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Abstract
We present a survey of complexity results for constraint satisfaction problems (CSPs) over the
integers, the rationals, the reals, and the complex numbers. Examples of such problems are
feasibility of linear programs, integer linear programming, the max-atoms problem, Hilbert’s
tenth problem, and many more. Our particular focus is to identify those CSPs that can be
solved in polynomial time, and to distinguish them from CSPs that are NP-hard. A very helpful
tool for obtaining complexity classifications in this context is the concept of a polymorphism
from universal algebra.
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1 Introduction

Many computational problems from many different research areas in theoretical computer
science can be formulated as Constraint Satisfaction Problems (CSPs) where the variables
might take values from an infinite domain. There is a considerable literature about the
computational complexity of particular infinite domain CSPs, but there are only few system-
atic complexity results. Most of these results belong to two research directions. One is the
development of the universal-algebraic approach, which has been so successful for studying the
complexity of finite-domain constraint satisfaction problems. The other direction is to study
constraint satisfaction problems over some of the most basic and well-known infinite domains,
such as the numeric domains Z (the integers), Q (the rational numbers), R (the reals), or C
(the complex numbers), and to focus on constraint relations that are first-order definable
from usual addition and multiplication on those domains. In this way, many computational
problems that are of fundamental importance in computer science and mathematics can
be studied in the same framework. Several recent results are concerned with obtaining a
systematic understanding of the computational complexity of such CSPs; and this survey
article is devoted to presenting these recent results in a common context, and to highlight
some of the common threads that are likely to be fruitful also in the future.

For a fixed structure Γ with finite relational signature τ , the constraint satisfaction
problem CSP(Γ) is the problem of deciding whether a given finite conjunction of atomic
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τ -formulas is satisfiable in Γ. That is, for a given instance

R1(x̄1) ∧ · · · ∧Rm(x̄m)

of this problem where x̄1, . . . , x̄m are tuples of variables, we want to decide whether there
exists an assignment of values to those variables such that all the conjuncts (the ‘constraints’)
are satisfied. We often refer to Γ as the template of the CSP. The computational complexity
of CSP(Γ) has been studied intensively when the template Γ has a finite domain; it is always
in NP, and Feder and Vardi [35] conjectured that it is either in P or NP-complete; see
Barto [6] for a short survey on the state of the art concerning progress towards proving the
conjecture.

When the template Γ might have an infinite domain, there is no hope for a complete
classification of the complexity of CSP(Γ) in general [16]: every computational problem is
equivalent (under polynomial-time Turing reductions) to a problem of the form CSP(Γ).
Indeed, even individual templates over numeric domains, usually as a consequence of their
practical significance, are the focus of large branches of current mathematical research. This
research fixes many points on the complexity map of CSPs. More recently, we have seen
systematic results that provide complexity results for entire areas of interesting, albeit less
expressive, templates in this map. In this introduction, and in our survey, we first discuss
known concrete templates and then move on to more systematic classifications.

A famous example of a computational problem that can be formulated as a CSP over a
numeric domain is Hilbert’s 10th problem. It is CSP(Z;R+, R∗, R=1) where

R+ stands for the ternary addition relation {(x, y, z) ∈ Q3 | x+ y = z},
R∗ stands for the ternary multiplication relation {(x, y, z) ∈ Q3 | x ∗ y = z}, and
R=1 stands for the unary relation {1}.

Matiyasevich [79], building upon results of Davis, Putnam, and Robinson, showed that this
computational problem is undecidable (for a reference see [80]).

Another example, sitting at the opposite end of the complexity spectrum, is the feasibility
problem for linear programs. It can be formulated as CSP(Γlin) for Γlin := (Q;≤, R+, R=1)
where R+ and R=1 are defined as before, but over the rational numbers instead of the integers.
Then CSP(Γlin) is easily seen to be polynomial-time equivalent to the feasibility problem for
linear programs (see Section 2.3), which is a computational problem of outstanding theoretical
and practical interest [94]. The complexity of this problem has been an open problem until
Khachiyan’s discovery that the ellipsoid method gives a polynomial-time algorithm [64] (see
Section 3). It is natural to ask which relations can be added to Γlin so that the resulting
expanded structure still has a CSP that can be solved in polynomial time; this is discussed
in Section 4.1.

The choice of the domain of Γ might or might not have an impact on the computational
complexity of CSP(Γ). For example, the structure (Q;≤, R+, R=1) has the same CSP as
the structure (R;≤, R+, R=1) (where R+ and R=1 are defined as above but over R instead
of Q). On the other hand, if we consider the problem CSP(Z;R+, R∗, R=1) and replace
the integers Z by the reals or the complex numbers, and adapt the interpretation of the
relations R+, R∗, and R=1 correspondingly, the complexity of the CSP changes dramatically:
CSP(R;R+, R∗, R=1) is equivalent to the existential theory of the reals, which is decidable
(see Section 5). Even better complexity results are known for CSP(C;R+, R∗, R=1) (again,
see Section 5). If we consider the structure (Z;≤, R+, R=1) instead of (Q;≤, R+, R=1) we
obtain the famous NP-complete integer program feasibility problem.

Also over the integers there are many natural CSPs that can be solved in polynomial
time. Well-known examples are
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linear Diophantine equation systems: here the constraints are of the form

a1x1 + · · ·+ akxk = a0

for constants a0, a1, . . . , ak ∈ Z. Such systems can be solved efficiently using linear algebra,
via an appropriate implementation of an algorithm computing the Smith Normal form and
a careful analysis of the size of the coefficients that appear during the computation [61, 29].
Difference logic: here the constraints are of the form x− y ≤ c for c ∈ Z. Such systems
can be solved efficiently using shortest path computations (see, e.g., [32]).

So far, we have seen a powerful framework that captures many natural and important
computational problems, but a systematic picture is missing. For some restricted settings,
however, there is a complete classification of the polynomial-time tractable and the NP-hard
cases. We present two such settings; more follows in the main body of the text. The first
such setting is the class of structures with domain Q that are definable over (Q;<) with the
order alone. This includes for example the structure (Q; Betw) where

Betw := {(x, y, z) ∈ Q3 | x < y < z ∨ z < y < x}

is the so-called betweenness relation. The problem CSP(Q; Betw) is known as the betweenness
problem in theoretical computer science and known to be NP-complete. Also the cyclic
ordering problem, and CSPs from temporal reasoning such as the Point Algebra [101] and
the Ord-Horn class [85] can be cast in this form.

In general, when Γ is a structure that has the same domain as some structure ∆, and all
relations in Γ are first-order definable in ∆ (we do allow equality in first-order formulas), we
refer to Γ as a first-order reduct of ∆ (we first consider the expansion of ∆ by all first-order
definable relations, and then take a reduct in the usual sense, that is, we drop some of
the relations). Classifying the CSPs of first-order reducts of some structure ∆ therefore
corresponds to a bottom-up approach to classifying CSPs, since first-order reducts of a
structure ∆ are typically ‘simpler’ than ∆.

The main result of Bodirsky and Kára [20] states that CSP(Γ) is, for all first-order
reducts Γ of (Q;<), either in P or NP-complete (Section 7). One of the central ideas
of the classification in [20] is that the powerful universal-algebraic approach to constraint
satisfaction, which has been developed for finite-domain CSPs, can be applied here, too.
The reason for this is that first-order reducts of (Q;<) satisfy a strong model-theoretic
condition, ω-categoricity, which can be seen as a finiteness condition via the characterization
of Ryll-Nardzewski: a countably infinite structure Γ is ω-categorical if and only if the
automorphism group of Γ has finitely many orbits of k-tuples, for all k ≥ 1. For ω-categorical
Γ, the complexity of CSP(Γ) is completely captured by the so-called polymorphisms of Γ (see
Section 2.2); they are a generalization of the concept of an endomorphism to higher arities.
The extension of the theory of finite-domain CSPs to (subclasses of) ω-categorical structures
has advanced significantly [8, 9, 23] and is outside the scope of this survey.

Structures on numerical domains are typically not ω-categorical. Consider for example
the structure (Z; Succ) for Succ = {(x, y) | x = y + 1}, the integers with the successor
relation. Its automorphism group has only one orbit, but infinitely many orbits of pairs,
and is therefore not ω-categorical by the theorem of Ryll-Nardzewski mentioned above. The
structure (Z; Succ) can be seen as one of the ‘simplest’ structures over a numerical domain
and with finite signature that is not ω-categorical. Following again the bottom-up approach,
we study the class of CSPs for first-order reducts of (Z; Succ). This class contains non-trivial
CSPs that can be solved in polynomial time; let us mention for example

CSP(Z; {(x, x, x+ 1), (x, x+ 1, x), (x, x+ 1, x+ 1) | x ∈ Z}) . (1)
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For first-order reducts Γ of (Z; Succ), we almost have a dichotomy: CSP(Γ) is in P, or
NP-complete, or there exists a finite structure Γ′ such that Γ and Γ′ have the same CSP [24]
(Section 8). Hence, the truth of the Feder-Vardi conjecture would imply that also the class of
structures definable over the integers using the successor relation has a complexity dichotomy.

The border between polynomial-time tractable and NP-hard CSPs for first-order reducts
of (Z; Succ) can again be described using polymorphisms, and polymorphisms also play
an important role in the proof of the classification [24]. However, in order to work with
polymorphisms even when the structure Γ is not ω-categorical, we might have to pass
to a structure which has the same CSP as Γ, but a different domain. The point is that
polymorphisms with certain properties might only exist when the structure is sufficiently
saturated, in the model-theoretic sense. For example, instead of (Z; Succ), we would consider
the structure (Q; {(x, y) | x = y + 1}), which has the same CSP, but a richer set of
(automorphisms and) polymorphisms. These phenomena are one of the reasons why the
numeric domains Z, Q, R, and C should not be discussed in isolation; indeed, there are many
fruitful cross-connections between classifications over these domains.

Certain polymorphisms are of particular importance over numeric domains. An important
example for first-order reducts of (Q; +, ∗) and of (R; +, ∗) is the operation (x, y) 7→ (x+y)/2;
such a reduct Γ has this polymorphism if and only if all relations of Γ are convex. Convexity
has recently become a very active topic also in real algebraic geometry [50, 66, 49, 48]. Many
of the central questions that are relevant to CSPs are open.

Another remarkable polymorphism for numeric domains is (x, y) 7→ max(x, y) (or, dually,
(x, y) 7→ min(x, y)). If a finite structure Γ has max as a polymorphism, then CSP(Γ) is known
to be in P [53, 54]. The same is true for first-order reducts of (Q;<), and for first-order
reducts of (Z; Succ) (an example of such a reduct is the structure from (1)). But already
for first-order reducts Γ over (Q;<,+, 1) it is an open problem whether having max as a
polymorphisms implies that CSP(Γ) can be solved by a polynomial-time algorithm; such
an algorithm would also imply polynomial-time tractability for many problems of open
computational complexity in seemingly different areas of theoretical computer science: the
model-checking problem of the propositional µ-calculus, solving mean payoff games and
simple stochastic games; these connections are discussed in Section 6.

Researchers in model theory have obtained remarkable results in the classification of
first-order reducts of structures like (C; +, ∗) or (R; +, ∗) up to first-order interdefinability.
For instance, Marker and Pillay [76] prove that any first-order reduct Γ of (C; +, ∗) that
contains + is either a first-order reduct of an expansion of (C; +) by constants, or the complex
multiplication ∗ has a first-order definition in Γ. Similar results are available for (R; +, ∗)
instead of (C; +, ∗); see [86, 75, 77, 39]. In order to be applicable for complexity analysis
for CSPs, we would need refinements of these results for primitive positive definability (see
Section 2.1) instead of first-order definability.

Finally, we also discuss classes of constraint satisfaction problems over numeric domains
that provably do not have a complexity dichotomy: this turns out to be the case for first-order
reducts of (Z; +, ∗); a proof can be found in Section 9. We were unable to prove such a
non-dichotomy result for first-order reducts of (R; +, ∗). On the other hand, we have seen
that already classifying first-order reducts of (Q; 1,+,≤) presents considerable challenges.
We discuss in Section 10 what the next steps for the bottom-up approach to classifying CSPs
on numerical domains might be.
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2 Constraint Satisfaction Problems

We use standard notation and terminology from model theory; see e.g. [52]. For better
readability we abuse notation and identify formulas with the relations they define; e.g., we
write (Q;x > y2) for the relational structure (Q; {(x, y) ∈ Q2 | x > y2}).

2.1 Primitive Positive Formulas
A first-order formula is primitive positive if it is of the form

∃x1, . . . , xn (ψ1 ∧ · · · ∧ ψm)

where ψ1, . . . , ψn are atomic formulas; that is, no negation, disjunction, and universal
quantification is allowed (but equality is allowed). The constraint satisfaction problem
for a relational τ -structure Γ can then be rephrased as follows: given a primitive positive
τ -sentence φ (i.e., a primitive positive formula without free variables, formed with relations
from Γ), does φ hold in Γ?

The relevance of primitive positive formulas for the CSP comes from the following lemma,
due to which works over finite and infinite structures alike [53]).

I Lemma 1 (Jeavons–Cohen–Gyssens). Let Γ be a relational structure, and R a relation that
can be defined using a primitive positive formula over Γ . Then CSP(Γ, R), that is, the CSP
for the expansion of Γ by the relation R, is log-space equivalent to CSP(Γ).

The proof idea is to replace occurrences of R in an instance by their primitive positive
definition, introducing new variables for the existentially quantified variables in these defini-
tions (in optimization, even if not presented at this level of generality, this idea is commonly
used, and the newly introduced variables are called slack variables).

2.2 Polymorphisms
Which relations are primitive positive definable over a given structure? This can be a difficult
question, but we have seen in the previous section that it is an important question when we
want to study the computational complexity of a CSP. A very important tool for answering
this question are polymorphisms.

I Definition 2. A function f : Bk → B preserves a relation R ⊆ Bm if for all

(a1
1, . . . , a

m
1 ), . . . , (a1

k, . . . , a
m
k ) ∈ R

we have that (f(a1
1, . . . , a

1
k), . . . , f(am1 , . . . , amk )) ∈ R. When Γ is a relational structure then

f is called a polymorphism of Γ if f preserves all relations of Γ.

In other words, f is a polymorphism of Γ if and only if f is a homomorphism from Γk to
Γ. Unary polymorphisms are also called endomorphisms, and automorphisms are precisely
the bijective endomorphisms whose inverse is also an endomorphism. It is well-known that
the set of all automorphisms forms a permutation group, the set of all endomorphisms a
transformation monoid, and the set of all polymorphisms a function clone, which are a
central topic in universal algebra. The key fact that links polymorphisms with primitive
positive definability is that when R is primitive positive definable in Γ , then R is preserved
by the polymorphisms of Γ (for any structure Γ over any domain). This is useful in the
contrapositive to show that something is not primitive positive definable over Γ : it suffices
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to exhibit a polymorphism of Γ that does not preserve R. This test gives a necessary and
sufficient criterion for structures Γ over a finite domain [25], and also for many infinite
structures Γ , e.g., when Γ is countably categorical (see Section 7). And even when Γ is not
countably categorical, polymorphisms can be an important tool (see Section 8).

2.3 Infinite Signatures
We now come to an important issue that we hid so far, but which is an important aspect of
CSPs, in particular of CSPs over numeric domains: the problem of encoding instances if the
structure Γ has an infinite signature. An infinite signature is natural when we want to view
for example the feasibility problem for linear programs as a CSP. There, the constraints in an
instance of the CSP are of the form a1x1 + · · ·+ anxn ≥ a0, for some a0, a1, . . . , an ∈ Q. So
we would consider the signature that contains a relation symbol for each of those relations;
there is a countably infinite number of them.

Also over finite domains, many well-known computational problems call for CSP formula-
tions with templates Γ having an infinite signature, for example:

Horn-SAT: the signature contains for every n ≥ 0 a symbol for the relations defined over
{0, 1} by the Boolean expression ¬x1 ∨ · · · ∨ ¬xn ∨ x0 or by ¬x1 ∨ · · · ∨ ¬xn.
Linear equations over a finite field F : the signature contains for every n ≥ 0 and
a0, a1, . . . , an ∈ F a symbol for the n-ary relation defined by a1x1 + · · ·+ anxn = a0.

However, when the signature of Γ is infinite, the computational complexity of CSP(Γ)
depends on how the symbols of the signature of Γ are represented in the input instances to
CSP(Γ). For finite structures Γ , the standard way to represent a relation symbol R from the
signature of Γ is by an explicit list of tuples that are in the relation R. When the domain of Γ
is infinite, this is typically no longer an option (already the basic relations < over Q or Succ
over Z contain infinitely many tuples, so they cannot be stored explicitly). Alternatively, we
can use symbolic representations of relations; how precisely these representations might look
like depends on the domain, and might also depend on the specific algorithmic result that
we want to establish. We list a couple of options.

1. In general, when Γ is a first-order reduct of some structure ∆ with a finite signature, we
can represent a relation R of Γ by its first-order definition in ∆.

2. More specifically, for first-order reducts Γ of (Q;<) we can use the fact that (Q;<) has
quantifier elimination (see, e.g., Hodges [52]), so we can represent a relation R from Γ by
its quantifier-free definition over (Q;<) in disjunctive normal form (DNF).

3. Likewise, the structure (Z; s) has quantifier elimination, where s is the unary successor
function, and again we might use quantifier-free formulas in DNF to represent the relations
of first-order reducts of these structures. In this situation, we have to point out another
subtlety, namely how to represent terms of the form sn(x) := s(s(· · · s(x) · · · )): whether
n is coded in unary or in binary can make the difference between an easy and a hard
problem (see e.g. the problems from Definition 38 and Definition 40 in Section 6).

4. Finally, also for the structure (Q;<,+) we can use the fact that (Q;<,+) has quantifier
elimination in the language that additionally contains a constant symbol for each rational
number [36], so we can represent a relation R from Γ by its quantifier-free definition in
disjunctive normal form (DNF). Here it is natural to assume that the constants for the
rational numbers are represented in binary.

Option (1) listed above is not well-suited for obtaining polynomial-time results for CSPs,
since already deciding whether a single relation, even when represented by a quantifier-free
formula, is empty or not is NP-hard. For the representations given in (2)-(4), on the other
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hand, many interesting algorithms exist that solve the CSP for infinite-signature reducts in
polynomial time. We would like to stress that when the signature of Γ is finite, these input
representation issues do not arise: all the representations given above would give the same
complexity results for CSP(Γ).

In some cases there is a different approach to deal with infinite signatures. Let Γ be a
relational structure and let Γ′ be the structure obtained from Γ by dropping some of the
relations (i.e., Γ′ is a reduct of Γ in the classical sense). We say that the relations of Γ′ form
a basis for Γ if all relations in Γ have a primitive positive definition over Γ′. In this case,
and if the signature of Γ′ is finite, then we can use primitive positive formulas over Γ′ to
represent the relations from Γ . The following lemma illustrates this approach (and justifies
our presentation of linear program feasibility in the introduction); the proof is easy and can
be found in [18].

I Lemma 3. Every relation

R := {(x1, . . . , xk) ∈ Qk | a1x1 + · · ·+ akxk ≥ a0}

for a0, a1, . . . , ak ∈ Q has a primitive positive definition over (Q;≤, R+, R=1). Moreover, we
can find a primitive positive definition whose size is polynomial in the representation size of
a0, a1, . . . , ak when represented in binary.

We would like to mention that for CSPs of templates with infinite signature it makes
sense to consider the restricted version where only k variables are allowed in the input, for a
fixed natural number k. The fact that k-variable integer linear program feasibility can be
decided in polynomial time, for example, is a celebrated result of Lenstra [72].

For finite domains it is an open problem whether there are infinite constraint languages Γ
such that CSP(Γ) is computationally hard if the relations in the constraints are represented
explicitly, but where the computational hardness is not already witnessed by a finite subset
of the relations of Γ; see the discussion in [26].

3 Linear Programming

Our journey through constraint satisfaction problems over numeric domains begins with the
linear program feasibility problem. This problem will serve as a model, and also as a tool for
further investigations.

I Definition 4. The problem linear program feasibility is the CSP of the structure
with domain R and all the relations of the form

Rlp
a1,...,an,c :=

{
x ∈ Rn

∣∣ a1x1 + · · ·+ anxn ≥ c
}

with a1, . . . , an, c ∈ Q.

We assume, in our definition, that the variables range over the real numbers, but the
coefficients must be rational. The restriction on the coefficients is justified by the need to
manipulate them computationally. Nevertheless, one might want to abstract from the details
of number representation. This might have practical reasons, because some applications rely
on fixed precision floating point arithmetic implemented in hardware. Also, theoretically at
least, one might pick the coefficients in a subset of the reals (or even of a non-Archimedean real-
closed field) that is larger than the rational subfield, and yet admits an explicit representation.
This approach leads to a model of computation in which (real) numbers are treated as black-
box entities, and algorithms have access to an oracle that performs a certain set of basic
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operations on them. The complexity of algorithms is thus measured by the number of
arithmetic operations and (crucially) order comparisons performed as a function of the
amount of numerical inputs: this is the so-called Blum-Shub-Smale model of computation.
An algorithm is said to be strongly polynomial if it is polynomial in both the Turing machine
(or bit) model, and in the Blum-Shub-Smale model.

Linear programming is usually formulated as an optimization problem where the goal
is to maximize a given linear function over the feasibility region. It is well known that
linear programming is polynomial-time equivalent to the linear program feasibility problem
(both in the Turing and in the Blum-Shub-Smale model). The groundbreaking application,
due to Khachiyan, of the ellipsoid method provided the first polynomial-time algorithm for
the linear program feasibility problem [64]. Other polynomial time algorithms addressing
directly the optimization problem followed, notably Karmarkar’s interior point projective
method [62], and later barrier-function interior point methods (see for instance [103]). What
all this techniques have in common is that they rely on infinite approximation procedures.
To get from such methods a polynomial time decision procedure, one needs some a priori
information of such nature, as to guarantee that the decision is determined by a degree of
approximation obtainable in polynomial time. For example, Khachiyan’s ellipsoid method
needs a bound from below to the volume of the feasibility region (assuming that it has non-
empty interior), and interior point methods require, essentially, to bound the representation
size of the optimum (which is necessarily a rational number or ±∞). Thus neither of
the known polynomial time algorithms could solve linear program feasibility on a
non-Archimedean field, and none, in particular, is strongly polynomial.

The existence of a strongly polynomial algorithm for linear programming is, today, possibly
the most important related problem. Dantzig’s simplex method requires the complement of
a pivoting rule to make a complete algorithm. Despite its practical effectiveness, no known
pivoting rule has provably polynomial time, and most can be explicitly defeated [65, 55, 5, 43,
38, 37]. Sub-exponential randomized simplex algorithms have been constructed by Kalai [60]
and Matoušek, Sharir, and Welzl [81]; see [47] for a recent improvement. If one restricts
linear program feasibility to instances with specific properties, in some cases, strongly
polynomial algorithms are known. By work of Tardos [97], this is the case if the coefficients ai
in Definition 4 are integral and bounded by a fixed constant. Megiddo describes a strongly
polynomial algorithm for the case of two variables per inequality [82] and the same author
gives a linear time combinatorial algorithm in fixed dimension [83] (i.e., for a fixed number
of variables).

By formulating linear programming in the integer domain we obtain a well-known
variation.

I Definition 5. The problem integer linear program feasibility is the CSP of the
structure with domain Z and all the relations of the form

Rilp
a1,...,an,c :=

{
x ∈ Zn

∣∣ a1x1 + · · ·+ anxn ≥ c
}

with a1, . . . , an, c ∈ Z.

As opposed to the real numbers formulation, integer linear program feasibility
is NP-complete. Indeed, even the special case in which the variables are restricted to the
set {0, 1} is among Karp’s 21 problems [63]. We list a few notable polynomial-time restrictions.
In the totally unimodular case (i.e., the instances are of the form Ax̄ = c̄ where the matrix A
is totally unimodular), satisfiability in R implies satisfiability in Z, hence integer linear
program feasibility can be solved in strongly polynomial time by Tardos’s algorithm.
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The fixed dimension case is solved in polynomial time by an algorithm of Lenstra [72]. By
contrast to the real domain situation, the restriction to two variables per inequality is still
NP-complete, by a result of Lagarias [71].

We will devote the next two sections to CSPs that expand linear programming. In
particular, we will consider semilinear and algebraic constraints.

4 Semilinear Constraints

We say that a subset of Rn is semilinear if it can be defined by a finite Boolean combination
of linear inequalities with integer coefficients. A relational structure with domain R is called
semilinear if all its relations are. In particular, the template for linear program feasibility
is semilinear. As for linear programming, in the semilinear context, the domains R and Q
are interchangeable. Formally, we choose to state the results hereafter for R.

4.1 Semilinear Expansions of Linear Programming
For semilinear expansions of linear programming, a P–NP-complete dichotomy has been
proven by Bodirsky, Jonsson, and von Oertzen [18]. This dichotomy has then been extended
by Jonsson and Thapper to all semilinear expansions of (R; +) in [59]. The dichotomy is
based on the notion of essential convexity.

I Definition 6. A subset S of Rn is called essentially convex if for all a, b ∈ S the straight
line segment intersects the complement S̄ of S in finitely many points.

I Theorem 7 (Bodirsky–Jonsson–von Oertzen). Let R1, . . . , Rn be semilinear relations. Then
CSP(R;R=1, R+,≤, R1, . . . , Rn) is in P if R1, . . . , Rn are essentially convex, and it is NP-
complete otherwise.

The hardness result in Theorem 7 follows from an even more general condition formulated
in Lemma 30 in the next section. The algorithmic part is provided by the equivalence, for
semilinear relations, of essential convexity and the class Horn-DLR proposed by Jonsson and
Bäckström [57].

I Definition 8. A semilinear relation is called Horn-DLR (disjunctive linear relations) if it
can be defined by a conjunction of clauses either of the form

p1 6= 0 ∨ · · · ∨ pn 6= 0

or of the form

p1 6= 0 ∨ · · · ∨ pn 6= 0 ∨ p0 ≤ 0

where p0, . . . , pn are linear terms with coefficients in Z.

I Lemma 9 (Bodirsky–Jonsson–von Oertzen). A semilinear relation is essentially convex if
and only if it is Horn-DLR.

In turn, Horn-DLR constraints (represented by conjunctions of clauses as in Definition 8,
with the coefficients expressed in binary) can be solved in polynomial time thanks to a
resolution-like algorithm discovered by Jonsson and Bäckström [57] and independently by
Koubarakis [69].

Chapte r 03



88 Constraint Satisfaction Problems over Numeric Domains

Convex semilinear relations can be characterised by a polymorphism. In fact, if S ⊂ Rn
is semilinear then S is convex if and only if it is preserved by the midpoint function

(x, y) 7→ x+ y

2

(to see this, observe that if p, q ∈ S, then S contains a dense subset of the segment between p
and q, so by being semilinear, S contains all but finitely many of the points of that segment).
We mention that the same argument also works in an even more general setting, namely for
semialgebraic relations, that will be introduced in Definition 18 in the next section. It would
be desirable to also have a polymorphism characterisation of essentially convex semilinear
relations. This is, unfortunately, not possible.

I Observation 10. There is no function f : Rn → R such that a semilinear relation S is
essentially convex if and only if f preserves S.

Proof. For a contradiction, assume that such a function f exists. Without loss of generality,
f depends on all its arguments. We will prove that f is injective, but first we see how to
obtain a contradiction from this fact. Consider restriction of f to the diagonal

g : R→ R
x 7→ f(x, x, . . . , x)

For each rational x, the singleton {x} is clearly semilinear and essentially convex, therefore
g|Q is the identity. The order relation {(x, y) | x < y} is a semilinear essentially convex
set, therefore g is order preserving. It follows from the density of Q in R that g is the
identity from R to R. In particular, the image of g is precisely R, so f can not be injective
unless n = 1. In this case, f = g is the identity and it preserves every set.

It remains to prove that f is injective. The relation x = y ⇒ u = v is essentially convex,
therefore it must be preserved by f . We claim that this implies the injectivity. Suppose
that there are distinct a, b ∈ Rn such that f(a) = f(b). We want to prove that f violates
x = y ⇒ u = v. Pick i such that ai 6= bi. Since f depends on every argument, there are
c, d ∈ Rn with cj = dj for all j 6= i, and ci 6= di such that f(c) 6= f(d). We claim that
(a, b, c, d) witnesses that f violates x = y ⇒ u = v. In fact, for all j 6= i, we have cj = dj ,
and, a fortiori, aj = bj ⇒ cj = dj . Also ai = bi ⇒ ci = di, because, by construction, the
premise of the implication is false. We conclude that for all j ∈ {1, . . . , n} we have that
ai = bi implies ci = di. However, f(a) = f(b) and f(c) 6= f(d). J

Nevertheless, one can see that essentially convex sets can be characterised by a poly-
morphism in a non-Archimedean extension on Q. All totally ordered vector spaces over Q
have the same semilinear CSP. In fact, the first-order theory of non-trivial totally ordered
vector spaces over Q is complete (see for instance [99][Chapter 2, Remark 7.9]). Therefore
we can replace R with such a non-Archimedean extension in the study of semilinear CSPs.
I Remark. Let Q[ε] denote the Q-vector space of all polynomials in one indeterminate ε with
rational coefficients. Consider the order on Q[ε] which is induced by viewing ε as a positive
number that is smaller than all positive rational numbers; formally, we order the polynomials
lexicographically with respect to their coefficients, starting with the constant term, then the
coefficient of degree one, and so on in increasing order of degree. Semilinear and essentially
convex subsets of (Q[ε])d are defined as for the reals. Now, let S be a semilinear relation, let
φ be the Boolean combination of inequalities with integer coefficients that defines S, and let
S′ be the semilinear relation defined by φ on Q[ε]. Then the following are equivalent:
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S is essentially convex;
S′ is essentially convex;
S′ is preserved by the following function

f : (Q[ε])2 → Q[ε]

(α(ε), β(ε)) 7→ γ(ε) :=
(

1
2 + ε

)
α(ε2) +

(
1
2 − ε

)
β(ε2) .

Proof Sketch. If S is not essentially convex, then this is witnessed by rational points, and it
is easy to see that S′ cannot be preserved by f . Conversely, we prove that f preserves all
essentially convex sets over Q[ε]. Observe that f is injective, because

α(ε2) =
(

1
2 + 1

4ε

)
γ(ε) +

(
1
2 −

1
4ε

)
γ(−ε)

and β(ε2) =
(

1
2 −

1
4ε

)
γ(ε) +

(
1
2 + 1

4ε

)
γ(−ε) .

Therefore, using the syntactic characterization of essential convexity in [57] (which holds in
all ordered Q-vector spaces by the completeness mentioned above), we only need to prove
that f preserves all the rational constants, +, and the positivity relation x > 0, and this is
immediate. J

Jonsson and Thapper prove a dichotomy result for the larger class of all semilinear
expansions of (R; +) [59]. These include all the CSPs covered by Theorem 7, but also
contain templates that may not be able to express full linear programming. For instance,
expanding linear programming by the non essentially convex relation |x− y| > 1 produces
an NP-complete CSP, nevertheless (R; +, |x− y| > 1) is tractable. In its short form, Jonsson
and Thapper’s result reads as follows.

I Theorem 11 (Jonsson–Thapper). Let R1, . . . , Rn be semilinear relations. Then the problem
CSP(R;R+, R1, . . . , Rn) is either in P or NP-complete.

Theorem 11 comes with explicit tractability conditions. Unfortunately, these conditions
are too complex to fit comfortably into our survey. However, we can get a feeling of the
insights by looking at the special case of semilinear expansions of (R;R+, R=1).

I Corollary 12. Let R1, . . . , Rn be semilinear relations. Then CSP(R;R+, R=1, R1, . . . , Rn)
is in P if one of the following conditions is satisfied:
1. all unary relations primitively positively definable in (R;R+, R=1, R1, . . . , Rn) are essen-

tially convex;
2. all unary relations primitively positively definable in (R;R+, R=1, R1, . . . , Rn) are either

singletons or unbounded (i.e. not contained in an interval);
otherwise, it is NP-complete.

Here the first case is dealt with by reduction to the essentially convex case, the second by
a procedure, called affine consistency, that approximates from above the affine span of the
feasibility region of the input constraints.

For every semilinear structure Γ with finite signature CSP(Γ) is in NP; this can be
observed from a more general result which also holds for semilinear structures with an
infinite signature. When the semilinear relations in Γ are represented by quantifier-free
formulas where the constants in the polynomials are represented in binary, then we can
check satisfiability of an instance non-deterministically by first guessing a disjunct for each
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disjunction in the formula, and then checking in polynomial time the satisfiability of the
resulting feasibility problem obtained as the conjunction of the selected (strict or non-strict)
linear inequalities, e.g. using the algorithm of Jonsson and Bäckström [57].

4.2 Semilinear Constraints over the Integers
Semilinear subsets of Zn and semilinear structures with domain Z are defined analogously as
above for R. A special case of tractable semilinear constraints over the integers has been
found by Jonsson and Lööw [58].

I Definition 13. A semilinear structure Γ over R is called scalable if for every relation R of
Γ and for every (x1, . . . , xk) ∈ R there exists a positive a ∈ R such that (bx1, . . . , bxk) ∈ R
for all b > a.

I Definition 14. A semilinear structure Γ with domain R has the integer property if all
satisfiable instances of CSP(Γ) are satisfiable over Z.

I Theorem 15 (Jonsson–Lööw). All scalable semilinear structures have the integer property.

A partial converse to Theorem 15 is given by the following result of Jonsson and Thap-
per [59].

I Theorem 16 (Jonsson–Thapper). Let Γ be a semilinear structure such that CSP(Γ, R+)
has the integer property. Then Γ is scalable.

The following observation shows that CSPs of semilinear structures over the integers in
fixed dimension are in P, using Lenstra’s algorithm.

I Observation 17. For every fixed d ∈ N there is a polynomial time algorithm deciding the
satisfiability over Z of Boolean combinations of formulas of the form p(x1, . . . , xn) ≥ 0 where
p is a linear polynomial with variables x1, . . . , xn and integer coefficients that are represented
in binary.

Proof. For each input formula φ, our algorithm first extracts the list of the linear polynomials
p1, . . . , pk appearing in φ. We say that two points x̄, ȳ ∈ Rd have the same type if sign(pi(x̄)) =
sign(pi(ȳ)) for all i = 1, . . . , k, where

sign(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

.

Clearly the truth value of φ(x̄) depends only on the type of x̄.
It is easy to prove that there are points in Rd of at most τd(k) distinct types, where

τd(k) =
d∑
i=0

2i
(
k

i

)
.

In fact, we claim that there are at most τd(k) types, and that this bound is tight when the
hyperplanes pk = 0 are in general position. By induction on k, we add the polynomials one
by one. At the k-th step, we create at most τd−1(k − 1) new types with pk = 0, and exactly
as many in general position. Now we count the pk ≷ 0 types. For each of the new pk = 0
types, we see that its restriction to p1, . . . , pk−1, that we had at the (k − 1)-th step, splits
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into two new types corresponding to pk < 0 and pk > 0. The remaining part of the (k− 1)-th
step types is incompatible with either pk < 0 or pk > 0, so it does not produce any new
non-empty type. Thus we get the recurrence τd(k) = 2τd−1(k − 1) + τd(k − 1), hence the
formula.

In particular, τd(k) is polynomial in k, therefore we can compute a list of all these types
in polynomial time by solving at most

∑k−1
i=0 τd(i) linear programs. Now, using Lenstra’s

algorithm, we can exclude those types that do not contain points in Zd, and finally we check
the truth value of φ for each of the remaining ones. J

5 Algebraic Constraints

Adding zero sets of polynomials to the set of basic constraints will rapidly bring about
intractability. In the integer domain, the general problem of the satisfiability of a single
(multi-variate) polynomial equation, also known as Hilbert’s 10th problem, is undecidable
by the celebrated result of Davis, Matiyasevich, Putnam, and Robinson. In fact, they show
that satisfiability of a 13 variable polynomial is undecidable over N, later improved by
Matiyasevich to 9 (see [78] and [56]). Using the 4 squares theorem, therefore, satisfiability
of a single polynomial equation in Z is also undecidable for a fixed dimension (just replace
each variable xi with y2

i,1 + y2
i,2 + y2

i,3 + y2
i,4). We are not aware of any decidability result in

dimension 2. It has been proven by Manders and Adleman [74] that deciding the satisfiability
of a single equation of the form

ax2 + bx = c

over N is NP-complete. The decidability of satisfiable polynomial equations over the rationals
is a major open problem. For more details on Hilbert’s tenth problem and its extension to Q,
we refer the reader to [80] and [95].

One might consider a reduct of integer arithmetic in which only multiplication, and no
addition, is available. It is well known that this fragment, called Skolem arithmetic, has a
decidable first-order theory. Exploratory work on CSPs of reducts of Skolem arithmetic has
been published by Glaßer, Jonsson, Martin [42].

The natural relations to consider as basic constraints over the real numbers are the
semialgebraic relations.

I Definition 18. A subset of Rn is called semialgebraic if it can be represented as a finite
Boolean combination of basic semialgebraic sets of the form

{
x̄ ∈ Rn

∣∣ p(x̄) ≥ 0
}
where p is

a polynomial with integer coefficients.

Semialgebraic sets over R are a rich yet manageable class that forms the basis of real
algebraic geometry. The computational treatment of semialgebraic geometry goes back to
Tarski’s decision procedure for the first-order theory of the reals [98].

I Theorem 19 (Tarski). There is an effective quantifier elimination procedure for the first-
order theory of the structure (R; 0, 1, <,+,×).

The complexity bound on Tarski’s original procedure is very large: a tower of exponentials
as high as the size of the input. Collins’ cylindrical algebraic decomposition provides a
method running in polynomial time for fixed dimension (fixed number of variables in the
formula), and doubly exponential in the dimension [30]. This bound has been further
improved to exponential in the dimension by Renegar [88, 89, 90]. Of special interest to us
is the subproblem known as the existential theory of the reals.
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I Definition 20. The problem existential theory of the reals is the CSP for the
structure with domain R and all the relations of the form

Retr
n,p =

{
x̄ ∈ Rn

∣∣ p(x̄) = 0
}

where p ∈ Z[x1, . . . , xn] is represented as a list of coefficients, in binary.

The best bound currently known on the complexity of existential theory of the
reals is the following, obtained by Canny [28].

I Theorem 21 (Canny). The problem existential theory of the reals is in PSPACE.

We chose basic relations of the form p(x) = 0. Adding to this set also all the relations of
the form p(x) ≥ 0 and p(x) > 0 would not increase the complexity of existential theory
of the reals. In fact, the first is clearly equivalent to ∃y p(x) − y2 = 0 and x 6= 0 is
defined by ∃y xy + 1 = 0. More generally, it is easy to see that the semialgebraic relations
are precisely those that have a primitive positive definition over the structure (R; (Retr

n,p )n,p).
As for linear programming, we chose to present the existential theory of the reals as an
infinite signature CSP, it is however an easy exercise to find a finite basis for it. A non-trivial
equivalence between the existential theory of the reals and the following CSP has been
established by Schaefer and Štefankovič [92][Theorem 4.1]

I Definition 22. The problem strict inequalities is the CSP of the structure with domain
R and the relations of the form

Rstrict
n,p =

{
x̄ ∈ Rn

∣∣ p(x̄) > 0
}

where p ∈ Z[x1, . . . , xn] is represented as a list of coefficients, in binary.

I Theorem 23 (Schaefer–Štefankovič). The problems strict inequalities and existential
theory of the reals are polynomial time equivalent.

Observe that the sets primitively positively definable in (R; (Rstrict
n,p )n,p) are necessarily

open, therefore a strict subset of all semialgebraic sets. A number of other problems, many
of a geometric flavour, have been proven to be equivalent to existential theory of
the reals. We will mention two such results due to Kratochvíl and Matoušek [70], and
Schaefer [91] respectively.

I Definition 24. The problem intersection graph of segments is the CSP of the
structure with domain R4 and the binary relations Int and its negation ¬Int, defined as
follows. Let Sx2,y2

x1,y1
denote the straight line segment in R2 with endpoints (x1, y1) and (x2, y2).(

(x1, y1, x2, y2)(x′1, y′1, x′2, y′2)
)
∈ Int ⇔ Sx2,y2

x1,y1
∩ Sx

′
2,y

′
2

x′
1,y

′
1
6= ∅

I Theorem 25 (Kratochvíl–Matoušek). The problems intersection graph of segments
and existential theory of the reals are polynomial time equivalent.

I Definition 26. The problem unit length linkages is the CSP for the structure with
domain R2 and the relation

Rull =
{(

(x, y), (x′, y′)
) ∣∣ (x− x′)2 + (y − y′)2 = 1

}
denoting that the Euclidean distance of (x, y) and (x′, y′) is one.
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I Theorem 27 (Schaefer). The problems unit length linkages and existential theory
of the reals are polynomial time equivalent.

The existential theory of the reals has a natural analogue in the complex field. The
problem of deciding the satisfiability of a system of polynomial equations in C has been
called the Hilbert Nullstellensatz problem.

I Definition 28. Hilbert Nullstellensatz problem is the CSP of the structure with
domain C and the relations of the form

Rhn
n,p =

{
x̄ ∈ Cn

∣∣ p(x̄) = 0
}

where p ∈ Z[x1, . . . , xn] is represented as a list of coefficients, in binary.

It is not hard to reduce Hilbert Nullstellensatz problem to existential theory
of the reals, but a far lower complexity bound for Hilbert Nullstellensatz problem
is known conditionally to the generalized Riemann Hypothesis, thanks to the following result
of Koiran [67, 68].

I Theorem 29 (Koiran). Assuming the generalized Riemann Hypothesis, Hilbert Null-
stellensatz problem is in the class Arthur-Merlin, hence, a fortiori, at the second level
of the polynomial hierarchy (Π2).

For the Blum-Shub-Smale model of computation, Hilbert Nullstellensatz problem
and existential theory of the reals are both NP-complete, for the complex and the
real Turing machine model respectively, see [12].

In order for a semialgebraic expansion of linear programming to attain a complexity class
below NP, it is necessary to restrict the template to essentially convex relations, because of
the following result of Bodirsky, Jonsson, and von Oertzen [18][Lemma 3.5].

I Lemma 30 (Bodirsky–Jonsson–von Oertzen). Let R be a semialgebraic set which is not
essentially convex, and suppose that the failure of essential convexity is witnessed by a segment
with rational endpoints, then CSP(R;R+, R=1,≤, R) is NP-hard.

The technical assumption about rational endpoints is indeed necessary, see [18][Remark 3.6].
Even convexity is far from being a sufficient condition for tractability. One obstacle comes
from the well-known sum of square roots problem.

I Definition 31. The problem sum of square roots is the following computational task:
Input: a1, . . . , an, b ∈ N
Output:

YES if b ≤ √a1 + · · ·+√an,
NO otherwise.

It is a long standing open problem to characterise the complexity of this problem. The
membership in NP of sum of square roots is also open and would imply that the Euclidean
travelling salesman problem is NP-complete [40]. In fact, sum of square roots is not
even known to be in the polynomial hierarchy, and the best upper bound today is the fourth
level of the counting hierarchy [2]. Unfortunately, already very simple CSPs, for instance the
expansion of the template for linear program feasibility by the relation x2 ≤ y, can simulate
sum of square roots.
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I Observation 32. sum of square roots is polynomial time many-one reducible to

CSP(R, R+;R=1,+, x2 ≤ y) .

Proof.

b ≤
√
a1 + · · ·+

√
an ⇔ ∃x1, . . . , xn ∈ R


b = x1 + · · ·+ xn

x2
1 ≤ a1

...
x2
n ≤ an

J

I Observation 33. sum of square roots is polynomial time many-one reducible to

CSP(R;R+, R=1, x
2 + y2 ≤ 1) .

Proof. It suffices to find a primitive positive definition for the relation 0 ≤ x ≤
√
k of

size O(log k) for all constant k ∈ N. We use the following equivalence

x2 ≤ k ⇔ ∃a, b ∈ R


a2 + b2 ≤ 1
(k + 1)a = 2x
(k + 1)b = k − 1

observing that the linear relations (k + 1)a = 2x and (k + 1)b = k − 1 admit a succinct
primitive positive definition by iterated doubling. J

There is a connection between convex semialgebraic CSPs and semidefinite programming.
A spectrahedron is a subset of Rd of the form{

x̄ ∈ Rd
∣∣ x1A1 + · · ·+ xdAd +B is positive semidefinite

}
where A1, . . . , Ad, B are real symmetric matrices of the same size. Semidefinite programming
is the task of minimizing linear functions over spectrahedral domains. The relations that
are primitively positively definable over spectrahedra are called semidefinite representable.
Clearly all semidefinite representable relations are convex and semialgebraic. The converse
has been conjectured by Helton and Nie [48]: they conjecture that every convex semialgebraic
set is semidefinite representable. Helton and Nie’s conjecture has been proven in dimensions
two [93], and it remains one of the most important open problems in the field. The Helton-Nie
conjecture implies that every CSP for a template with finitely many convex semialgebraic
relations would be a special case of the semidefinite program feasibility problem. Not much
is known about the complexity of this problem. By Ramana’s duality [87] it is either in
NP∩ coNP or outside of NP∪ coNP. By results of Tarasov and Vyalyi [96] the evaluation of
arithmetic circuits (PosSLP) is reducible to it, thus also sum of square roots (for the
reduction from sum of square roots to PosSLP see [2]).

In fixed dimension, all semialgebraic CSPs are in P by the cylindrical decomposition
algorithm [30]. However, if we except Boolean combinations of linear inequalities (with
algebraic coefficients), we do not know any expansion of linear programming by a convex
non-linear semialgebraic relation which has a CSP in P. The theory of primitive positive
definability for reducts of the real field structure is not developed. For instance, we do not
know whether the relation x6 ≤ y is primitively positively definable over linear relations
and x2 ≤ y.
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6 Maximum as a Polymorphism

The maximum polymorphism describes interesting classes of semi-linear CSPs both in the
rational and in the integer domain. To begin with, it has been proven by Jeavons and
Cooper [54] that, for finite domains, if all the relations of a template are preserved by the
maximum polymorphism (according to some total ordering of the domain) then the CSP is
in P. The same authors observe that the CSP of all max-closed relations on a finite domain
is maximally tractable, in other words adding any further constraints to it would make it
NP-complete. Formally we have:

I Theorem 34 (Jeavons–Cooper). Any max-closed CSP instance containing c constraints
each of them satisfied by at most t tuples can be solved in time O(c2t2).

I Theorem 35 (Jeavons–Cooper). Given a structure (D;<) where 3 ≤ |D| < ∞ and <

is a total order on D, denote by M2,D the (finite) set of all binary max-closed relations
over D. Let R be any relation over D which is not max-closed. Then CSP(D;M2,D, R) is
NP-complete.

Observe that the statement of Theorem 34 is uniform in the constraints, in the sense
that the algorithm takes the constraints (represented in table form) as part of its input.
Therefore, Theorem 34 is adapted to situations in which the relevant domain is not fixed.
This algorithm is, indeed, the well-known arc consistency procedure. Generally speaking,
algorithms of this variety keep, for each variable, a list of allowed values, and iterate over
the constraints to check whether any of the allowed values can be excluded. Obviously the
procedure converges to a fixed point after at most n · d iterations, where n denotes the size of
the domain and d the number of variables of the input instance. If at any time some variable
has no more allowed values, the instance is unsatisfiable. Otherwise, there might or there
might not be a solution.

Jeavons and Cooper obtain Theorem 34 by showing that, despite providing in general
only a one-sided test, arc consistency correctly decides all max-closed CSPs. Jeavons, Cohen,
and Gyssens extended this result to finite domain CSPs having a semilattice polymorphism,
defined as follows.

IDefinition 36. The operation f : D2 → D is called a semilattice operation if it is idempotent,
commutative, and associative:

f(x, x) = x, f(x, y) = f(y, x), f(x, f(y, z)) = f(f(x, y), z).

I Theorem 37 (Jeavons–Cohen–Gyssens). A finite domain CSP whose relations are preserved
by a semilattice operation is in P.

To complete the picture for finite domain problems, let us point out that arc consistency
naturally extends to a class of algorithms based on establishing local consistency. The finite
domain CSPs that can be solved by this method have been recently characterized by Barto
and Kozik [7].

Theorem 34 gives us a method to solve infinite domain CSPs through a technique
termed sampling in [21, Definition 2.1]. We say that an infinite template Γ has a sampling
procedure if for every instance I of CSP(Γ) we can construct in polynomial time a finite
substructure ΓI of Γ such that I is satisfiable if and only if I is satisfiable as an instance
of CSP(ΓI). Clearly, Theorem 34 coupled with a sampling procedure for Γ provides a
polynomial-time decision procedure for CSP(Γ) whenever Γ is closed under maximum. This
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general method has provided polynomial and weakly polynomial time algorithms for several
concrete CSPs in the past. Most notably the following results, published respectively by
Hochbaum and Naor [51], and by Bezem, Nieuwenhuis, and Rodríguez-Carbonell [10].

I Definition 38. The problem monotone TVPI integer programming (for two variables
per inequality) is the CSP of the structure with domain Z and all the relations of the form

RmTVPI
a,b,c =

{
(x, y) ∈ Z2 ∣∣ ax− by ≥ c}

where a, b ∈ N and c ∈ Z.

I Theorem 39 (Hochbaum–Naor). A solution to an instance of monotone TVPI integer
programming taking values from {−N, . . . , N} can be computed in time polynomial in N
and the size of the instance.

I Definition 40. The problem max-atoms is the CSP of the structure with domain Z and
all the relations of the form

Rma
c =

{
(x, y, z) ∈ Z3 ∣∣ max(x, y) + c ≥ z

}
for c ∈ Z.

I Theorem 41 (Bezem–Nieuwenhuis–Rodríguez-Carbonell). The problem max-atoms can be
solved in weakly polynomial time.

The proofs of these theorems rely on the observation that the respective signatures
are max-closed (and the relations RmTVPI

a,b,c are indeed also min-closed). Broadly speaking,
both results provide algorithms of the weakly polynomial kind: Theorem 41 explicitly,
Theorem 39 because one can compute bounds xmax

i and xmin
i polynomial in the size of the

instance [94][§17.1]. One might wonder whether these results can be improved to actually
yield a polynomial algorithm. At least for Theorem 41 this is unfortunately not the case.

I Theorem 42 (Lagarias). The problem monotone TVPI integer programming is
NP-complete.

Lagarias reduces monotone TVPI integer programming to the problem weak
partition [71], which was proven NP-complete ultimately by reduction from knapsack [100].
Theorems 39 and 42 together say that monotone TVPI integer programming is weakly
NP-complete (assuming P 6= NP). It can be observed, however, that being max-closed does
not imply tractability in the integer domain even for finite signature CSPs.

I Example 43. CSP(Z ; x = 1, x = −1, x = 2y, x+ y ≥ z) is NP-complete.

Proof. Our CSP is clearly in NP, because it is a sub-problem of integer linear program-
ming. NP-hardness is proven through a reduction from monotone TVPI integer pro-
gramming. The constraint ax−by ≥ c with a, b ∈ N is equivalent to ax+(2β−b)y−c ≥ 2βy,
where β is the smallest exponent such that 2β ≥ b. This is, in turn, equivalent to the primitive
positive formula

∃ z1, z2, z3, z4, z5, z6



ax ≥ z1

(2β − b)y ≥ z2

z1 + z2 ≥ z3

z4 = sign(−c)
|c| z4 ≥ z5

z3 + z5 ≥ z6

z6 = 2βy

.
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All atomic relations in this formula are of the types x+y ≥ x , x = 2y , 1 , −1 except z6 = 2βy
and those of the form kv1 ≥ v2 for k ≥ 0 and v1, v2 denoting variables. Relations of the first
kind are easily expressed by chaining β constraints of the type x = 2y. To express kv1 ≥ v2
we proceed recursively:

0 ≥ v2 ⇔ ∃t t = 2 ∗ t ∧ t+ t ≥ v2 for k = 0
kv1 ≥ v2 ⇔ ∃t k′v1 ≥ t ∧ t+ t ≥ v2 for k = 2k′ even
kv1 ≥ v2 ⇔ ∃t 2k′′v1 ≥ t ∧ t+ v1 ≥ v2 for k = 2k′′ + 1 odd.

J

The concept of primitive positive interpretation formalises a powerful form of simulation of
a CSP by another CSP, generalising the notion of primitive positive definability to templates
that have different domains; for the technical definition see [14]. Since the existence of a
semilattice polymorphism is preserved by primitive positive interpretations, the CSP of
example 43 cannot interpret primitively positively any NP-complete finite domain CSP, yet
it is NP-complete.

The situation changes for the max-atoms problem. First of all, one can formulate max-
atoms also for the rational or the real domains, however, as it was observed already in [10],
the real, rational, and integer formulations are polynomial-time equivalent. Max-atoms is
also unlikely to be NP-complete because it was proven in the same paper to be in NP∩ coNP.
The original proof of NP ∩ coNP membership constructs small unsatisfiability certificates
using an appropriate proof system. The result, however, can be better understood through a
connection with mean payoff games implicit in the work of Möhring, Skutella, and Stork on
scheduling under and/or precedence constraints [84], and later discovered independently by
Atserias and Maneva [4].

Mean payoff games are a class of so-called graph-games. The setup for a game G is a
finite graph G whose edges (EG) are labelled integer weights {we}e∈EG

. The play takes place
between two players, which we call Max and Min, taking turns at moving a token along
the edges of G. The graph G has no sinks, and the vertices are divided into two subsets
VG = V max

G t V min
G , the first belongs to Max, the second to Min. The token is initially on

some vertex v0, and each player selects the next move when the token is on a vertex belonging
to him. The value of a (infinite) play v0, v1, . . . is

val(v0, v1, . . . ) = lim inf
n→∞

1
n+ 1

n∑
i=0

w(vi,vi+1) .

Player Max wants to maximize this value, Min wants to minimize it. The following theorem
was proven by Eherenfeucht and Mycielski [34].

I Theorem 44 (Ehrenfeucht–Mycielski). Given a mean payoff game G and a starting vertex v0
in the graph of G, there is a value val(G, v0) and a pair of memoryless strategies σ and τ
(not depending on v0) for Max and Min respectively, such that Max can secure a value not
smaller than val(G, v0) by playing according to σ, and Min can secure a value not larger
than val(G, v0) by playing according to τ .

Here memoryless means that at all times the move to play depends only on the current
position of the token (and not, for instance, on the previous play or on a random choice).
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I Definition 45. The problem mean payoff games is the following computational task:
Input: a mean payoff game G.
Output:

YES if val(G, v0) ≥ 0 for all starting vertices v0 in the graph of G,
NO otherwise.

It turns out that max-atoms and mean payoff games are equivalent in the following
precise sense [84].

I Theorem 46 (Möhring–Skutella–Stork). The problems max-atoms and mean payoff
games are polynomial-time many-one reducible to each other.

The NP ∩ coNP membership of mean payoff games was first observed by Zwick and
Paterson [104][Theorem 4.2], and it is essentially a consequence of the symmetric nature of
the game. In fact, although Definition 45 is not symmetric in its form, standard arguments
(see for instance [102][Propositions 2.7, 2.8]) prove that that the decision problem mean
payoff games is polynomial-time Turing equivalent to solving mean payoff games (i.e.,
computing a pair of optimal memoryless strategies with the property from Theorem 44).

Theorem 46 is actually a re-discovery of the concept of potential transformation, which has
been known for games since the work of Gurvich, Karzanov, and Khachiyan [45]. The set of
conditions that a potential transformation must satisfy in order to witness val(G, v0) ≥ 0 for
all v0 is, indeed, precisely the corresponding max-atoms instance in Atserias and Maneva’s
reduction.

The problem max-atoms has been, in turn, proven equivalent to a number of other well-
known computational tasks, most notably scheduling under and-or precedence constraints,
and solving two-sided systems of max-plus linear equations. The problem two sided max-
plus linear systems is the problem of deciding whether a given system of equalities of the
form

max(a1 + x1, . . . , am + xm) = max(b1 + y1, . . . , bn + yn)

with a1, . . . , am, b1, . . . , bn ∈ Z has a solution. As for max-atoms, it is immaterial whether
we are looking for a solution over Z, Q, or R.

I Theorem 47 (Bezem–Nieuwenhuis). The problems max-atoms and two sided max-plus
linear systems are polynomial-time many-one reducible to each other.

Max-plus algebra studies the algebraic properties of the tropical semiring, which can be
defined as the structure R ∪ {−∞} with the standard ring operations + and × replaced
by max and + respectively. Its study is motivated by applications to scheduling and routing
problems, as well as more abstract connections to algebraic geometry. Two-sided max-plus
linear systems are precisely the analogue in the tropical semiring of standard systems of
linear equations.

The best known algorithms for this cluster of equivalent problems come apparently from
the game perspective. They are weakly polynomial, for instance Zwick and Paterson’s [104],
or sub-exponential (randomized), for instance Halman’s [46], or both, as Björklund and
Vorobyov’s [11]. Other algorithms are known to converge quickly in practice (similarly to the
simplex algorithm for linear programming), for example Gurvich, Karzanov, and Khachiyan’s
procedure [45] and its variants.

The problem of the existence of a polynomial-time solution for mean payoff games, or
equivalently max-atoms, has been described as presenting now exactly the same challenge
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as linear programming did before 1979 [102]. This description is grounded essentially on
observations of an algorithmic nature. For instance, the two sub-exponential algorithms
cited above are based precisely on adapting the sub-exponential method of Matoušek Sharir
and Welzl for combinatorial linear programming [81]. A formal connection is presented by
Allamigeon, Benchimol, Gaubert, and Joswig [1]: if there is a combinatorial pivoting rule for
the simplex method yielding polynomial time convergence, then mean payoff games are in P.

We obtain an interesting development considering the following formulation of max-atoms
over the real numbers, which we know to be equivalent to the problem over Z.

I Definition 48. The problem max-atoms over R is defined as the CSP of R with all the
relations of the form

RmaR
c =

{
(x, y, z) ∈ R3 ∣∣ max(x, y) + c ≥ z

}
for c ∈ Q.

Obviously the constraints RmaR
c are semilinear, closed under maximum, and it is also

apparent that these constraints are preserved by all translations tk(x) := x+ k for k ∈ Q.
The class of max-closed translation-invariant semilinear sets has been studied in the context
of tropical geometry, where these sets have been called tropically convex [33] (in this field, it
is customary to consider the dual situation, using min instead of max). Formally, tropically
convex sets are the tropical analogue of the convex cones in classical geometry. In this
sense, the CSP for tropically convex relations is the notional analogue of linear program
feasibility for tropical geometry. One can observe that not all tropically convex relations
arise as feasibility regions of instances of max-atoms over R. An example of such a relation
is the relation defined by x ≤ (y + z)/2, and more generally the relations of the form
{(x, y, z) | (a+ b)x ≤ ay + bz} for a, b 6= 0.

Bodirsky and Mamino [22] give a finite basis for tropically convex semilinear relations.

I Theorem 49 (Bodirsky–Mamino). A subset of Rn is semilinear, max-closed, and translation-
invariant if and only if it is primitively positively definable over

(R;x = 1, x = −1, <, 2x ≤ y + z , x ≤ y ∨ x ≤ z) .

The CSP for tropically convex semilinear relations is equivalent to solving an extension of
mean payoff games called stochastic mean payoff games [22]. These are defined similarly to
the deterministic case, except that the set of vertices is partitioned in three components VG =
V max
G t V min

G t V rand
G ; when the token is on a vertex in the new component V rand

G , the next
move is selected uniformly at random. The goal for Max (resp. Min) is to maximize (resp.
minimize) the expected value of the play.

I Definition 50. The problem tropically convex constraints is

CSP(R;x = 1, x = −1, <, 2x ≤ y + z, x ≤ y ∨ x ≤ z) .

I Theorem 51 (Bodirsky–Mamino). The problem tropically convex constraints is
polynomial-time Turing equivalent to solving stochastic mean payoff games, thus in NP ∩
coNP.

Stochastic mean payoff games are a generalization of mean payoff games, and they have
the same computational complexity as Condon’s simple stochastic games [3]. There are
many connections between mean payoff games, stochastic mean payoff games, and simple
stochastic games: they all admit optimal memoryless strategies [41, 73, 31], they all are
in NP ∩ coNP, and similar algorithmic approaches are used to solve them [46]. On the other
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hand, tropically convex constraints is in some respects a problem more robust than
max-atoms. For instance, tropically convex constraints is a finite language CSP. On
the contrary, max-atoms does not admit a finite basis, and any finite signature restriction
of max-atoms is immediately in P by sampling.

Max-atoms does not have a polymorphism definition, i.e., the feasibility regions of max-
atoms over R cannot be singled out among all the semilinear sets by means of a poly-
morphism condition. The class of semilinear relations preserved by all polymorphisms of
the template for max-atoms over R turns out to be precisely the class of tropically convex
semilinear relations [22].

The NP∩coNP membership of tropically convex constraints can be illustrated, for
the special case of closed constraints (i.e., positive Boolean combinations of weak inequalities),
by a duality statement.
Let On be the class of functions mapping

(
Q∪{+∞}

)n to Q∪{+∞} of either of the following
forms

(x1 . . . xn) 7→ max(xj1 + k1 . . . xjm + km)
(x1 . . . xn) 7→ min(xj1 + k1 . . . xjm

+ km)

(x1 . . . xn) 7→ α1xj1 + · · ·+ αmxjm

α1 + · · ·+ αm
+ k

where k, ki ∈ Q and αi ∈ Q>0.
For any given vector of operators ō ∈ Onn consider the following satisfiability problems:

the primal P (ō) and the dual D(ō)

P (ō) :
{
x̄ ∈ Qn

x̄ < ō(x̄)
D(ō) :

{
ȳ ∈

(
Q ∪ {+∞}

)n \ {+∞}n
ȳ ≥ ō(ȳ)

where < and ≥ are component-wise.

I Theorem 52 (Bodirsky–Mamino). For any ō ∈ Onn one and only one of the problems P (ō)
and D(ō) is satisfiable.

The special case of Theorem 52 for max-atoms has been observed constraints already
in [44].

7 Reducts of the Order of the Rationals

If we want to classify the CSP for first-order reducts Γ of an infinite structure ∆, the simplest
structure to start with is the structure ∆ with the empty signature. An example of such a
reduct Γ is (Q; 6=, x = y ⇒ u = v); its CSP can be solved in polynomial time. On the other
hand, the CSP for (Q;x = y 6= z ∨ x 6= y = z) is NP-complete. The complexity of the CSP
for such reducts has been classified: a reduct Γ of a countably infinite structure without
any structure either has a constant polymorphism or a binary injective polymorphism, and
CSP(Γ) is in P, or all polymorphisms of Γ can be written as an injection composed with
projections, in which case CSP(Γ) is NP-complete [19]. Instead of giving further details of this
fundamental result, we immediately step to a larger class that is of particular relevance for
numeric domains, namely to reducts Γ of (Q;<). This class contains many interesting CSPs
(some of which have been mentioned in the introduction), and classifying the complexity of
CSP(Γ) is considerably more difficult.

We first state an older result, which provides a pre-classification of reducts of (Q;<) that
plays an important role in the proof of the complexity classification. Let Γ be a first-order
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reduct of (Q;<) with finite relational signature. Cameron [27] proved that Aut(Γ) equals
one out of the following five groups:

Aut(Q;<);
Aut(Q; Betw) where Betw = {(x, y, z) ∈ Q3 | x < y < z ∨ z < y < x} is the betweenness
relation that we have already seen in the introduction;
Aut(Q; Cycl) where Cycl = {(x, y, z) ∈ Q3 | x < y < z ∨ y < z < x ∨ z < y < x} is the
so-called cyclic order relation;
Aut(Q; Sep) where Sep is the relation that contains all (x, y, u, v) ∈ Q4 such that the
sets [x, y] \ [u, v], [x, y] ∩ [u, v], and [u, v] \ [x, y] are non-empty, where [p, q] denotes the
smallest interval that contains p and q;
Aut(Q; =), the symmetric group on Q consisting of all permutations of Q.

Classifications of the automorphism groups of reducts Γ are too coarse for obtaining complexity
results for CSP(Γ); we need to look at polymorphisms. Here are some binary operations over
Q that are of particular importance when classifying the complexity of CSP(Γ) for reducts
Γ of (Q;<). The first one is the maximum operation, (x, y) 7→ max(x, y), which we have
already seen in the introduction. The following operations are more difficult to describe; for
illustrations, see Figure 1.

Let mx: Q2 → Q be any operation that satisfies

mx(x, y) < mx(x′, y′)⇔ min(x, y) < min(x′, y′)
∨ (min(x, y) = min(x′, y′) = x′ = y′ < max(x, y)).

The relations ≤ and 6= are not preserved by mx; however, mx preserves for example the
relation X := {(x, y, z) ∈ Q3 | x = y < z ∨ x = z < y ∨ y = z < x}.
Let mi : Q2 → Q be any operation that satisfies

mi(x, y) < mi(x′, y′)⇔ min(x, y) < min(x′, y′)
∨ (min(x, y) = min(x′, y′) = x < x′).

Relations preserved by mi are for instance ≤, 6=, and the relation of arity four given
by x 6= u ∨ y < u ∨ z ≤ u; a syntactic description of all the relations with a first-order
definition over (Q;<) that are preserved by mi, due to Michał Wrona, can be found
in [14].
Let ll : Q2 → Q be any operation that satisfies

ll(x, y) < ll(x′, y′)⇔ min(x, y) < min(x′, y′)
∨ (min(x, y) = min(x′, y′) ∧ x < x′)
∨ (min(x, y) = min(x′, y′) = x < y′).

(Here we slightly deviate from the terminology Bodirsky and Kára [20]; the operation ll
that we present here has a simpler behaviour that relates more clearly to the operations
mx and mi, but the smallest polymorphism clone of a reduct of (Q;<) that contains it
is the same as for the operation described in [20].) The relation ll preserves 6=, ≤, but
also the relations defined by x = y ⇒ u = v and x > min(y, z) that we have encountered
before.

In all cases, it can be shown that such functions exist.
Each of these operations f has a dual f∗, defined by f∗(x, y) := −f(−x,−y); for example,

the minimum operation is the dual of the maximum operation. Finally, there is the constant
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2 0 1 2
1 0 1 1
0 0 0 0
min 0 1 2

2 0 2 4
0 0 3 2
1 1 0 0
mx 0 1 2

2 2 5 6
1 2 3 4
0 0 1 1
mi 0 1 2

2 4 7 8
1 3 5 6
0 0 1 2
ll 0 1 2

Figure 1 Illustration for the operations min, mx, mi, and ll (in this order).

function whose image has cardinality one; clearly, having a constant polymorphism implies
that Γ has the same CSP as a one-element structure, and hence CSP(Γ) is in P. But also
if Γ has one of the other operations described above as a polymorphism, or one of their
duals, then CSP(Γ) can be solved in polynomial time. We mention that the polynomial-time
algorithms can also treat reducts Γ with an infinite signature when the relation symbols are
represented by quantifier-free formulas in disjunctive normal form (recall that (Q;<) has
quantifier elimination). We can now state the classification result (from [20]; also see [14]).

I Theorem 53 (Bodirsky–Kára). Let Γ be a reduct of (Q;<) with finite relational signature.
Then Γ has ll, min, mx, mi, one of their duals, or a constant operation as polymorphism,
and CSP(Γ) is in P, or CSP(Γ) is NP-hard.

It is natural to ask which semilinear relations can be added to the tractable cases of
this theorem so that the CSP of the resulting expanded structure is still tractable. The
polymorphism max and its algorithmic relevance in this context has already been discussed
earlier in Section 6. On the other hand, the operations ll, mx, and mi can be adapted to
preserve additional relations that are definable in (Q;<,+, 1), and we quickly reach CSPs of
open computational complexity; some will be listed in Section 10.

8 Reducts of the Successor Relation over the Integers

The structure (Z; Succ) of the integers with the successor relation is among the simplest
structures that is not ω-categorical, and it is a reduct of most of the interesting structures
over the integers, such as (Z;<) or (Z; +, 1). Hence, the class of reducts of these two more
expressive structures includes the reducts of (Z; Succ), and following the bottom-up approach
mentioned in the introduction, we study the CSPs of reducts of (Z; Succ) first.

Moreover, the structure (Z; Succ) has the same CSP as the structure (Q;x = y + 1),
and reducts of (Z; Succ) have the same CSP as the corresponding reducts of (Q;x = y + 1).
Hence, even when we want to classify the complexity of the CSP for reducts of (Q; +, 1) we
have to classify the complexity of CSPs for reducts of (Z; Succ).

Let Γ be a first-order reduct of (Z; Succ) with finite relational signature. We want to
describe the border between those Γ whose CSP can be solved in polynomial time and
those whose CSP is NP-hard, because we believe that the shape of this description could be
paradigmatic for complexity classifications of larger classes of CSPs over numeric domains.
In order to state the classification, we introduce certain binary operations.

I Definition 54. For d ∈ Z, d ≥ 1, the d-modular max is the binary operation maxd : Z2 → Z
defined by

maxd(x, y) :=
{

max(x, y) if x ≡ y modulo d
x otherwise.

If Γ has a d-modular max as a polymorphism, for some d ≥ 1, then CSP(Γ) can be solved
in polynomial time [15]. In a nutshell, the idea is that the situation for d > 1 can be reduced
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to the situation for d = 1. For d = 1, we obtain the regular max operation, and we can solve
CSP(Γ) using the sampling technique that has been described in Section 6.

We now describe another family of reducts of (Z; Succ) whose CSP can be solved in
polynomial time. Note that the structure (Q; {(x, y) | x = y+1}) is isomorphic to (Q; {(x, y) |
x = y + 1})2; let si be any isomorphism. It can be shown that a relation with a first-order
definition in (Q; {(x, y) | x = y + 1}) is preserved by i if and only if it has a Horn definition
over (Q; s) where s is the successor function. With this description, it is not difficult to come
up with an algorithm for reducts of (Z; Succ) with i as a polymorphism.

We would like to state that all other first-order reducts Γ of (Z; Succ) with finite relational
signature have an NP-hard CSP; an in fact, this is true when Succ has a primitive positive
definition in Γ. But otherwise, unfortunately, life is not as simple as that. It might be
that Γ has the same CSP as some other reduct Γ′ of (Z; Succ), and that Γ′ has max as
a polymorphism. Allowing such changes in the choice of the template greatly helps in
classification projects. When Γ is ω-categorical, then there is a good theory for finding the
(up to isomorphism unique) ‘nicest’ template to work with; we have to refer to [13, 17] for a
discussion. The main point is that in these nicer templates, many of the basic relations are
primitive positive definable. For reducts Γ of (Z; Succ), we can replace Γ by some structure
Γ′ with the same CSP such that Succ is primitive positive definable in Γ′, unless Γ is of a
‘degenerate’ form; see Theorem 55 for a formal statement. Unlike the ω-categorical situation,
we do not have an a-priori justification for this phenomenon. With this perspective, we can
now phrase the complete classification statement from [24].

I Theorem 55. Let Γ be a reduct of (Z; Succ) with finite signature. Then there exists a
structure ∆ such that CSP(∆) equals CSP(Γ) and one of the following cases applies.
1. ∆ has a finite domain, and Feder and Vardi conjectured that CSP(∆) is in P or NP-

complete.
2. ∆ is a reduct of (Q; =), and CSP(∆) is either in P or NP-complete by Theorem 53.
3. ∆ is a reduct of (Z; Succ) and Succ is primitive positive definable in ∆. In this case, if ∆

has a d-modular max or a d-modular min polymorphism, then CSP(∆) is in P; otherwise,
CSP(∆) is NP-complete.

9 The Unclassifiable

In this section we make essential use of the following theorem, which is due to Davis,
Matiyasevich, Putnam, and Robinson.

I Theorem 56 (See e.g. [80]). A subset of Z is recursively enumerable if and only if it has a
primitive positive definition in (Z; ∗,+, 1), the integers with addition and multiplication.

I Theorem 57. For every recursively enumerable problem P there exists a reduct Γ of
(Z; ∗,+, 1) with finite relational signature such that CSP(Γ) is polynomial-time Turing equi-
valent to P.

Proof. Code P as a set L of natural numbers, viewing the binary encodings of natural
numbers as bit strings. More precisely, s ∈ P if and only if the number represented in binary
by the string 1s is in L. That is, we append the symbol 1 at the front so that for instance
00 ∈ P and 01 ∈ P correspond to different numbers in L. Now consider the structure
Γ := (Z;S,D,L′, N) where

S is the binary relation defined by

S(x, y)⇔
(
(y = x+ 1 ∧ x ≥ 0) ∨ (x = y = −1)

)
;
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D is the binary relation defined by

D(x, y)⇔
(
(y = 2x ∧ x ≥ 0) ∨ (x = y = −1)

)
;

L′ := L ∪ {−1};
N := {0}.

Clearly, if P is recursively enumerable, then L and L′ are recursively enumerable, too.
We have to verify that CSP(Γ) is polynomial time equivalent to P. We first show that

there is a polynomial-time reduction from P to CSP(Γ). View an instance of P as a number
n ≥ 0 as above, and let η(x) be a primitive positive definition for x = n in Γ. It is possible to
find such a definition in polynomial time by repeatedly doubling (y = x+x) and incrementing
(y = x+ 1) the value 0 (this also follows from the more general Lemma 3). It is clear that n
codes a yes-instance of P if and only if ∃x(η(x) ∧ L′(x)) is true in Γ.

To reduce CSP(Γ) to P, we present a polynomial-time algorithm for CSP(Γ) that uses
an oracle for P (so our reduction will be a polynomial-time Turing reduction). Let φ be
an instance of CSP(Γ), and let H be the undirected graph whose vertices are the variables
W of φ, and which has an edge between x and y if φ contains the constraint S(x, y) or the
constraint D(x, y). Compute the connected components of H. If a connected component does
not contain x with a constraint N(x) in φ, then we can set all variables of that component
to −1 and satisfy all constraints involving those variables.

Otherwise, suppose that we have a component C that does contain x0 with a constraint
N(x0). Observe that by connectivity, if there exists a solution, then all variables in C must
take non-negative value. Consider the following linear system: for each constraint of the
form S(x, y) for x, y ∈ C we add y = x+ 1 and x ≥ 0 to the system, and for each constraint
of the form D(x, y) for x, y ∈ D we add z = 2x and x ≥ 0. Subject to x0 = 0 this system
has either one or no solution. As we have discussed earlier, one can check in polynomial time
whether a linear system with 2 variables per constraint has an integer solution, and if there
is no solution, the algorithm rejects. Otherwise, the algorithm assigns to each variable x ∈ C
its unique integer value, and if φ contains a constraint L′(x), we call the oracle for P with
the binary encoding of this value. If any of those oracle calls has a negative result, reject.
Otherwise, we have found an assignment that satisfies all constraints, and accept. J

The universal-algebraic approach fails badly when it comes to analyzing the computational
complexity of CSP(Γ) for the structure Γ from the proof of Theorem 57: the semi-lattice
operation (x, y) 7→ max(x, y) preserves Γ for all structures Γ considered in the previous
proof, and from that we cannot draw any consequences for the computational complexity of
CSP(Γ).

10 Next Steps for . . .

Constraint Satisfaction Problems over a numeric domain, such as Z, Q, R, C, for a fixed set
of constraints that are first-order definable using addition and multiplication, provide an
extremely rich class of natural and fundamental computational problems. A great variety of
problems from the literature can be expressed in this way. Many of these problems have an
open computational complexity status, and belong to the central topics of research in their
respective fields.

The universal-algebraic approach, which has originally been developed for finite-domain
constraint satisfaction, will most likely only be of limited help for studying the complexity of
computational complexity of the famously open problems. However, this approach is useful
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for for relating these problems, for obtaining classification results, and for identifying new
polynomial-time restrictions.

We state a list of concrete open problems, which we structure according to the numeric
domain.

10.1 . . . the Integers
There is the obvious goal: classify the complexity of CSP(Γ) for first-order reducts Γ of
(Z;<,+, 1). This being a very ambitious goal, we propose substeps and concrete relevant
questions.

1. Classify the complexity of first-order reducts of (Z; Succ, 0).
2. Classify the complexity of first-order reducts of (Z; +).
3. What is the complexity of CSP(Z;≤,Succ, x = 2y)?

10.2 . . . the Rationals
Again, there is the obvious goal: classify the complexity of CSP(Γ) for first-order reducts Γ
of (Q;<,+, 1). A complete answer would involve the solution of long-standing open problems
from the literature, e.g., the complexity of mean payoff games.

4. What is the complexity of CSP(Γ) for first-order reducts Γ of (Q;<,+, 1) with max as a
polymorphism? Already containment in NP ∩ coNP is unclear.

5. What is the complexity of CSP(Q;X,RSucc) where X := {(x, y, z) ∈ Q3 | x = y < z ∨
x = z < y ∨ y = z < x} is the relation from the introduction?

6. Classify the complexity of CSP(Γ) for first-order reducts Γ of (Q; +).

10.3 . . . the Reals
Is it possible to classify the complexity of CSP(Γ) for first-order reducts Γ of (R; +, ∗)?
This goal is at least as difficult as the initial goal from Section 10.2, since 1 and < are
first-order definable in (R; +, ∗), and since every reduct of (R; +, <, 1) has the same CSP as
the corresponding reduct of (Q; +, <, 1).

7. What is the computational complexity of the problem CSP(R, R+;R=1,+, x2 ≤ y) from
Observation 32?

8. What is the computational complexity of the problem CSP(R;R+, R=1, x
2 +y2 ≤ 1) from

Observation 33?
The classification for first-order reducts of (R; +, ∗) is probably strictly more difficult, because
a complete complexity classification might provide the solution to further famous computa-
tional problems of open complexity, e.g., the sums-of-square-roots problem or the feasibility
problem for semidefinite programs.

10.4 . . . and the Complex Numbers
Also over the complex numbers, many fundamental questions are open. The obvious general
question is whether we can classify CSP(Γ) for all first-order reducts of (C; +, ∗). Clearly,
if Γ is a first-order reduct of (R2;≤,+, 1, i) (with the usual identification of C and R2),
then CSP(Γ) can be reduced to a linear program feasibility problem. On the other hand,
for characterizing the reducts Γ with an NP-hard CSP, it would be interesting to have a
primitive positive version of the theorem of Marker and Pillay mentioned in the introduction.
More precisely, we are interested in the following mathematical question.
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9. Let R ⊆ Cn be the relation defined over (C; +, ∗) by p(x1, . . . , xn) = 0 for some non-
linear polynomial p. Is there a primitive positive definition of complex multiplication in
(C; +, 1, R)?
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