
04041 Abstracts Collection

Component-Based Modeling and Simulation

� Dagstuhl Seminar �

Fernando J. Barros1, Axel Lehmann2, Peter Liggesmeyer3, Alexander
Verbraeck4 and Bernhard P. Zeigler5

1 Univ. de Coimbra, PT
barros@dei.uc.pt

2 Univ. Bundeswehr München, DE
3 HPI Potsdam, DE

4 TU Delft, NL
a.verbraeck@tbm.tudelft.nl

5 Univ. of Arizona, Tucson, US

Abstract. From 18.01.04 to 23.01.04, the Dagstuhl Seminar 04041
�Component-Based Modeling and Simulation� was held in the Interna-
tional Conference and Research Center (IBFI), Schloss Dagstuhl. During
the seminar, several participants presented their current research, and
ongoing work and open problems were discussed. Abstracts of the pre-
sentations given during the seminar as well as abstracts of seminar results
and ideas are put together in this paper. The �rst section describes the
seminar topics and goals in general. Links to extended abstracts or full
papers are provided, if available.

Keywords. System-theoretic de�nitions and foundations for model- com-
ponents, speci�cation of model components, hierarchical, model-based
model development cost-bene�t, quality, performance, relibility, and reusa-
bility aspects

A Component-Based Approach to Modeling and

Simulation of Hybrid Systems

Fernando J. Barros(Univ. de Coimbra, PT)

The Heterogeneous Flow System Speci�cation (HFSS) is a comprehensive for-
malism aimed to represent a large variety of systems including switching systems,
hybrid systems and digital controllers. The HFSS is a component-based for-
malism enabling hierarchical and modular component composition. The explicit
representation of structure makes possible to change it dynamically, providing
support for describing component mobility. By o�ering a common ground to
model a large variety of models, the HFSS formalism enables the representation
of complex systems in a sound framework.

Dagstuhl Seminar Proceedings 04041
Component-Based Modeling and Simulation
http://drops.dagstuhl.de/opus/volltexte/2006/457

2 F. J. Barros, A. Lehmann, P. Liggesmeyer, A. Verbraeck and B. P. Zeigler

A Framework for con�gurable Fault Tolerance in HLA

Simulations

Ste�en Groÿmann (Fernmeldeschule des Heeres - Felda�ng, D)

The absence of fault tolerance mechanisms is a signi�cant de�cit of most current
distributed simulation in general and of simulation systems based on the high
level architecture (HLA) in particular. Depending on failure assumptions,depen-
dability needs, and requirements of the simulation application, a choice of dif-
ferent mechanisms for error detection and error processing may be applied.

In this presentation we introduce a framework for con�gurable fault toler-
ance in HLA simulations. Fault tolerance methods can be selected and con�gured
for each individual federate. The administration and execution of fault tolerant
federations is supported by a con�gurable runtime environment. We present an
adaptation process for integrating fault tolerance to existing federations. Pro-
totypes of certain parts of the framework have been implemented. Furthermore
We address the question whether dependability properties should be part of
component descriptions.

Features vs. Components - How to reconcile the two

Structuring Mechanisms?

Maritta Heisel (Universität Duisburg-Essen, D)

The goal of the talk was to stimulate discussion on two questions:
- What are commonalities of and what are di�erences between software com-

ponents and model components?
- Can the notion of a feature be useful for the evolution of model components?
In particular, we discussed the role of component models in component-based

software engineering and its possible counterparts in the area of simulation.
We introduced the notion of feature as it was coined in telecommunication

and pointed out the problem of feature interaction.
We compared the notions of components and features and pointed out how to

use them in combination. In the discussion, it turned out that realizing evolution
by adding features saves less e�ort in simulation than in software development.

A component-based simulation architecture

Jan Himmelspach (Universität Rostock, D)

If a model shall be executed in a parallel, distributed instead of a sequential
manner, typically the entire simulation engine has to be exchanged.

Component-Based Modeling and Simulation 3

To adapt the simulation layer more easily to the requirements of a concrete
model to be run in a speci�c environment a component based simulation layer has
been developed for James. A set of di�erent simulator components demonstrates
that a component-based design facilitates the exchange of simulators and their
combination.

Joint work of: Himmelspach, Jan; Uhrmacher, Adelinde M.

Challenges of Component Interoperation in Military

Simulations

Marko Hofmann (Univ. der Bundeswehr - Neubiberg, D)

Simulations of military combats belong to the most complex models in use today.
In order to manage their complexity over a comparatively long time (up to two
or three decades) component based approaches are among the most promising.
However, experiences with combat simulation systems in several NATO coun-
tries have shown that interoperability is not only a matter of technical and
syntactical issues. Semantic and conceptual problems of model interoperation
are much more challenging and they defy easy solutions. Two of these challenges
are the problem of pragmatic di�erences and conceptual mismatch. Pragmatics
deals with the actions triggered within an information processing entity (human
or arti�cial) after receiving and semantically understanding a given message. In
simulation models pragmatics can be seen as the real world interpretation of
the model dynamics. Because of the huge variety of possible abstractions from
reality these pragmatics can di�er signi�cantly. Thus, even with standardized
semantic glossaries meaningful interoperation can still fail. Raising this problem
from the level of executable or formal components to the conceptual level, helps
to overcome some of the pragmatic problems but it also puts a new challenge
on interoperation: It is well known that some concepts that are used to model
"military reality" are not compatible to each other, for example Lanchester dif-
ferential equations and single shot probability models for attrition or as a second
example grid terrain models and vector based models. To overcome these prob-
lems, it is - up to now - always necessary to �ne tune the models (or model
components) to each other. The only solution that can be imagined with tech-
nology available today seams to be the strict standardization both on the level
of pragmatics and concepts. However, that would signi�cantly reduce the degree
of freedom in modeling modern warfare.

Component-Based Safety and Reliability Modelling

Bernhard Kaiser (Hasso-Plattner-Institut - Potsdam, D)

Development by reusable components is a promising approach in the Embedded
Systems domain. In this domain safety and reliability analysis are essential parts
of the development process.

4 F. J. Barros, A. Lehmann, P. Liggesmeyer, A. Verbraeck and B. P. Zeigler

This generates a demand for compositional safety and reliability models. It
should be possible to attach safety models to the technical components identi�ed
during the system development phase. We present Fault Tree Analysis (FTA) as
one of the most popular safety analysis models and point out the aspects that
do not ful�l the above requirements: The current modularisation by independent
subtrees is not appropriate for components with complex interactions. The FTA
semantics is not able to represent some facets of software-controlled systems,
such as time dependencies or multi-state components. Moreover, current FTA
tools do not support the collection of repeating structures in libraries for reuse.
We propose three steps to deal with these issues: First, a new decomposition for
Fault Trees allows de�ning arbitrary components that are connected by ports.
Next we add state/event semantics to FTs. The resulting State-Event-Fault-
Trees are particularly suited for software- controlled systems. Finally we show
how both concepts together allow identifying patterns, precon�gured solutions
to recurring structures in safety critical systems. We complete the picture by
some examples and an outlook on our FTA Tool UWG3.

Keywords: Components, Embedded Systems, Fault Trees, Safety, Reliability

Joint work of: Kaiser, Bernhard; Liggesmeyer, Peter

Simulation of Systems that Contain Simulating

Components - Problems and their Solution, Application,

Classi�cation and existing Models

Eugene Kindler (Charles University - Prague, CZ)

The paper will concern simulation of man-made systems S containing computers
that simulate. Let such a simulation be called nested simulation. The simulating
computers often simulate system S in which they are, or a very similar system
S*. In such a case we speak on re�ective simulation. It is a special case of the
nested simulation.

Problem of implementation of models in case of nested simulation: almost all
known simulation systems have no tools for handling two more time axes. The
solution: using programming languages that are object-oriented, block-oriented
and process-oriented.

Special problem of implementation of models in case of re�ective simulation:
the programming error (called "transplantation"), which consists of mixing ele-
ment of both the existing models (e.g. to put a component of one model into a
queue existing in anther model) makes problems to be discovered. The solution:
using SIMULA, as it is secure against transplantation.

Special problem concerning SIMULA: it seems to be so secure against trans-
plantation that it might not allow any communication between di�erent models.
The solution: there are some tricks that allow the communication and are secure
against transplantation.

The problems and their solution will be presented in details.

Component-Based Modeling and Simulation 5

The author implemented some models or essentially participated at their
implementation:

(1) Simulation models of queuing systems containing dispatcher(s) who con-
trol the systems and use simulation to anticipate the quality of their decisions.

(2) Simulation models of container terminals that apply simulation to antic-
ipate possible crashes and dead-locks.

(3) Simulation models of conveyors with rollers, which use simulation models
to solve various problems concerning complicated situation that can occur when
there is a lot of objects moving at the conveyor.

(4) Simulation models of personal urban transport where the imagining of
passengers was modeled by their proper simulation models.

(5) Simulation model of systems that use "�ctive simulation" (�ctive simu-
lation is a very rewarding implementation of complex non-simulation routines
so that instead of a conventional algorithm a simulation model of a �ctitious
system is applied that generate the same data as the algorithm).

(5) represents nesting simulation which is not re�ective, (1) - (4) represent
re�ective simulation. The models will be described in details, some of them
demonstrated at PC.

SIMULA allows to simulate systems that use several simulating computers.
Moreover, these computers themselves can perform nested (re�ective) simula-
tion. Such a nesting can be iterated. Therefore the nested simulation demands
to be classi�ed. A proposal for classi�cation will be presented.

Also after having known the ways to solve the problems mentioned above,
the implementation of nested simulation models is a hard task and their pro-
gramming must be decomposed into several "world viewings" that permit the
programmer to formulate the general concepts used in such world viewings and
to specialize them in a stepwise manner. For example, in case of (3) we accessed
12 steps of world viewings. We have an experience that sometimes the world
viewing can be placed at several computers of a network. The world viewings
represent an interesting methodology, namely in case of nesting models: beside
other, three levels "eternal", "external" and "internal". The eternal level cor-
responds to the simulation studies, the external to the simulation experiments
handled directly in the simulation study by the objects of the eternal level, and
the internal level corresponds to the particular experiments with the nested mod-
els; the external level functions sometimes like the a certain eternal level for the
nested models, but in other cases the models existing at the external level can
contain their proper level that functions similarly as a certain eternal level for
them.

Nowadays, Ostrava University together with Blaise Pascal University in
Clermont-Ferrand work at a software system that would allow to transform
conventional simulation software written in SIMULA to software able of re�ective
simulation. The software is almost �nished, one must complete tools that make
it robust against sophisticated programming steps allowed by SIMULA; they
will surely not be frequent but they are logically possible.

6 F. J. Barros, A. Lehmann, P. Liggesmeyer, A. Verbraeck and B. P. Zeigler

Simulation Model Components for Multi-Agent Simulation

Franziska Klügl (Universität Würzburg, D)

Multi-Agent Simulation provides a rather new modelling paradigm. A system is
conceptualized as a multi-agent system in a simulated environment. An agent can
be seen as an entity that is capable of �exible, interactive behavior in reaction
to environmental input or for pursuing its selected goal. A multi-agent model
consists of a formalization of the autonomous agents themselves, the environment
they are "living" in and their interactions. The prerequisite for the dissemination
of this model concepts is also based on the facilities for structured design and
model component reuse.

This is an interesting issue, especially because agents should be able to �ex-
ibly interact due to their intelligence or adaptation.

Thus hard-wired links will be found only in special cases of multi-agent sim-
ulation. Thus composing a model from model components can be an non-trivial
task.

On the other side concepts from the Multi-Agent Systems focus on interoper-
ability of independently developed agents. The FIPA speci�cations can form here
the most relevant contribution for handling complete agents as components as
they tackle the syntax and semantics of agent communication. Thus the reusabil-
ity of an agent component can be based on an adhereance of interaction protocol,
message understanding and actual service provision. For using simulated agents
as components multi-agent simulation the situation can not totally be solved in
an analogous way as with �ne grained agent simulation the costs of integrat-
ing this infrastructures are too high. Components at the sub-agent level, like
e.g. planners using for software-agent construction can also be used for building
simulated agents. As a last possibility of identifying components in multi-agent
simulation models partial models that are providing model elements that are
related to agent-agent or agent-environment interaction are tackled. These can
be treated as sets of depending components. A short example illustrates this.

Dealing with Uncertainties in Component-Based Models

Johannes Lüthi (FHS Kufstein Tirol, A)

Often, at the time when a model or model component is built, some of its input
parameters are not known exactly. This can be for a variety of reasons, such as
the system itself not having been completed, a benchmarking process not yet
having been carried out, or that precise estimates for the parameters are very
di�cult to obtain. Another situation where uncertain parameters may occur is
the use of bounding techniques for intermediate solutions within a hierachical
model.

In these situations, interval values or fuzzy numbers can be used to express
the uncertainties of the input parameters. Such parameter representations o�er

Component-Based Modeling and Simulation 7

the potential to use a model component over a longer period within the lifetime
of the real system. Intervals as well as fuzzy numbers can easily be adapted to
less uncertainty up to the point where real numbers can be used when the model
is no longer subject to signi�cant uncertainties.

In previous work, various solution techniques for models with analytical so-
lutions have been adapted to interval and fuzzy number parameters. In this
talk, an overview about such adaptations is presented. However, the main pur-
pose of the talk is to raise questions if and how such methods can be applied
to model components that are not used within a framework providing analyti-
cal/mathematical solutions.

I.e. (how) can formalisms for component-based modeling be adapted to han-
dle e.g. intervals or fuzzy numbers? What is the impact on the composed model
and its solution techniques? How can a simulation kernel deal with interval/fuzzy
parameters? Are optimization techniques based on interval arithmetic still feas-
able? What are the options for veri�cation and Validation of components with
parameter uncertainties?

Addressing Cross-Cutting Concerns: Aspect-Oriented

Programming in the .NET Component Framework

Andreas Polze (Hasso-Plattner-Institut - Potsdam, D)

Besides design and implementation of components, software engineering for com-
ponent-based systems has to deal with component integration issues whose im-
pact is not restricted to separate components but rather a�ects the system
as a whole. Aspect-oriented programming (AOP) addresses those cross-cutting,
multi-component concerns.

AOP describes system properties and component interactions in terms of so-
called aspects. Often, aspects express non-functional component properties, such
as resource usage (CPU, memory, network bandwidth), component and object
(co-) locations, fault-tolerance, timing behavior, or security settings. Typically,
these properties do not manifest in the components' functional interfaces.

Within our presentation, we discuss the usage of aspect-oriented program-
ming techniques in context of the .NET framework. We study the fault-tolerance,
migration, and presistency aspects and discuss the expression of non-functional
component properties (aspects) as C# custom attributes. Our approach uses
re�ection to generate proxy objects based on settings of a special attributes for
C# components.

We have implemented an aspect-weaver for integration of aspect-code and
component-code, which uses the mechanisms of the language-neutral .NET type
system. Therefore, our approach is not restricted to the C# language but works
for any of the .NET programming languages.

8 F. J. Barros, A. Lehmann, P. Liggesmeyer, A. Verbraeck and B. P. Zeigler

Software, Security Implementation - and Modeling?

Thomas Santen (TU Berlin, D)

Component-based software engineering today is a relatively mature discipline.
Classical correctness of an implementation with respect to a speci�cation is a
compositional property. As such, component-based software engineering accom-
modates correctness concerns well.

Emergent properties, such as performance, safety, or security, of software
systems are, however, not compositional: composing a system of "secure" parts
in general does not yield a secure system. My research is concerned with �nding
ways of adequately specifying security properties and accomodating reasoning
about security in component-based systems.

The discussions during the workshop have shown that the relation between
component model descriptions and model components is similar to the one of
emerging property speci�cations to software components.

Establishing a component-based modeling process, therefore, issues similar
to the ones apparent in, e.g., security software engineering, will arise: - matching
of component descriptions - adequacy of a component description for a model
component - validation and veri�cation of a composed model is, in general, not
a simple consequence of validated and veri�ed model components.

Component-based Simulation using HLA

Ste�en Straÿburger (Fraunhofer Institut - Magdeburg, D)

Simulation components are building blocks describing static and dynamic prop-
erties of a system (attributes, behavior). They can range from a �ne granular
building block inside a COTS up to an executable simulation model. They should
be self contained and have some well de�ned interface to communicate with other
simulation components.

Simulation components can be hierarchically put together to form a simula-
tion model which itself can be considered a simulation component.

Motivation for the use of component based approaches is the promise of time
and cost reduction. The idea of reusing existing components instead of building
a new monolithic single-purpose model each time sounds very appealing. The
other promise builds on increased maintainability, because components can be
tested individually and should provide a wellde�ned interface to other compo-
nents (although here is a di�erence to component-based software engineering:
simulation components are highly context sensitive and can therefore not easily
be tested in standalone- fashion).

Simulation models are typically developed in COTS simulation systems.
Characteristics of COTS are that they have closed architectures and that they
do not provide access to source code of simulators. Their only interfaces to the
outside world are typically C and socket interfaces.

Component-Based Modeling and Simulation 9

The objective for component-based simulation must be to enable simula-
tion components developed in both the same and in di�erent COTS to interact.
Towards this objective the methods known from component based software de-
velopment are not straight forward applicable. However, component-based sim-
ulation can learn from the experiences in the software engineering �eld, esp. in
ways to describe semantics and dependencies between components.

One of the major di�erences of simulation components compared to software
engineering components is that they need not only exchange data at runtime
but also need to synchronize their local simulation clocks. Therefore typical
component architectures (COM, CORBA, EJB) are not directly applicable for
simulation; instead the use of HLA must be considered.

The possible role of HLA in the area can be as follows. Inside a simulation
system components are put together hierarchically to a simulation model. The
simulation model itself can be considered a top-level component which is exe-
cuted in a runtime environment (the simulator). In the same way this simulation
model together with its runtime environment can form an HLA federate. This
can be considered a component, too. Multiple federates are also formed together
to builder a federation (our top-level component) which is executed in its runtime
environment (the HLA runtime infrastructure).

HLA can thus form the missing link to allow component based simulation
across di�erent COTS.

Component-Based Modeling and Simulation Tools

Michael Syrjakow (Universität Karlsruhe, D)

A great challenge of computer-based modeling and simulation (M&S) is the
still rapidly growing model complexity and heterogeneity. To be able to develop
distrib-uted simulation applications of high complexity quickly and for a reason-
able price powerful M&S tools are required. In this presentation an open com-
ponent architecture for M&S tools is pre-sented which is independent from the
underlying modeling technique and which allows the integration of legacy M&S
tools. Beyond that, it can be �exibly extended by experimentation com-ponents
which have gained great importance because experimentation goals like �nding
op-timal or sensitive model pa-rameters cannot be reached by hand any more.
The main focus of this presentation lies on integration concepts for M&S tools.
Beside methods for in-tegra-tion of tools based on the same modelling technique
also concepts for coupling of het-eroge-neous M&S tools are presented. Such
tools which allow the modeller to deal with so-called multi-paradigm models are
heavily demanded today. The presentation ends with an overview of existing
multi-paradigm M&S tools and an outlook for future de-velopments.

10 F. J. Barros, A. Lehmann, P. Liggesmeyer, A. Verbraeck and B. P.
Zeigler

Conditions for model component reuse

Mamadou Kaba Traoré (Université Blaise Pascal - Aubiere, F)

As Modeling and Simulation activities grow from modeling in the small to mod-
eling in the large, model reuse becomes a key issue. Indeed, modeling is an
objective-driven activity, and using an existing sub-model to build a larger one
requires that the smaller model be checked for being able to achieve objective-
based requirements of the larger one. A key problem is the capturing of these
requirements in a way that automated (or semi-automated) semantic-based veri-
�cation processes can be performed. Trying to achieve this goal, we introduce the
OOAC paradigm. Generalizing the concept of experimental frame introduced by
the multifaceted modeling framework, and formalizing the model/frame duality,
we try to link the composability and reuse problem to the frame applicability
problem, i.e. when does a model be suitable for an experimental frame. Our
answer falls into three satisfaction conditions:

Objectives satisfaction, Constraints satisfaction, and Assumptions satisfac-
tion. We specify for each condition a boolean satisfaction function, as well as
a way to de�ne an interval of con�dence in the case of partial satisfaction. A
simple and academic case study is used all along the work to illustrate the
propositions. We believe that the formal background proposed here gives a new
insight in model reuse and much more hard-to-achieve concepts, though not yet
implemented in a software environment.

Joint work of: Traoré, Mamadou Kaba; Zeigler, Bernie

Experiences with building blocks for discrete event

simulation

Edwin Valentin (TU Delft, NL)

In the last 6 years I have been developing sets of building blocks for discrete
event simulation in di�erent domains, among them automatic transportation
systems, passenger �ows at airports, baggage handling systems, container termi-
nals and supply chains. These sets have been used by experts in those domains
to support problem owners that are dealing with issues of resource allocation.
The main results were that the ideas of composition of simulation models had
advantages, but short comings are observed with relation to usability, maintain-
ability/extendability and trust. Improvements to the concepts have been made
by using concepts from systems engineering and software engineering. These con-
cepts have been used to provide a structural support for designers of building
blocks and this structural support has been used for designing a set of building
blocks for public transportation. This new set of building blocks has been used
in three laboratory experiments were novices and experts in modelling had to
make adjustments to a simulation model and perform a simulation study for a

Component-Based Modeling and Simulation 11

�ctive situation in the Netherlands. In this laboratory experiment participated
40 novices and 14 experts. The results were that modellers with building blocks
had more success, both novices as experts. However, before experts really get
some results, they need to be brainwashed from their �rst initial concepts about
how a certain domain can be represented.

Building Blocks in Simulation

Alexander Verbraeck (TU Delft, NL)

The BETADE project at Delft University of Technology (Building blocks for
E�ective Telematics-based Development and Evaluation) focused on develop-
ing new theories for building block based development in a number of domains,
among which modeling and simulation. Other application domains were docu-
ment handling, GIS, and business engineering. Within BETADE, a de�nition
of building block or component has been used that emphasizes the interfaces of
building blocks, their clearly de�ned functionality, and relative independence of
other building blocks. The de�nitions used is:

A building block is a self-contained, interoperable, reusable and replaceable
unit, encapsulating its internal structure and providing useful services or func-
tionality to its environment through precisely de�ned interfaces. A building block
may be customized in order to match the speci�c requirements of the environ-
ment in which it is "plugged" or used.

When we look more closely at the role of building blocks or components in
simulation, we can identify three di�erent types of actors or roles: the building
block developer, the model builder who uses the library of building blocks, the
model user or analyst who uses the resulting model to carry out experiments,
and the problem owner who is interested mostly in the results of the simulation
study. The interesting challenge is that in the use of a building block library,
the information �ows from the building block developer to the problem owner.
When designing the building block library, the information has to come from the
problem owner(s) to the building block developer. Creating a generic building
block library is di�cult because the genericity that the building block developer
might want, is often not valued by the problem owner. There are many other
challenges for building blocks for all the roles.

The overall challenge on all levels is the description of the functionality of
the building blocks, not only at the syntactical level, but especially on the se-
mantic and pragmatic levels. For the syntactical level, an XML dialect might be
su�cient. For semantics, we could use metamodeling and ontologies, but these
are hardly available in the modeling and simulation �eld. Pragmatics, really
important for the simulation study, are even harder to describe.

For de�ning simulation building blocks, we can and should learn from other
�elds. One of these �elds is software engineering, another is distributed simula-
tion. Recently, Web services have also grown in importance, and the componen-
tized structure and service o�ering look really interesting for the de�nition and
creation of simulation components.

12 F. J. Barros, A. Lehmann, P. Liggesmeyer, A. Verbraeck and B. P.
Zeigler

As a result of more component-based development of simulation, the sim-
ulation �eld and applications will change. Instead of building models from the
ground up, we will see an assembly of components to create a simulation model.
This means that our simulation methods will also have to be changed. Instead
of top-down development, our methods will have to deal with a combination of
top-down and bottom-up approaches.

Component-based Development of Real-Time-Systems

Gabriel A. Wainer (Carleton University - Ottawa, CDN)

M&S techniques can o�er signi�cant support when designing complex applica-
tions. The Simulation-Driven Engineering approach is of particular interest for
the development of embedded applications. The Simulation-Driven Engineering
(SDE) [1] approach relies on simulation-based modeling for developing compo-
nents of real-time systems. We have analyzed the feasibility of this approach
using CD++, a modeling and simulation toolkit that is based on DEVS. DEVS
is a sound, formal modeling and simulation framework, which allows hierarchical,
modular model composition and component reuse.

We show how to use SDE to build real- time models incrementally, integrat-
ing hardware components with models simulated in CD++. By using di�erent
experimental frameworks, it is possible to analyze the execution of models in a
risk- free environment, allowing one to check the model�s behavior and timing
constraints. The proposed approach allows secure, reliable testing, analysis of
di�erent levels of abstraction in the system, and model reuse.

Testing and maintenance phases are highly improved due to the use of a
formal approach like DEVS form modeling the system. DEVS provides a sound
methodology for developing discrete-event applications, which can be easily ap-
plied to improve the development of real- time embedded applications. These
advantages include secure, reliable testing, model reuse, and the possibility of
analyzing di�erent levels of abstraction in the system. Model execution is au-
tomatically veri�able, as the execution processors are built following the formal
speci�cations of DEVS. DEVS bibliography shows how to build execution en-
gines that enable mimicking the model�s behaviour in a homomorphic formalism.
Hence, the developer only needs to focus on the model under development.

The concept of experimental framework eases the testing tasks, as one can
build independent testing frames for each submodel. Closure under coupling
eases this task, as models can be decomposed in simpler versions, always ob-
taining equivalent behaviour. Finally, the semantics of models are not tied to
particular interpretations, thus existing models can be reused. Likewise, mod-
el�s functions can be reused by just associating them with new models as needed.

Currently we are developing embedded versions of RT-CD++ to run in an
embedded platform (one running on the bare hardware, and the second version
on top of RT-Linux). We are also developing a veri�cation toolkit to use the
timing properties of the DEVS models under development. In this way, we will

Component-Based Modeling and Simulation 13

have an environment for SDE in which the user creates models, test them in the
simulated environment, uses veri�cation tools to analyze timing properties, and
downloads the resulting application to the target platform, being able to provide
rapid prototyping and enhanced development capabilities.

These results are also related with the current e�orts on standardization
of DEVS models. The objective is to study the possibility of developing stan-
dards for a computer processable representation of DEVS that supports common
understanding, sharing and interoperability of DEVS implementations. Com-
puter processable forms include all forms of simulation and real-time execu-
tion as well as various forms of syntactic and semantic analysis. This group
will perform an analysis study for the potential establish-ment of a core for
a DEVS standard. The actual standards development work for the standard-
ization of basic primitive and compound DEVS modeling constructs (syntac-
tic and semantic) in support of higher-level extensions such as agent, cellular,
and dynamic simulation models. Information about this e�ort can be found in:
http://www.sce.carleton.ca/faculty/wainer/standard/

	04041 Abstracts Collection Component-Based Modeling and Simulation --- Dagstuhl Seminar ---
	 Fernando J. Barros, Axel Lehmann, Peter Liggesmeyer, Alexander Verbraeck and Bernhard P. Zeigler

