} ∪ {z1, . . . , z2n} ∪ {x} and
constraints MAJi = MAJ[y3i+1, y3i+2, y3i+3, x] and MINi = MIN[z2i+1, z2i+2, x] for every i
with 0 ≤ i ≤ n− 1, satisfies the claim of the proposition. Towards showing this first note
that {x} is a strong CSP({ϕmin, ϕmaj})-backdoor set of In of size 1. This is because for
the assignment α with α(x) = 0, it holds that In|α ∈ CSP(ϕmin) and for the assignment α
with α(x) = 1, it holds that In|α ∈ CSP(ϕmaj). Moreover it is straightforward to verify that
every strong CSP(ϕmin)-backdoor set of In has to contain at least one variable from every
constraint MINi that is not x and similarly every strong CSP(ϕmaj)-backdoor set of In has
to contain at least one variable from every constraint MAJi that is not x. Hence the size
of every strong CSP(ϕmin)-backdoor set as well as any strong CSP(ϕmaj)-backdoor set is at
least n. J

Chapte r 05

146 Backdoor Sets for CSP

The following auxiliary lemma provides a useful property for detecting backdoor sets into
heterogeneous base classes.

I Lemma 9. Let ∆ be a set of constraint languages, I a CSP instance, and B a set of
variables of I. If there is an assignment α of the variables in B such that I|α /∈ CSP(∆),
then any strong CSP(∆)-backdoor set B′ with B ⊆ B′ contains at least one variable from
the set Q = (

⋃
Γ∈∆ var(CΓ)) \B, where for any Γ ∈ ∆, CΓ is a constraint of I|α such that

CΓ /∈ CSP(Γ).

Proof. Let H = CSP(∆). Assume for a contradiction that this is not the case, i.e., there is
a strong H-backdoor set B′ for I with B ⊆ B′ and B′ does not contain any variable from Q.
Because B is not a strong H-backdoor set there is an assignment α such that I|α /∈ H. Let
α′ be any assignment of the variables in B′ that agrees with α on the variables in B. Because
B′ is a strong H-backdoor set, it follows that there is a constraint language Γ ∈ ∆ such
that I|α′ ∈ CSP(Γ). We claim that B′ contains at least one variable from every constraint
C ∈ I|α with C /∈ CSP(Γ). For if not, then let C be such a constraint with an empty
intersection with B′. It follows that C ∈ I|α′ but because C /∈ CSP(Γ) this contradicts our
assumption that I|α′ ∈ CSP(Γ). J

In the following we will give our first example of a heterogeneous base class, which can
be employed for the backdoor set approach. Namely, we will show this for any finite set
∆ of finite globally tractable constraint languages. We start by showing that CSP(∆) is
∅-tractable, which, because of Theorem 1, implies that Strong CSP(∆)-Backdoor Set
Evaluation is fixed-parameter tractable parameterized by bd-size (because the domain is
finite).

I Proposition 10. CSP(∆) is ∅-tractable for every finite set ∆ of finite and globally tractable
constraint languages.

Proof. Let H = CSP(∆). We can solve a CSP instance I ∈ H by going over all constraint
languages Γ ∈ ∆, checking whether I is in CSP(Γ) and if so solving I in polynomial time.
This can be achieved in polynomial time because there are only finitely many constraint
languages in ∆ and each of them can be recognized in polynomial time (because it is
finite). J

The next lemma shows that for any such set ∆, CSP(∆) is also {bd-size}-detectable.

I Lemma 11. CSP(∆) is {bd-size}-detectable for every finite set ∆ of finite constraint
languages.

Proof. It is sufficient to give the algorithm ACSP(∆). Let I be a CSP instance and let B
be the given set of variables of I. Because ∆ contains only finitely many finite constraint
languages, it holds that the maximum domain value D as well as the maximum arity R of any
of its languages is also finite. Hence w.l.o.g. we can assume that the maximum domain value
of I is at most D and similarly the maximum arity of I is at most R+ k, since otherwise
we can simply return No. To determine whether B is a strong CSP(∆)-backdoor set, we
test for every assignment α of the variables in B whether I|α ∈ CSP(Γ) for some constraint
language Γ ∈ ∆. Because there are at most D|B| assignments of the variables in B, there
are finitely many constraint languages in ∆, and verifying whether I|α ∈ CSP(Γ) for some
finite constraint language can be done in polynomial time, the total time required by this
step of the algorithm is O(D|B||I|O(1)). If the above test holds for every assignment of the
variables in B, then the algorithm returns Yes. Otherwise there is an assignment α of the

S. Gaspers, S. Ordyniak, and S. Szeider 147

variables in B such that I|α /∈ CSP(∆). Hence we obtain from Lemma 9 that any strong
CSP(∆)-backdoor set B′ with B ⊆ B′ contains at least one variable from the set Q as given
in the statement of Lemma 9. Because the size of this set Q is at most |∆|(R+ k) ∈ O(k)
and the set Q can be computed within the running time of the first step of the algorithm,
the lemma follows. J

As an immediate consequence of the above lemma and Theorem 2, we obtain the following.

I Theorem 12. Strong CSP(∆)-Backdoor Set Detection is fixed-parameter tractable
parameterized by bd-size for every finite set ∆ of finite constraint languages.

The above discussion leads directly to our main result for heterogeneous base classes defined
via finite constraint languages.

I Corollary 13. CSP is fixed-parameter tractable parameterized by bd-sizeCSP (∆) for every
finite set ∆ of globally tractable finite constraint languages.

This concludes our discussion for heterogeneous base classes defined via finite constraint
languages. In the following we will consider sets of infinite constraint languages defined
via a tractable polymorphism predicate P. Namely, let H = CSP(∆(P)) for a tractable
polymorphism predicate P . We will show that CSP is fixed-parameter tractable parameterized
by arity, dom, and the size of a smallest strong H-backdoor set. We will also show that none
of these three parameters can be dropped without sacrificing fixed-parameter tractability.
Crucial to this result is the fact that even though a tractable polymorphism predicate holds
for a potentially infinite set of operations, the number of operations is bounded for a fixed
domain.

I Lemma 14. Let P be a tractable polymorphism predicate and D be a finite set. Then
there are at most ddc(P) operations on D that satisfy P, and computing all these operations
is fixed-parameter tractable parameterized by |D|.

Proof. This follows because there are at most ddc(P)
c(P)-ary operations on D and because

of Property N2 for each of those one can test in polynomial time whether it satisfies P. J

We show next that Strong H-Backdoor Set Evaluation is fixed-parameter tractable
parameterized by {dom, bd-size}. Because of Theorem 1 it is sufficient to show that H is
{dom}-tractable.

I Lemma 15. CSP(∆(P)) is {dom}-tractable for every tractable polymorphism predicate P.

Proof. We first compute the set P of all operations on the domain D of I using Lemma 14.
We then check for every such operation ϕ ∈ P whether I is closed under ϕ in time O(m·tc(P)),
where m is the number of constraints of I and t is the maximum number of tuples occurring
in any constraint of I. If it is we use the fact that ϕ is tractable to solve I in polynomial
time. J

We now turn to the detection of backdoor sets into H.

I Lemma 16. CSP(∆(P)) is {arity, dom, bd-size}-detectable for every tractable polymor-
phism predicate P.

Proof. Let H = CSP(∆(P)). It is sufficient to give the algorithm AH. Let I be the given
CSP instance over D and let B be the given set of variables of I.

Chapte r 05

148 Backdoor Sets for CSP

We first compute the set P of all operations on D for which P holds by employing
Lemma 14. Observe that a set B of variables of I is a strong H-backdoor set if and only if it
is a strong CSP(P)-backdoor set, where CSP(P) =

⋃
ϕ∈P CSP(ϕ).

To determine whether B is a strong CSP(P)-backdoor set, we test for every assignment α
of the variables in B whether I|α ∈ CSP(P). Because there are at most dombd-size assignments
of the variables in B, at most domdomc(P) operations in P , and verifying whether I|α ∈ CSP(ϕ)
for any ϕ ∈ P can be achieved in polynomial time, the total time required by this step of the
algorithm is at most O(dombd-sizedomdomc(P) |I|O(1)). If the above holds for every assignment
of the variables in B, then the algorithm returns Yes. Otherwise there is an assignment α
such that I|α /∈ CSP(P). Hence we obtain from Lemma 9 that any strong H-backdoor set
B′ with B ⊆ B′ contains at least one variable from the set Q given in the statement of the
lemma. Because the size of this set Q is at most |P | · arity ≤ domdomc(P) · arity and the set
Q can be computed within the running time of the first step of the algorithm, the lemma
follows. J

The following theorem follows immediately from the above lemma and Theorem 2.

I Theorem 17. Strong CSP(∆(P))-Backdoor Set Detection is fixed-parameter
tractable parameterized by {arity, dom, bd-size} for every tractable polymorphism pred-
icate P.

The above results naturally lead to our main result of this section.

I Corollary 18. CSP is fixed-parameter tractable parameterized by {arity, dom,
bd-sizeCSP(∆(P))} for every tractable polymorphism predicate P.

It turns out that we cannot avoid to parameterize by both the maximum domain value
and the arity in the above theorem. We have already seen in Theorem 7 that even if we
consider just a single idempotent tractable operation ϕ, then Strong CSP(ϕ)-Backdoor
Set Detection is fixed-parameter intractable parameterized by {bd-size, dom} (even for
boolean domain). Because it is easy to define a tractable polymorphism predicate that only
holds for a single idempotent operation, this result generalizes to tractable polymorphism
predicates. Hence it only remains to consider the case where we parameterize only by the
maximum arity and backdoor set size. The proof of the following theorem can be found
in [28, Theorem 12]. Note that since the reduction employed in the hardness result does
strongly depend on the considered tractable polymorphism predicate it is difficult to obtain
a general result as in Theorem 7, but it can be stated to include some of the arguably most
prominent types of operations.

I Theorem 19. Strong H-Backdoor Set Detection is fixed-parameter intractable
(W[2]-hard) parameterized by {arity, bd-size} for every H ∈ {MINMAX, MAJ, AFF,
MAL}, even for CSP instances with arity 2.

5 Scattered Base Classes

Thus far we have considered a setting in which the reduced CSP instance for each assignment
of the backdoor set variables belonged entirely to a single tractable constraint language. To
ensure that the reduced CSP instance is tractable, which is sufficient for an application of
the backdoor set approach, there is however a natural and more general possibility: Instead
of belonging entirely to a single tractable constraint language, the CSP instance could consist
of a disjoint union of (pairwise variable disjoint) CSP instances, each belonging to some

S. Gaspers, S. Ordyniak, and S. Szeider 149

tractable constraint language. This type of tractable base class is particularly interesting in
combination with the backdoor set approach, since now the variables of the backdoor set can
be naturally employed to separate the CSP instance into parts only interacting with each
other through the variables in the backdoor set.

More specifically, a CSP instance I is connected if either it consists of at most one
constraint, or for each partition of I into nonempty sets I1 and I2, there exists at least
one constraint c1 ∈ I1 and one constraint c2 ∈ I2 that share at least one variable. A
connected component of I is a maximal connected subinstance I ′ of I. These notions
naturally correspond to the connectedness and connected components of standard graph
representations of CSP instances.

Now, given a set ∆ of constraint languages, we define the scattered class ⊕(∆) of CSP
instances I where each connected component I ′ of I belongs to CSP(Γ) for some Γ ∈ ∆.

We start by showing that backdoor sets into scattered base classes can be arbitrarily
smaller than backdoor sets into their heterogeneous counterparts. For the construction of
the example let ϕmin be the min-type operation and let ϕmaj be the majority-type operation
both defined on the ordered domain {0, 1}.

I Proposition 20. For every natural number n, there is a CSP instance In such that In has a
strong ⊕(∆({ϕmin, ϕmaj})))-backdoor set of size zero but every strong CSP({ϕmin, ϕmaj})-back-
door set of In has size at least n.

Proof. Let MAJ[a, b, c] be the constraint with scope (a, b, c) and whose relation contains
all possible tuples except for the tuple (1, 1, 1). Then MAJ[a, b, c] is not closed under
ϕmaj but it is closed under ϕmin. Similarly, let MIN[a, b] be the constraint with scope
(a, b) and whose relation contains the tuples (0, 1) and (1, 0). Then MIN[a, b] is not closed
under ϕmin but it is closed under ϕmaj. We claim that the CSP instance In with variables
{y1, . . . , y3n} ∪ {z1, . . . , z2n} and constraints MAJi = MAJ[y3i+1, y3i+2, y3i+3] and MINi =
MIN[z2i+1, z2i+2] for every i with 0 ≤ i ≤ n − 1, satisfies the claim of the proposition.
Towards showing this first note that the empty set is a strong ⊕(∆(({ϕmin, ϕmaj}))-backdoor
set of In of size 0. This is because In is the disjoint union of variable disjoint constraints,
which are either closed under ϕmin or under ϕmaj. However it is straightforward to verify
that every strong CSP({ϕmin, ϕmaj})-backdoor set of In has to either contain at least one
variable from every constraint MINi or at least one variable from every constraint MAJi.
Hence the size of any strong CSP({ϕmin, ϕmaj})-backdoor set is at least n. J

Below we will present an algorithm that detects scattered base classes. For this algorithm
it is convenient to deal only with constraint languages that are closed under assignments
(as we will define next). This has the advantage that there is no danger that a partially
constructed backdoor set becomes invalidated by adding another variable to the backdoor
set. In fact, in the orginal paper which introduced backdoor sets [55], this property is even
part of the definition. We will also assume that the considered constraint languages contain
a redundant constraint which can be used within the algorithm to artificially connect parts
of the instance.

A constraint language Γ is closed under assignments if for every C = (S,R) such that
R ∈ Γ and every assignment α, it holds that R′ ∈ Γ where C|α = (S′, R′). The lemma
below shows that languages closed under assignments are closely related to semi-conservative
languages. For a constraint language Γ over a domain D we denote by Γ∗ the smallest
constraint language over D that contains Γ ∪ {D2} and is closed under assignments; notice
that Γ∗ is uniquely determined by Γ. For a set ∆ of constraint languages we denote by ∆∗
the set {Γ∗ : Γ ∈ ∆ }

Chapte r 05

150 Backdoor Sets for CSP

I Lemma 21. If ∆ is a set of globally tractable semi-conservative constraint languages, then
⊕(∆∗) is also globally tractable.

Proof. Evidently, if a semi-conservative language Γ is globally tractable, then so is Γ∗: first,
all constraints of the form (S,D2|α) can be detected in polynomial time and removed from
the instance without changing the solution, and then each constraint C ′ = (S′, R′) with
R′ ∈ Γ∗ \ Γ can be expressed in terms of the conjunction of a constraint C = (S,R) with
R ∈ Γ and unary constraints over variables in var(C) \ var(C ′). Now, if each Γ∗ ∈ ∆∗ is
globally tractable, also ⊕(∆∗) is globally tractable, as we can solve connected components
independently. J

The main technical result for scattered base classes is the next lemma.

I Theorem 22. Let ∆ be a finite set of finite constraint languages. Then there is an
FPT-algorithm that, given a CSP instance I and a parameter k, either finds a strong
CSP(⊕(∆∗))-backdoor set of size at most k or correctly decides that none exists.

We sketch the main ingredients of the algorithm and refer for the ArXiv version of the
original paper [26] for details.

The algorithm uses the technique of iterative compression [50] to transform the problem
into a structured subproblem. In this technique, the idea is to start with a sub-instance
and a trivial solution for this sub-instance and iteratively expand the sub-instances while
compressing the solutions till we solve the problem on the original instance. Specifically, for
backdoor detection we are given additional information about the desired solution in the
input: we receive an ‘old’ strong backdoor set which is slightly bigger than our target size,
along with information about how this old backdoor set interacts with our target solution.

Further more, the algorithm considers only solutions for instances of the iterative com-
pression problem which have a certain inseparability property and uses an FPT algorithm
to test for the presence of such solutions. To be more precise, the algorithm only looks for
solutions which leave the omitted part of the old strong backdoor set in a single connected
component. Interestingly, even this base case requires the extension of state of the art
separator techniques to a CSP setting.

Finally, the general instances of the iterative compression problem are handled using a
new pattern replacement technique, which is somehow similar to the protrusion replacement
technique [3] but allows the preservation of a much larger set of structural properties (such
as containment of disconnected forbidden structures and connectivity across the boundary).
This pattern replacement procedure is interleaved with the technique of important separator
sequences [44] as well as the above algorithm for inseparable instances.

I Corollary 23. Let ∆ be a finite set of globally tractable semi-conservative finite constraint
languages. Then CSP(⊕(∆)) is fixed-parameter tractable parameterized by the backdoor set
size.

Proof. Let I be the given CSP instance over domain D and k a parameter such that I has
a strong CSP(⊕(∆))-backdoor set of size ≤ k. Since CSP(⊕(∆)) ⊆ CSP(⊕(∆∗)), I has also
a strong CSP(⊕(∆∗))-backdoor set of size ≤ k, and we compute this backdoor set using
Theorem 22. Because of Lemma 21, CSP(⊕(∆∗)) is globally tractable. Hence we can use
the backdoor set by solving all the instances that arise by instantiating the backdoor set
variables. As the considered languages are finite, they are over a finite domain D, and so the
number of tractable instances to consider is at most |D|k. J

S. Gaspers, S. Ordyniak, and S. Szeider 151

It might be possible to generalize Corollary 23 to sets of constraint languages characterized
by tractable polymorphism predicates. Since the algorithm is already quite complicated for
the finite case, this has not yet been checked in detail.

5.1 Extension to Valued CSP
Valued CSP (or VCSP for short) is a powerful framework that entails among others the
problems CSP and Max-CSP as special cases [56]. A VCSP instance consists of a finite set
of cost functions over a finite set of variables which range over a domain D, and the task is
to find an instantiation of these variables that minimizes the sum of the cost functions. The
VCSP framework is robust and has been studied in different contexts in computer science.
In its full generality, VCSP considers cost functions that can take as values the rational
numbers and positive infinity. CSP (feasibility) and Max-CSP (optimization) arise as special
cases by limiting the values of cost functions to {0,∞} and {0, 1}, respectively. Clearly
VCSP is in general intractable. Over the last decades much research has been devoted
into the identification of tractable VCSP subproblems. An important line of this research
(see, e.g., [36, 39, 54]) is the characterization of tractable VCSPs in terms of restrictions on
the underlying valued constraint language Γ, i.e., a set Γ of cost functions that guarantees
polynomial-time solvability of all VCSP instances that use only cost functions from Γ. The
VCSP restricted to instances with cost functions from Γ is denoted by VCSP[Γ].

The definitions of strong backdoor sets, scattered base classes, etc., generalize straightfor-
wardly from the CSP setting to VCSP, and we omit the details. A valued constraint language
is conservative if it contains all unary cost functions [39].

Theorem 23 generalizes to VCSP in the following way:

I Theorem 24. Let ∆ be a finite set of globally tractable conservative valued constraint
languages of bounded domain size and bounded arity. Then VCSP(⊕(∆)) is fixed-parameter
tractable parameterized by the backdoor set size.

Here it is important to note that a valued constraint language of bounded domain and
arity can be infinite. Hence the technique used for establishing Theorem 23 does not directly
apply. However, it turns out that one can transform the backdoor set detection problem from
a general scattered class VCSP(⊕(∆)) to a scattered class VCSP(⊕(∆′)) over a finite set ∆′
of finite valued constraint languages. The reduction does not preserve VCSP solutions, but
preserves backdoor sets. Once the backdoor set is found, one applies it to the original VCSP
instance.

6 Backdoors of Small Treewidth

In this section we outline a new concept that allows us to algorithmically exploit a backdoor
set even if it is large, as long as it induces a graph with a sufficiently simple structure.
More specifically, we associate with the backdoor set a certain torso graph and measure its
structure in terms of the widely used graph invariant treewidth. Minimizing this treewidth
over all strong backdoor sets X of a CSP instance I into CSP(Γ) (for a fixed constraint
language Γ) gives as a new “hybrid” parameter, the backdoor-treewidth.

Let I be a CSP instance and X a subset of its variables. We define the torso graph of
I with respect to X, denoted torsoI(X), as follows. The vertex set of torsoI(X) is X, and
the graph contains an edge {x, y} if x and y appear together in the scope of a constraint or
x and y are in the scopes of constraints that belong to the same connected component of
I −X (see Section 5). Here I −X denotes the CSP instance obtained from I by deleting

Chapte r 05

152 Backdoor Sets for CSP

the variables x ∈ X from all constraint scopes and deleting the corresponding entries from
the constraint relations.

Let G = (V,E) be a graph. A tree decomposition of G is a pair (T,X = {Xt}t∈V (T)) where
T is a tree and X is a collection of subsets of V such that: (i) for each edge {u, v} ∈ E there
exists a node t of T such that {u, v} ⊆ Xt, and (ii) for each v ∈ V , the set {t | v ∈ Xt} induces
in T a nonempty connected subtree. The width of (T,X) is equal to max{|Xt|−1 | t ∈ V (T)}
and the treewidth of G, denoted tw(G), is the minimum width over all tree decompositions
of G.

Let I be a CSP instance and X a strong backdoor set of I into CSP(Γ). The width of X
is the treewidth of the torso graph torsoI(X), and the backdoor-treewidth of I with respect
to Γ is the smallest width over all strong backdoor sets X of I into CSP(Γ).

I Theorem 25. For each finite constraint language Γ, there is an FPT-algorithm that, given
a CSP instance I and a parameter k, either finds a strong CSP(Γ)-backdoor set of with at
most k or correctly decides that none exists.

The proof of the theorem makes use of a new notion of “boundaried CSP instances” defined
in the spirit of boundaried graphs, and uses a new replacement framework inspired by the
graph replacement tools dating back to the results of Fellows and Langston [20], combined
with the so-called recursive-understanding technique [31]

Once a backdoor set of small with is found, one can apply standard dynamic programming
techniques to solve CSP and #CSP.

I Corollary 26. For each finite (#-)tractable constraint language Γ, CSP (or #CSP, re-
spectively) is fixed-parameter tractable parameterized by the backdoor treewidth with respect
to Γ.

7 Related Work

Related work on backdoor sets for CSP includes a paper by Bessière et at. [2] who consider
so-called partition backdoor sets which are less general than the backdoor sets we considered
in Section 4 (see [28, Section 7]); they also provide some initial empirical results which show
that this concept has practical potential. A further work on CSP backdoor sets is a paper
by Carbonnel et al. [7] who show W[2]-hardness for strong backdoor set detection when
parameterized by the size of the backdoor set, even for CSP-instances with only one constraint
(however with unbounded domain and unbounded arity). They also give a fixed-parameter
algorithm for strong backdoor set detection parameterized by the size of the backdoor set
and the maximum arity of any constraint, if the base class is “h-Helly” for a fixed integer
h and under the additional assumption that the domain is a finite subset of the natural
numbers, which comes with a fixed ordering (see also the recent survey by Carbonnel and
Cooper [8]).

As mentioned at the beginning of this survey, there is much work on backdoor sets in
the context of SAT, most of it is covered in the survey paper [29]. More recent additions
include the detection of strong backdoor sets with respect to the base class of CNF formulas
whose incidence graph is of bounded treewidth [24, 30]. We would like to note that in
SAT the application of a partial assignment to a CNF formula results in the deletion of all
satisfied clauses, which provides an additional power for strong backdoor sets, and provides
an additional challenge for their detection.

The parameterized complexity of finding and using backdoor sets has been studied for
several problems besides SAT and CSP, including the satisfiability of quantified Boolean

S. Gaspers, S. Ordyniak, and S. Szeider 153

formulas [51], disjunctive answer set programming [21, 22], abductive reasoning [49], abstract
argumentation [15], planning [41, 42], and linear temporal logic [46].

Finally, we would like to mention that in the area of graph algorithms the notion
of modulators [6] is closely related to the concept of backdoor sets. A modulator of a
graph G into a fixed graph class C is a set M of vertices of G such that deleting M

from G moves G into the class C. By considering modulators into graph classes C where
certain NP-hard graph problems can be solved in polynomial time, one can often lift the
tractability of the problem to fixed-parameter tractability for general graphs, parameterized
by the size of the modulator. Therefore the fixed-parameter tractability of the detection
of modulators (parameterized by modulator size) is of interest. Important results include
modulators to bipartite graphs [43, 50], to chordal graphs [45], and to forests [12]. Recently
alternative parameterizations of modulators that are more general than their size have been
explored [16, 17].

8 Conclusion

We presented parameterized complexity results on CSP backdoor sets into bases classes defined
via restrictions on the constraint languages. The presented results show that the notion of
CSP backdoor sets provides an interesting area of research, which on one side builds upon
and extends classical CSP-tractability results (in form of the considered base classes), and on
the other side uses advanced algorithmic methods from the area of parameterized complexity.
There are plenty of questions that are mostly unexplored, such as CSP backdoor sets into
base classes defined by structural properties, base classes defined by “hybrid” concepts like
forbidden patterns [10], or CSP backdoor sets for instances with global constraints. Another
promising direction of future research is to parameterize backdoor sets not by their size but
by structural properties of the backdoor set and how it interacts with the rest of the instance,
similar to the parameters that have been considered for modulators [16, 17]; we have outlined
first results into this direction in Section 6. We hope that this survey stimulates further
research on CSP backdoor sets.

References

1 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consis-
tency methods. J. of the ACM, 61(1):3:1–3:19, 2014.

2 Christian Bessiére, Clément Carbonnel, Emmanuel Hebrard, George Katsirelos, and Toby
Walsh. Detecting and exploiting subproblem tractability. In Francesca Rossi, editor, IJ-
CAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013. IJCAI/AAAI, 2013.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) kernelization. In 2009 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2009), pages 629–638. IEEE Computer Soc.,
Los Alamitos, CA, 2009.

4 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-
element set. J. of the ACM, 53(1):66–120, 2006.

5 Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005.

6 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996.

Chapte r 05

154 Backdoor Sets for CSP

7 Clément Carbonnel, Martin C. Cooper, and Emmanuel Hebrard. On backdoors to tractable
constraint languages. In Principles and Practice of Constraint Programming – 20th Inter-
national Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume
8656 of Lecture Notes in Computer Science, pages 224–239. Springer Verlag, 2014.

8 Clément Carbonnel and Martin C. Cooper. Tractability in constraint satisfaction problems:
a survey. Constraints, pages 1–30, 2015. doi:10.1007/s10601-015-9198-6.

9 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. of Computer and System Sciences, 72(8):1346–
1367, 2006.

10 David A. Cohen, Martin C. Cooper, Páidí Creed, Dániel Marx, and András Z. Salamon.
The tractability of CSP classes defined by forbidden patterns. J. Artif. Intell. Res., 45:47–
78, 2012.

11 Nadia Creignou. A dichotomy theorem for maximum generalized satisfiability problems. J.
of Computer and System Sciences, 51(3):511–522, 1995.

12 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M.M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 150–159. IEEE
Computer Society, 2011. doi:10.1109/FOCS.2011.23.

13 R.G. Downey and M.R. Fellows. Parameterized Complexity. Monographs in Computer
Science. Springer Verlag, New York, 1999.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

15 Wolfgang Dvorák, Sebastian Ordyniak, and Stefan Szeider. Augmenting tractable frag-
ments of abstract argumentation. Artificial Intelligence, 186:157–173, 2012.

16 Eduard Eiben, Robert Ganian, and Stefan Szeider. Meta-kernelization using well-structured
modulators. In Thore Husfeldt and Iyad A. Kanj, editors, Parameterized and Exact
Computation – 10th International Symposium, IPEC 2014, Patras, Greece, September
16-18, 2015. Revised Selected Papers, volume 43 of LIPIcs, pages 114–126, 2015. doi:
10.4230/LIPIcs.IPEC.2015.114.

17 Eduard Eiben, Robert Ganian, and Stefan Szeider. Solving problems on graphs of high
rank-width. In Algorithms and Data Structures Symposium (WADS 2015), August 5-7,
2015, University of Victoria, BC, Canada, LNCS, pages 314–326. Springer Verlag, 2015.
URL: http://arxiv.org/abs/1507.05463, doi:10.1007/978-3-319-21840-3_26.

18 Tomás Feder and Moshe Y. Vardi. Monotone monadic snp and constraint satisfaction. In
S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 612–622. ACM, 1993.

19 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic snp
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998.

20 Michael R. Fellows and Michael A. Langston. An analogue of the myhill-nerode theorem
and its use in computing finite-basis characterizations (extended abstract). In 30th Annual
Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina,
USA, 30 October – 1 November 1989, pages 520–525. IEEE Computer Society, 1989.

21 Johannes Klaus Fichte and Stefan Szeider. Backdoors to normality for disjunctive logic
programs. ACM Trans. Comput. Log., 17(1), 2015. doi:10.1145/2818646.

22 Johannes Klaus Fichte and Stefan Szeider. Backdoors to tractable answer set programming.
Artificial Intelligence, 220:64–103, March 2015. doi:10.1016/j.artint.2014.12.001.

http://dx.doi.org/10.1007/s10601-015-9198-6
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.114
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.114
http://arxiv.org/abs/1507.05463
http://dx.doi.org/10.1007/978-3-319-21840-3_26
http://dx.doi.org/10.1145/2818646
http://dx.doi.org/10.1016/j.artint.2014.12.001

S. Gaspers, S. Ordyniak, and S. Szeider 155

23 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.

24 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, M. S. Ramanujan, and Saket
Saurabh. Solving d-SAT via backdoors to small treewidth. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 630–641, 2015.

25 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Backdoors to valued constraint
satisfaction. In Proceedings of CP 2016, the 22nd International Conference on Principles
and Practice of Constraint Programming Toulouse, France 5-9 September 2016, Lecture
Notes in Computer Science. Springer Verlag, 2016. to appear.

26 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Discovering archipelagos of tractabil-
ity for constraint satisfaction and counting. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, Jan-
uary 10-12, 2016, pages 1670–1681, 2016. Full version to appear in the ACM Transactions
on Algorithms. doi:10.1137/1.9781611974331.ch114.

27 Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Combining treewidth and backdoors
for CSP. In Proceedings of STACS 2017, the 34th International Symposium on Theoretical
Aspects of Computer Science, 2017. To appear. URL: https://arxiv.org/abs/1610.
03298.

28 Serge Gaspers, Neeldhara Misra, Sebastian Ordyniak, Stefan Szeider, and Stanislav Živný.
Backdoors into heterogeneous classes of SAT and CSP. J. of Computer and System Sciences,
2015. To appear, a preliminary version is available from https://arxiv.org/abs/1509.05725.

29 Serge Gaspers and Stefan Szeider. Backdoors to satisfaction. In Hans L. Bodlaender,
Rod Downey, Fedor V. Fomin, and Dániel Marx, editors, The Multivariate Algorithmic
Revolution and Beyond – Essays Dedicated to Michael R. Fellows on the Occasion of His
60th Birthday, volume 7370 of Lecture Notes in Computer Science, pages 287–317. Springer
Verlag, 2012.

30 Serge Gaspers and Stefan Szeider. Strong backdoors to bounded treewidth SAT. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 489–498. IEEE Computer Society, 2013.

31 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Lance Fortnow and Salil P. Vadhan, editors,
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, 6-8 June 2011, pages 479–488. ACM, 2011.

32 Pavol Hell and Jaroslav Nesetril. Colouring, constraint satisfaction, and complexity. Com-
puter Science Review, 2(3):143–163, 2008.

33 Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. SIAM J. Comput.,
39(7):3023–3037, 2010.

34 Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. of
the ACM, 44(4):527–548, 1997.

35 Peter Jeavons, David A. Cohen, and Martin C. Cooper. Constraints, consistency and
closure. Artificial Intelligence, 101(1-2):251–265, 1998.

36 Peter Jeavons, Andrei A. Krokhin, and Stanislav Živný. The complexity of valued constraint
satisfaction. Bulletin of the European Association for Theoretical Computer Science, 113,
2014.

37 Phokion G. Kolaitis. Constraint satisfaction, databases, and logic. In IJCAI-03, Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 9-15, 2003, pages 1587–1595. Morgan Kaufmann, 2003.

Chapte r 05

http://dx.doi.org/10.1137/1.9781611974331.ch114
https://arxiv.org/abs/1610.03298
https://arxiv.org/abs/1610.03298

156 Backdoor Sets for CSP

38 Phokion G. Kolaitis and Moshe Y. Vardi. A logical approach to constraint satisfaction. In
Finite model theory and its applications, Texts Theoret. Comput. Sci. EATCS Ser., pages
339–370. Springer Verlag, 2007.

39 Vladimir Kolmogorov and Stanislav Živný. The complexity of conservative valued CSPs.
J. of the ACM, 60(2):Art. 10, 38, 2013.

40 Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations of
several Maltsev Conditions. Algebra Universalis, 73(3-4):205–224, 2015.

41 Martin Kronegger, Sebastian Ordyniak, and Andreas Pfandler. Backdoors to planning.
In Carla E. Brodley and Peter Stone, editors, Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, July 27-31, 2014, Québec City, Québec, Canada.,
pages 2300–2307. AAAI Press, 2014.

42 Martin Kronegger, Sebastian Ordyniak, and Andreas Pfandler. Variable-deletion backdoors
to planning. In Blai Bonet and Sven Koenig, editors, Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA.,
pages 3305–3312. AAAI Press, 2015.

43 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms, 11(2):15:1–15:31, 2014. doi:10.1145/2566616.

44 Daniel Lokshtanov and M. S. Ramanujan. Parameterized tractability of multiway cut with
parity constraints. In ICALP 2012, Automata, languages, and programming. Part I, volume
7391 of Lecture Notes in Computer Science, pages 750–761. Springer Verlag, 2012.

45 Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768,
2010.

46 Arne Meier, Sebastian Ordyniak, M. S. Ramanujan, and Irena Schindler. Backdoors for
linear temporal logic. In 11th International Symposium on Parameterized and Exact Com-
putation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 23:1–23:17. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2016. doi:10.4230/LIPIcs.IPEC.2016.23.

47 Ugo Montanari. Networks of constraints: fundamental properties and applications to pic-
ture processing. Information Sciences, 7:95–132, 1974.

48 Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. Detecting backdoor sets with
respect to Horn and binary clauses. In Proceedings of SAT 2004 (Seventh International
Conference on Theory and Applications of Satisfiability Testing, 10–13 May, 2004, Vancou-
ver, BC, Canada), pages 96–103, 2004.

49 Andreas Pfandler, Stefan Rümmele, and Stefan Szeider. Backdoors to abduction. In Pro-
ceedings of IJCAI 2013, the 23th International Joint Conference on Artificial Intelligence,
August 3-9, 2013, Beijing, China, 2013.

50 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper.
Res. Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

51 Marko Samer and Stefan Szeider. Backdoor sets of quantified Boolean formulas. Journal of
Automated Reasoning, 42(1):77–97, 2009. URL: https://www.ac.tuwien.ac.at/files/
pub/SamerSzeider09a.pdf.

52 Thomas J. Schaefer. The complexity of satisfiability problems. In Conference Record of the
Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), pages
216–226. ACM, 1978.

53 Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. In Symposium
on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
695–704. ACM, 2013.

54 Johan Thapper and Stanislav Živný. Necessary conditions for tractability of valued CSPs.
SIAM J. Discrete Math., 29(4):2361–2384, 2015.

http://dx.doi.org/10.1145/2566616
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.23
http://dx.doi.org/10.1016/j.orl.2003.10.009
https://www.ac.tuwien.ac.at/files/pub/SamerSzeider09a.pdf
https://www.ac.tuwien.ac.at/files/pub/SamerSzeider09a.pdf

S. Gaspers, S. Ordyniak, and S. Szeider 157

55 Ryan Williams, Carla Gomes, and Bart Selman. Backdoors to typical case complexity. In
Georg Gottlob and Toby Walsh, editors, Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, IJCAI 2003, pages 1173–1178. Morgan Kaufmann,
2003.

56 Stanislav Živný. The complexity of valued constraint satisfaction problems. Cognitive
Technologies. Springer Verlag, 2012.

Chapte r 05

	Introduction
	Preliminaries
	Constraint Satisfaction
	Polymorphisms
	Base Classes
	Parameterized Complexity
	Backdoors

	Basic Results
	Heterogeneous Base Classes
	Scattered Base Classes
	Extension to Valued CSP

	Backdoors of Small Treewidth
	Related Work
	Conclusion

