Deep Static Modeling of invokedynamic (Artifact)

George Fourtounis

University of Athens, Department of Informatics and Telecommunications, Greece

http://gfour.github.io/
gfour@di.uoa.gr

Yannis Smaragdakis

University of Athens, Department of Informatics and Telecommunications, Greece

http://yanniss.github.io/
smaragd@di.uoa.gr

— Abstract

Java 7 introduced programmable dynamic linking in
the form of the invokedynamic framework. Static
analysis of code containing programmable dynamic
linking has often been cited as a significant source of
unsoundness in the analysis of Java programs. For
example, Java lambdas, introduced in Java 8, are a
very popular feature, which is, however, resistant to
static analysis, since it mixes invokedynamic with
dynamic code generation. These techniques inval-
idate static analysis assumptions: programmable
linking breaks reasoning about method resolution
while dynamically generated code is, by definition,

not available statically. In this paper, we show
that a static analysis can predictively model uses
of invokedynamic while also cooperating with ex-
tra rules to handle the runtime code generation
of lambdas. Our approach plugs into an existing
static analysis and helps eliminate all unsoundness
in the handling of lambdas (including associated
features such as method references) and generic
invokedynamic uses. We evaluate our technique
on a benchmark suite of our own and on third-
party benchmarks, uncovering all code previously
unreachable due to unsoundness, highly efficiently.

2012 ACM Subject Classification Software and its engineering — Compilers; Theory of computation

— Program analysis; Software and its engineering — General programming languages

Keywords and phrases invokedynamic, lambdas, static analysis

Digital Object Identifier 10.4230/DARTS.5.2.6

Funding We gratefully acknowledge funding by the European Research Council, grant 790340 (project
PARSE).

Related Article George Fourtounis and Yannis Smaragdakis, “Deep Static Modeling of invokedynamic”,
in 33rd European Conference on Object-Oriented Programming (ECOOP 2019), LIPIcs, Vol. 134,
pp. 15:1-15:28, 2019.

https://dx.doi.org/10.4230/LIPIcs.ECO0P.2019.15

Related Conference 33rd European Conference on Object-Oriented Programming (ECOOP 2019), July
15-19, 2019, London, United Kingdom

1 Scope

This artifact contains the evaluation benchmarks for the paper “Deep Static Modeling of
invokedynamic” by G. Fourtounis and Y. Smaragdakis (ECOOP ’19). The benchmarks du-
plicate the results of the evaluation section of the paper (instructions follow in Section 1.1 and
Section 1.2).

Installation is covered in Section 2.1. Solutions to common errors can be found in Appendix A.

The full sources of Doop (including the Datalog logic for the analysis) are included in the
directory contained in the DOOP__HOME environment variable. The sources of the benchmarks
are also included. All sources can be modified and rebuilt (consult Section 1.1.2 and Section 1.2.2
for information on how to inspect or extend the artifact).
? George Fourtounis.and Yannis Smara.gda%{is;

oY icensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 5, Issue 2, Artifact No. 6, pp. 6:1-6:4

\\v DAGSTUHL Dagstuhl Artifacts Series
ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2116-0797
http://gfour.github.io/
mailto:gfour@di.uoa.gr
http://yanniss.github.io/
mailto:smaragd@di.uoa.gr
https://doi.org/10.4230/DARTS.5.2.6
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.15
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

6:2

Deep Static Modeling of invokedynamic (Artifact)

1.1 Analyzing the Microbenchmark Suite

To analyze the microbenchmark suite (Section 5.1 in the paper), run:

cd ${HOME}/invokedynamic-benchmarks
./analyze-microbenchmarks.sh

1.1.1 Expected output

The programs should be analyzed without errors and a table with times should be printed (same
as Figure 8 in the paper). A list of successfull tests should also appear (“Running check: ..”).
The analysis of these programs covers the set of features mentioned in Section 5.1 of the paper.
The output also mentions the features checked successfully (“Feature: ...”).

1.1.2 Inspection and extension

For further manual inspection or to extend the artifact:

The test programs are integrated as tests run by Doop’s Gradle build system. Thus, these tests
pass when all analyses have completed successfully and all feature checks have also completed
successfully.

The sources of the test programs are under ${DOOP_HOME} /tests.

The test scenarios for the features are found in the following locations:

${DOOP_HOME}/src/test/groovy/org/clyze/doop/TestLambdasMethodReferences.groovy
${DOOP_HOME} /src/test/groovy/org/clyze/doop/TestInvokedynamic.groovy
${DOOP_HOME}/souffle-logic/addons/testing/TestInvokedynamic.dl

The Jimple intermediate representation can be found in ${DOOP_HOME}/out/context-
insensitive/test-X/facts/jimple, where X is one of “104-method-references”, “107-lambdas”,
and “115-invokedynamic”. This is only available when -generate-jimple is given in the tests
(instead of -Xlow-mem).

To inspect more information computed by the analysis, declare the appropriate relation(s) in
${DOOP_HOME}/souffle-logic/main/export.dl and repeat the analysis. The information will
be written to ${DOOP_HOME}/out/context-insensitive/test-X/database (see previous note
for the values of X). The feature checks also validate results read from this directory.

1.2 Analyzing the Dynamic Test Suite

To analyze the test suite of Sui et al. (Section 5.2 in the paper), run:

cd ${HOME}/invokedynamic-benchmarks
./bench-invokedynamic.sh

1.2.1 Expected output

The programs should be analyzed without errors. The script generates the table of Figure 9 in
the paper.

G. Fourtounis and Y. Smaragdakis

1.2.2 Inspection and extension

For further manual inspection or to extend the artifact:

The benchmark sources can be found in directory ${HOME} /invokedynamic-benchmarks/
dynamic-benchmark.

The Jimple intermediate representation can be found in ${DOOP_HOME}/out/context-
insensitive/X /facts/jimple, where X is one of “lambda-consumer”, “lambda-function”, “lambda-
supplier”; and “dynamo-reflection”. This is only available when -generate-jimple is given in
bench-invokedynamic.sh (instead of -Xlow-mem).

To inspect more information computed by the analysis, declare the appropriate relation(s) in
${DOOP__HOME}/souffle-logic/main/export.dl and repeat the analysis. The information will
be written to ${DOOP_HOME} /out/context-insensitive/X/database (see previous note for
the values of X).

The expected output is hard coded in file “bench-invokedynamic.sh” and the metrics (that
should match this output) are calculated by the logic in file “dynamic-benchmark.dl”.

2 Content

The artifact package includes file “invokedynamic-benchmarks.ova”, which is a VirtualBox image
(“appliance”) that can be directly imported by the VirtualBox software.!

2.1 Installation

Import “invokedynamic-benchmarks.ova” in VirtualBox via “File” / “Import Appliance”.
Start the virtual machine.

When the virtual machine starts and the desktop appears, open a terminal (menu / “System
Tools” / “LXTerminal”). The virtual machine contains a “user” account (password: “user”)
with sudo capabilities, so that additional software may be installed.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://gfour.github.io/invokedynamic-artifact/.

4 Tested platforms

This artifact is bundled as a VirtualBox image (tested with VirtualBox 5.2.18) and should thus
work on any platform supported by VirtualBox.

Script execution times vary significantly depending on the hardware used. We give here the
times for two extremes, a slow laptop (system A) running the scripts natively and a fast server
(system B) running the scripts inside the VirtualBox image.

System | OS CPU RAM
A Ubuntu 16.04 | Intel Core2 Duo CPU T6570, 2.10GHz 8G
B Ubuntu 18.04 | Intel Xeon Gold 6136 CPU, 3.00GHz 629G

! https://www.virtualbox.org/

6:3

DARTS

https://gfour.github.io/invokedynamic-artifact/
https://www.virtualbox.org/

6:4 Deep Static Modeling of invokedynamic (Artifact)

The total execution times of the scripts follow in the table below:

System

analyze-microbenchmarks.sh

bench-invokedynamic.sh

A

31min 27sec

38min 39sec

B

17min 47sec

19min 25sec

5 License

The artifact is available under The Universal Permissive License (UPL), Version 1.0, Copyright (c)
2017 PLAST lab, University of Athens and Martin Bravenboer, except for file MethodReferences

Test.java (Copyright (c) 2013, Oracle and/or its affiliates?).

6 MD5 sum of the artifact

£c01866198a461b2743a6aad4a2607f1

7 Size of the artifact

2.3 GiB

A Solutions to common errors

The virtual machine may run out of disk space if benchmarks are run manually and all analysis
results are kept. In that case, delete ${DOOP_HOME} /out or ${DOOP_HOME}/cache to

make space and rerun the analysis.

If the microbenchmark suite fails with a Gradle lock error, there may be a stale Gradle process

still running. Stop it (“kill -9 <PID>") and rerun the analysis.

2 https://docs.oracle.com/javase/tutorial/displayCode.html?code=https://docs.oracle.com/

javase/tutorial/java/java00/examples/MethodReferencesTest. java

https://docs.oracle.com/javase/tutorial/displayCode.html?code=https://docs.oracle.com/javase/tutorial/java/javaOO/examples/MethodReferencesTest.java
https://docs.oracle.com/javase/tutorial/displayCode.html?code=https://docs.oracle.com/javase/tutorial/java/javaOO/examples/MethodReferencesTest.java

	Scope
	Analyzing the Microbenchmark Suite
	Expected output
	Inspection and extension

	Analyzing the Dynamic Test Suite
	Expected output
	Inspection and extension

	Content
	Installation

	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact
	Solutions to common errors

