Three Perspectives on Information Integration

Joseph Goguen

University of California at San Diego, Dept. Computer Science & Engineering
9500 Gilman Drive, La Jolla CA 92093-0114 USA

0 Introduction

This note has three main sections, corresponding to three different kinds
of contribution to Dagstuhl Seminar 04391, Semantic Interoperability and
Integration, held from 20 to 24 September 2004. These sections respec-
tively concern: (1) a brief sociology of a science lab, elucidating the goals
and methods of a particular group of potential users of technology for
integration and interoperability; (2) mathematical foundations for infor-
mation integration, based on ideas from category and institution theories;
and (3) tool support for information integration, with an emphasis on
mapping tools. The final section of the paper gives some conclusions, and
the appendix contains some mathematical details for the second topic.

One of the more striking observations that a sociologist might make
about this seminar, as well as the field it addresses, is that a great diver-
sity of disciplines (and individuals) are involved. On this particular occa-
sion, perhaps the most prominent were artificial intelligence, databases,
and semantic theory, all from within computer science, although the per-
spectives of philosophy, mathematics, engineering, and commerce were
also represented. This diversity is natural, given the broad and pervasive
nature of the subject addressed, namely the integration of information.
This topic is timely, given the recent explosion of the world wide web,
as well as important, given the ever increasing dependence of society on
information technology, and the ever rising expectations for what it can
accomplish. On the other hand, the systematic study of the issues involved
is clearly in its infancy, and we have relatively little idea of what is and
is not in principle possible, of what directions are most worth pursuing,
and of what methods are most likely to be productive. The thoughts that
follow represent my own attempts to come to grips with such problems,
and should be understood as having a preliminary nature, more in the
nature of explorations of some unexpected connections, rather than final
reports. Nevertheless, I hope that they may be of some value in providing
an orientation for future explorations.

Acknowledgements: T thank the participants in Dagstuhl Seminar 04391,
Semantic Interoperability and Integration, for their enthusiasm and many

Dagstuhl Seminar Proceedings 04391
Semantic Interoperability and Integration
http://drops.dagstuhl.de/opus/volltexte/2005/38

comments; of course, any remaining bugs are my own fault. This work
was partially supported by the National Science Foundation under Grant
No. ITR 0225676, the Science Environment for Ecological Knowledge
(SEEK) project, the goal of which is to provide an integrated informa-
tion infrastructure to support a distributed community doing long term
ecological research. The new concepts and results in Appendix A were
developed in collaboration with Grigore Rogu and R#zvan Diaconescu,
and the proofs (which are omitted here) were provided by Grigore Rosu.

1 Sociology of a Science Lab

This section is a digest of my contribution to a panel on light weight versus
heavy weight approaches to information integration. I thought it would be
valuable to see what “light” and “heavy” might mean to a particular user
group, as well as what their goals and methods are, as a way of addressing
what technologies we should be trying to develop. An important caveat
is that user goals and methods, as well as the technologies that they
currently use, vary greatly from one group to another; what follows is
just one case study among many that are possible, and that should be
expected to yield rather different results.

Despite my reputation as a formalist, I am very interested in social
aspects of information technology. This brief penal presentation was a re-
port on a certain class of potential users of ontologies, web services, etc.;
it can be seen as the context of the sociology of science and technology.
Although I am not a professional in this area, I have had the benefit of
working with Geoff Bowker and Leigh Star at UCSD, who are true ex-
perts, and whose fine book [3], I recommend very highly for its treatment
of classifications and standards.

I have spent time talking with and observing ecologists in the SEEK
project, with which I am affiliated, and these remarks are based on these
interviews and observations. Scientists in general want to control the data
they use, to get it all in one place, clean it, get consistent formats, units,
annotations, etc. They do not want to use a distributed workflow system
unless they have to do so. Much information (probably most) is in spread-
sheets and structured files, not in XML or relational databases; metadata
is informal, it it exists at all. Processing is done in the simplest possible
way to achieve the given goal, e.g., using Perl scripts, standard statisti-
cal tools, and specific models developed (often in the same lab) for the
particular experimental situation at hand. There is much more interest
in workflows than in ontologies, but only in an informal, quick and dirty,

sense. Scientists want to do science, to establish and publish their results
with as little delay as possible, and are often in competition with others
seeking to solve similar problems.

Scientists doing long term ecological research face particularly difficult
problems in data integration, since the horizon for meaningful results is
at least 30 years. My panel presentation described two examples of data
integration, in colorful stories about difficulties arising in reconciling old
data with current data, one about soil samples, and the other about
taxonomic systems. The latter turn out to be much more complex than
I had imagined, subject to debates among specialists that appear both
arcane and intense to outsiders.

A topic that I only alluded to in my presentation, but would have liked
to have had time to develop, is the nature of information. Computer scien-
tists often assume that information is stable, objective, and determinate.
But studies of what happens in real science labs suggest a very different
view, of work that might be called “information manufacture,” which is
process oriented, highly social, and often indeterminate. These points are
well supported in a famous study by [27] based on field work from 1975
to 1977 in the Guillemin lab of the Salk Institute. Similar points about
ontologies are raised in [16], drawing not only on sociology of science,
but also on phenomenology, ethnomethodology, cognitive linguistics, and
psychology; a compatible social theory of information is given in [12].

2 Foundations of Information Integration

This section summarizes and expands informal remarks made in working
groups on my efforts to provide a rigorous foundation for information in-
tegration that is not tied to any specific representational or logical formal-
ism, by using category theory to abstract away from representations, and
institutions to axiomatize the notion of logic. The main reference for this
approach is [15], from which much of the material below has been taken.
The approach is motivated by the plethora of representation schemes and
logics used for information. For example, data may be in a spreadsheet,
ascii file, relational database, XML file, etc.; with luck, there may be some
“metadata” describing the structure of the data, e.g., an XML Schema
for XML data, although in practice, this is often missing. Metadata in
general consists of syntactic declarations, called a signature, plus axioms
over those declarations, together giving what is called a theory. Due to
the variety of different incompatible formalisms, it can be very difficult to
integrate theories. However, it helps if they are based on a formal logic,

which in fact many ontologies and schemas are today. This explains why
we must deal not just with the structure of representation, but also with
the logic in which this structure is expressed. Category theory provides
a language that can achieve the required level of generality, and the fol-
lowing assumes some familiarity with its basics; there are many places to
learn such material, including [32, 21, 10, 11]; also, the appendix to this
paper includes a brief summary with some of the main definitions.

Applications to ontologies, e.g., [2, 22, 26, 25|, were a major motivation
for [14], which generalizes and extends the information flow and channel
theories of [1], using the language of institutions; it also follows the lead of
[24] by combining this with the formal conceptual analysis of [6] and the
lattice of theories approach of [34]; in addition, it draws on the categorical
general systems theory of [7, 8].

The greater generality of institutions over classifications, local logics,
concept lattices, concept graphs, etc. allows doing information integration
over arbitrary logics. Institutions abstract and generalize Tarski’s “se-
mantic definition of truth” [35], the most significant ingredient of which
is a relation of satisfaction between models and sentences. An institution
consists of a category of signatures, categories (or sets) of sentences, cat-
egories (or sets) of models, and a relation of satisfaction between them,
each of which is parameterized by (i.e., functorial over) signatures. This
parameterization allows an elegant treatment of examples where part of a
situation is fixed while another part is allowed to vary, e.g., the function
symbols used in equational logic vary, while the logic remains fixed. The
basic reference is [17], and the latest version is in [19], which focuses on
variants of the institution morphism notion. Many logical systems have
been shown to be institutions, including first order logic, many sorted
equational logic, Horn clause logic, many variants of higher order and of
modal logic, and much more; it seems that essentially any logical system
has a corresponding institution. A number of deep model theoretic re-
sults have been extended from first order logic to arbitrary institutions
by Diaconescu, e.g., [4].

Unfortunately, there is currently no easy introduction to institutions,
although a brief intuitive introduction is given in Section 2 of [15]. Al-
ternatively, an exposition of institutions without any category theory is
given in [20], the aim of which is to give semantics for a powerful extension
of the Ada module system; however, the technical work of the paper is

quite a bit more complex than it would have been if categorical language
had been used.

Every institution has notions of signature and sentence, and a set of
sentences over a common signature is a theory. As discussed in [17, 9], ,
and other publications, colimits enable powerful methods for structuring
and combining theories, including inheritance, sums over shared subthe-
ories, renaming parts of theories, and (best of all) parameterizing and
instantiating theories. This goes far beyond the (generalized) Boolean
operations of [6] and [34]; moreover, it provided the basis for the pow-
erful module system of the ML programming language, though ML does
not have all the functionality that is defined in [9] and implemented in
the OBJ languages under the name “parameterized programming”; these
ideas also influenced the module systems of C++, Ada, and LoTOS. Till
Mossakowski [29] has built a theorem proving system that works over a
variety of institutions, and so can be used for proving properties of hetero-
geneous theories, building also on Diaconescu’s Grothendieck institution
construction [4], which is extended in [14, 15] to ontologies.

A useful notion from category theory is that of a relation in a cate-
gory C: it consists of three objects, say A, B, R, and two morphisms, say
p1: R— Aand ps: R — B. One can think of R as containing pairs (a, b)
with a € A,b € B, and of p1, ps as projection maps. The usual calculus
of relations lifts to this very general setting, with modest assumptions
on that C by defining composition with pullbacks. Then associativity of
composition follows, and converse, union, intersection, etc. can be defined,
and have their usual properties. The join of relations in database theory
is also a special case. Binary relations generalize to polyadic relations,
which are families p;: R — A; where i ranges over some set I, and one
can again prove soundness of laws given in various axiom systems for
polyadic relational calculus.

There is a dual notion of co-relation, consisting of three objects
A, B,C and two injection maps, fi: A — C and fo: B — C. These
also generalize to the polyadic case, as families f;: A; — C, giving rise
to a calculus of co-relations that is dual to but less well known than
that for relations. One of the most basic concepts in [1], the channel,
is a co-relation, f;: A; — C for ¢ € I, in the category of classifications
and infomorphisms, with C called its core. Looking at only the tokens, a
channel yields a relation that “connects” each token c in its core to the
tokens f;(c) in its components A;. A “cover” of a diagram is defined in [1]
to be a channel over that diagram such that every triangle formed by an
infomorphism in the diagram and the two injections, from its source and
target, commutes. This is exactly the categorical notion of a co-cone,
for their special case; similarly, the “minimal covers” of [1] are colimits,

although [1] uses the term “limit” for this concept, perhaps because the
tokens are more concrete than types. Category theorists often use the
term apex instead of “core,” for both relations and co-relations.

It is very encouraging that the notion of co-relation is essentially the
same as that of local-as-view in database theory (this notion is defined in
Section 4), and blending in cognitive linguistics [5], as well as channel in
information flow. It is therefore reasonable to suggest that co-relations,
co-cones, and co-limits are the obvious way to integrate any collection
objects, as already suggested in [7, 11]. In the context of databases, the
dual global-as-view approach corresponds to relations; it is less general,
but more efficient for query answering. It is interesting to notice that in
concrete cases, a co-cone gives rise to a partial map between the input
spaces, connecting those elements mapping to the same element under the
injections; this “emergent” partial map is what most schema and ontology
mapping tools seek to construct, and it is also an important aspect of the
theory of metaphor developed in cognitive linguistics by [5]. Computer
scientists have used the terms “alignment” and “articulation” for this
process, but its relation to more general notions of integration (for which
terms like “fusion,” “merging” and “reconciliation” have been used) has
remained somewhat mysterious. As in the set case, total functions are a
special case of relations, which one can feel fortunate to find in practice.

It is natural to consider information integration over a subtheory of
shared material, as in the blends of cognitive linguistics. For co-relations
with a shared subtheory (denoted G in Figure 1), pushouts (which are a
special kind of colimit) give an optimal blend, and dually, pullbacks are
optimal in the relational case.

G

Fig. 1. A Blend Diagram

But in many practical situations, it seems too optimistic to expect
this kind of optimality; instead, pragmatic optimality criteria like those
used in cognitive linguistics [5] may be more appropriate. Factors that

complicate integration in real problems include incomplete information,
inconsistent information, different levels of certainty and granularity of
information, and different goals for the result of integration. However,
the optimality principles in chapter 16 of [5] seem to be most appropriate
for “common sense” blends, and so are unlikely to be appropriate for
situations with more specialized goals. For example, the poetry of Pablo
Neruda was found [18] to have some particularly creative blends that used
criteria opposite to those given in [5]; one such is the phrase “a water of
beginnings and ashes” at the end of the first stanza of Walking Around;
also, the Duino Elegies by Rainer Maria Rilke contains phrases that blend
parts from very different domains, such as “the cheap winter hats of fate”
in the fifth elegy. A conceptual blending algorithm is described in [18],
and some poetry generated using it is given there. The implementation
is based on a formalization of blending given in [13], using ideas from
algebraic specification, semiotics, and %—categories. The latter is described
in the appendix of this paper, which shows how it supports a great variety
of optimality principles.

3 Tools for Information Integration

A great deal of sophisticated research has been done on integration in
the database community, including logical semantics, building tools, and
experimenting with real data and real users; [23] also surveys some of
this research. A common database integration scenario, called local-as-
view, is exactly a co-relation in a category of schemas and views. Here,
the apex is the schema of a global (virtual) database, which integrates the
information in the local databases which map to it. Queries are posed over
the global schema, and then translated into local queries, the results of
which are integrated to form an answer to the original query. A good deal
of sophisticated research has been devoted the improving the efficiency of
this for various classes of schemas and queries; this subarea is known as
query optimization.

The main prerequisite for making such an approach work is to have the
views from the global to the local schemas. For this reason, considerable
effort has been devoted to schema mapping tools; [33] surveys some of
this work. One of these tools, called sCIA, has been designed and built
by the UCSD Meaning and Computation Laboratory; it is an interactive
tool for constructing maps between DTDs and/or XML Schemas, and
is packaged with software for integrating and querying XML databases
that have such schemas [14, 30, 31, 36]. Because fully automatic schema

mapping generation is infeasible, this tool attempts to minimize total
user effort by identifying the critical decision points, where a small user
input can yield the largest reduction of future matching effort. A critical
point is where a core context has either no good matches, or else has
more than one good 1-to-1 match, where core contexts are the most
important contextualizing elements for tags within their subtrees. Core
contexts typically have a large subtree, and are identified by heuristics
and/or by user input. In interactive mode, the tool solicits user input at
critical points, and iterates until both the user and the tool are satisfied; in
automatic mode, it does just one pass using default strategies. Each pass
has four steps: linguistic and data type matching; structural matching;
context checking; and combining match results. Figure 2 below depicts the
matching process for one source and one target schema. Other tools only
try to find the easiest 1-to-1 matches, leaving all other difficult matches
for the user to do by hand. A major result of our research is that this
approach can significantly reduce total user effort.

Input 7 VCV)pirn;:nral Userr Output
Schemas J Interaction !
] Thesauri | I e t'I i —
) S Linguistic Structural [Uptional; ormbination -
e § H Mapping
Partial Mapping. —=| and Type |[—s RNatch - Context of Match |—= -
i Idatch Check Results

it |

Fig. 2. Architecture of the Matching Process

An unusual, perhaps unique, feature of our tool is its ability to handle
semantic functions and conditions. In this context, the term “semantic
function” refers to operations on basic data types, such as arithmetic
operations on numbers, or operations on lists such as head, tail, and
append. For example, mappings between a schema that has first-name
and last-name to one that has full-name will require such functions to pull
apart and put together names. The term “condition” refers to mappings
that must do different things under different circumstances; for example,
if one student database puts majors and non-majors in the same relation,
while another puts them in different relations, then a condition will be
needed to map the first to the second. Most other tools do not treat
functions and conditions at all, or else leave them for a different tool,
e.g., view generation.

4 Conclusions

It is not coincidental that this note is highly interdisciplinary; I believe an
interdisciplinary approach is called for by the problems addressed. Expe-
rience shows that purely technical solutions, based on what it is feasible
and fun to do, rarely deliver what users really need. Similarly, explorations
based on mathematical aesthetics often fail to connect closely with appli-
cations; for mathematics to be useful, it should address practical questions
that need to be answered. Finally, for technology to reach real users, it
helps if the results of social analyses and mathematical foundations are
embedded in tools. Doing so in general ignites cycles of improvements to
the tools, the foundations, and the social understanding.

One conclusion that can be drawn from interactions at the seminar
and from papers in the literature, is that information integration is an im-
portant problem, solutions to which are being actively pursued from very
diverse directions, with considerable excitement and promise, but with
relatively little coordination. Perhaps further connections will emerge, as
unexpected as those with institutions and blending that are proposed in
this paper. It will surely be interesting to see what happens over the next
few years.

A Some Mathematical Details

This appendix gives some details of mathematics mentioned in the body
of the paper, closely following Appendix B of [13]; the concepts were
developed in collaboration with Grigore Rogsu and Razvan Diaconescu,
and the proofs (which are omitted here) are due to Grigore Rosu, and
can be found in [13]. Although self-contained, this material may be dif-
ficult for readers who are not already familiar with category theory. The
essential intuition behind categories is that they capture mathematical
structures; for example, sets, groups, vector spaces, and automata, along
with their structure preserving morphisms, each form a category, and
their morphisms are an essential part of the picture. The theories and
their morphisms over any institution also form a category [17], and so do
the sign systems and semiotic morphisms of [13].

Definition 1. A category C consists of: a collection, denoted |C|, of
objects; for each pair A, B of objects, a set C(A, B) of morphisms (also
called arrows or maps) from A to B; for each object A, a morphism 14
from A to A called the identity at A; and for each three objects A, B, C,
an operation called composition, C(A, B) x C(B,C) — C(A, C) denoted

“7 such that f;(g;h) = (f;9);h and f;14 = f and 1459 = g whenever
these compositions are defined. We write f: A — B when f € C(4, B),
and call A the source and B the target of f. O

We now review the notions of pushout, cone and colimit for ordi-
nary categories, relate this to blending, and then generize to %-categories,
which better capture what blending is supposed to do. The intuition for
colimits is that they put some components together, identifying as lit-
tle as possible, with nothing left over, and with nothing essentially new
added [11]. This suggests that colimits should give some kind of optimal
blend. Although this is true, we will see that this kind of optimality has
problems, which imply that the traditional categorical notions are not ap-
propriate for blending. Nevertheless, they provide a good place to begin
our journey of formalization.

Definition 2. Given a category C, a V in C is a pair a;: G — I
(i = 1,2) of morphisms, and a cone with apex B over a V aj,as is
a pair b;: I; » B (1 =1,2) of morphisms; then a1,as and by, be together
are said to form a diamond (or a square). The cone (or its diamond)
commutes iff a1; b1 = ao; be, and is a pushout iff given any other com-
mutative cone c;: I; — C over ay,as, there is a unique arrow u: B — C
such that bj;u = ¢; fori=1,2.

A diagram D in a category C is a directed graph with its nodes labeled
by objects from C and its edges labeled by arrows from C, such that if an
arrow f: D; — D; labels an edge e: i — j, then the source node i of e
is labeled by D; and the target node j of e is labeled by D;. A cone over
D is an object B, called its apex, together with an arrow b;: D; — B,
called an injection, from each object of D to B, and is commutative
iff for each f: D; — Dj in D, we have! b; = f;b;. A colimit of D is
a commutative cone b;: D; — B over D such that if ¢;: D; — C is any
other commutative cone over D, then there is a unique u: B — C such
that?® bj;u = ¢; for all nodes i of D. O

Pushouts are the special case of colimits where the diagram is a V; see
Figure 1. (It might appear that there is a discrepancy in the definitions,
because pushouts are not required to have an arrow G — B. But when
the diagram is a V, this missing arrow is automatically provided by the
morphism a1;b; = ag; bs.)

There is a short proof that any two colimits of a diagram D are iso-
morphic. Let the cones be b;: D; — B and b,: D; — B'. Then there
! These equations are called triangles below, after the corresponding three node

commutative diagrams.
2 These equations may also be called “triangles” below.

10

are unique arrows u: B — B’ and v: B’ — B satisfying the appropriate
triangles, and there are also unique arrows B — B and B’ — B’ satis-
fying their appropriate triangles, namely the respective identities 1 and
1p/; but u;v and v;u also satisfy the same triangles; so by uniqueness,
u;v = 1p and v;u = 1p.

If blends are commutative cones, it follows that colimits should be
some kind of optimal blend. For example, the “houseboat” blend of “house”
and “boat” is a colimit. But the fact that colimits are only determined up
to isomorphism seems inconsistent with this, because the names attached
to the elements in a blend are important; that is, isomorphic cones do
not represent the same blend. This differs from the situation in group
theory or topology, where it is enough to characterize an object up to
isomorphism. However the requirement (also motivated by the examples
in [13]) that the injections should be inclusions to as great an extent as
possible, causes the actual names of elements to be captured by blends,
and thus eliminates this problem.

Another problem with defining blends to be commutative cones is
that not all blends actually have fully commutative cones; for “house”
and “boat”, only the “houseboat” blend has all its triangles commutative.
However, the following notion solves this problem: The auxiliary mor-
phisms of D are a subset whose triangles are not required to commute;
these morphisms can be removed from D, to yield another diagram D’
having the same nodes as D. Commutative cones over D’ are then cones
over D that commute except possibly over the auxiliary morphisms. Now
we can also form a colimit of D', to get a “best possible” such cone over
D. Tt therefore makes sense to define a blend to be a commutative cone
over a diagram with the auxiliary morphisms removed.

One advantage of formalization is that it makes it possible to prove
general laws, in this case, laws about blends based on general results from
category theory, such as that “the pushout of a pushout is a pushout.”
This result suggests proving that “the blend of a blend is a blend,” so
that compositionality of the kind of optimal blends given by pushouts
follows from the above quoted result about pushouts. The meaning of
these assertions will be clearer if we refer to Figure 3.

Here we assume that be, b3 is a blend of as, a3, and cs,c3 is a blend
of a1, by, i.e., that as;bo = a3z;bs and a1;c0 = bs;c3; then the claim is
that co, b3;cs is a blend of ag; a1, ag, which follows because as;a1;c0 =
as; bs; cs. Using the notation ay < ag for an arbitrary blend of a9, a3, we
can write this result rather nicely in the form

a1 < (az ¢ a3) = (az;a1) < asz

11

Ve
\

JNA

Fig. 3. Composing Pushouts

taking advantage of a convention that a1 ¢ (a2 < a3) indicates blending
ay with the left injection of (ag < a3) (the top left edge of its diamond).

The pushout composition result (proved e.g. in [21, 28]) states that if
be, b3 is a pushout of ag, a3, and ¢z, c3 is a pushout of a1, by, then ¢y, bs;c3
is a pushout of as; a1, az. If we write as <1 a3 for the pushout of as, as,
then this result can also be written neatly, as

a; X (a2 > CI,3) = (ag;al) X asg .

We can also place a second blend (or pushout) on top of b3 instead
of by; corresponding results then follow by symmetry, and after some
renaming of arrows can be written as follows:

(a1 © ag) © ag =a; < (ag;a3) .

(a1 ™ ag) ™ az3=a; X (ag;a3) -

We can further generalize to any pattern of diamonds: if they all commute,
then so does the outside figure; and if they are all pushouts, then so is the
outside figure. Another very general result from category theory says that
the colimit of any connected diagram can be built from pushouts of its
parts. Taken all together, these results give a good deal of calculational
power for blending.

We now broaden our framework. The category of sign systems with
semiotic morphisms has some additional structure over that of a category:
it is an ordered category, because of the orderings by quality of representa-
tion that can be put on its morphisms. This extra structure gives a richer
framework for considering blends; this approach captures at least some of
what Fauconnier and Turner have called “emergent” structure, without
needing any other machinery. Moreover, all the usual categorical com-
positionality results about pushouts and colimits extend to %—categories.

12

Definition 3. A g—category3 is a category C such that each set C(A, B)
is partially ordered, composition preserves the orderings, and identities are
mazimal. O

Because we are concerned here with ordered categories, a somewhat differ-
ent notion of pushout is appropriate, and for this notion, the uniqueness
property is (fortunately!) lost:

Definition 4. Givena V,a;: G — I; (i = 1,2) in a 3-category C, a cone
b1, by over ay, a9 is consistent iff there exists some d. G — B such that
a1;b1 < d and as;b9 < d, and is a %—pushout iff given any consistent
cone ¢;: I; = C over a1, a9, the set

{h: B—)C‘bl;hfcl and bz;hSCQ}

has a mazimum element. O

Proposition 1. The composition of two %—pushouts is a %—pushout. O

However, unlike the situation for ordinary pushouts, the composition of
consistent diamonds need not be consistent, and two different ——pushouts
need not be isomorphic; this means that ambiguity is natural in this
setting. The following is another compositionality result for %—pushouts:

Proposition 2. If the four small squares in Figure 4 are %—pushouts,
then so is the large outside square. O

d1 do

Ve AN
N A

NN
NJNUA

a1 a2

[]
Fig. 4. Composing Four £-Pushouts

3 In the literature, similar structures have been called “one and a half” categories,
because they are half way between ordinary (“one dimensional”) categories and the
more general “two (dimensional)” categories.

13

Passing from V’s to arbitrary diagrams of morphisms generalizes %-
pushouts to %—colimits, and provides what seems a natural way to blend
complex interconnections of meanings. The notion of consistent diamond

extends naturally to arbitrary diagrams, as follows:

Definition 5. Let D be a diagram. Then a family {c;}ie\p| of morphisms
is D-consistent iff a;; < «; whenever there is a morphism a : © — j
in D. Similarly, given J C |D|, we say a family of morphisms {a;}icy is
D-consistent iff {a;}ics extends to a D-consistent family {c;}icip|- O

Fact 1: A diamond a1, ag,b1,bs is consistent if and only if {b1,b2} is
{a1, ag}-consistent. O

Definition 6. Let D be a diagram. Then a family {c;}icp| is a %—
colimit of D iff it is a cone and for any D-consistent family {B;}ic p),

the set {h | a;;h < B;, for each i € |[D|} has a maximum element. O

The following is another typical result that extends from ordinary
colimits to %—colimits:

Theorem 1. Let a W diagram consist of two V’s connected at the mid-
dle top. If D is a W diagram, then a %—colimit of D is obtained by taking
a %—pushout of each V, and then taking a pushout those two pushouts, as
shown in Figure 4. O

Extending our pushout notation > to %-categories, the above result
can be rather neatly written in the form

(a1 ™ az) < (a3 < aq) = Colim(W) ,

where W is the bottom part of the diagram, with edges labeled a1, a2, a3, a4.
A generalization of the above result implies that %—pushouts can be used
to compute the %—colimit of any connected diagram. Observe that the no-
tion of auxiliary morphism carries over to the framework of %-categories
without any change.

It is very natural to wish that morphisms should be as defined as
possible, should preserve as many axioms as possible, and should be as
inclusive as possible, and these conditions define a quality ordering: given
morphisms f,g: A — B between conceptual spaces A, B, define f < ¢
iff g preserves as much content as f, and preserves all axioms that f
does, and is as inclusive as f (see [13] for details). More work is needed
to determine whether this approach of designing orderings always works
well, but for example, it works well for the house and boat example, since

14

the most natural blend is an ordinary pushout, all the other good blends
are %—pushouts, and blends that fail to preserve as much structure as they
could are not any kind of pushout. The intuition here is that the ordering
on morphisms induces an ordering on the %—colimit objects, such that
they satisfy the corresponding optimality principle.

References

10.

11.

12.

13.

14.

15.

. Jon Barwise and Jerry Seligman. Information Flow: Logic of Distributed Systems.

Cambridge, 1997. Tracts in Theoretical Computer Science 44.

Trevor Bench-Capon and Grant Malcolm. Formalising ontologies and their rela-
tions. In Proceedings of the 16th International Conference on Database and Ezpert
Systems Applications (DEXA ’99), pages 250-259. Springer, 1999. Lecture Notes
in Computer Science, volume 1677.

Geoffrey Bowker and Susan Leigh Star. Sorting Things Out. MIT, 1999.

Rézvan Diaconescu. Grothendieck institutions. Applied Categorical Structures,
10:383-402, 2002.

Gilles Fauconnier and Mark Turner. The Way We Think. Basic, 2002.

Bernhard Ganter and Rudolf Wille. Formal Concept: Mathematical Foundations.
Springer, 1997.

Joseph Goguen. Mathematical representation of hierarchically organized systems.
In E. Attinger, editor, Global Systems Dynamics, pages 112-128. S. Karger, 1971.
Joseph Goguen. Categorical foundations for general systems theory. In F. Pichler
and Robert Trappl, editors, Advances in Cybernetics and Systems Research, pages
121-130. Transcripta Books, 1973.

Joseph Goguen. Principles of parameterized programming. In Ted Biggerstaff and
Alan Perlis, editors, Software Reusability, Volume I: Concepts and Models, pages
159-225. Addison Wesley, 1989.

Joseph Goguen. What is unification? A categorical view of substitution, equa-
tion and solution. In Maurice Nivat and Hassan Ait-Kaci, editors, Resolution of
Equations in Algebraic Structures, Volume 1: Algebraic Techniques, pages 217-261.
Academic, 1989.

Joseph Goguen. A categorical manifesto. Mathematical Structures in Computer
Science, 1(1):49-67, March 1991.

Joseph Goguen. Towards a social, ethical theory of information. In Geoffrey
Bowker, Leigh Star, William Turner, and Les Gasser, editors, Social Science, Tech-
nical Systems and Cooperative Work: Beyond the Great Divide, pages 27-56. Erl-
baum, 1997.

Joseph Goguen. An introduction to algebraic semiotics, with applications to user
interface design. In Chrystopher Nehaniv, editor, Computation for Metaphors,
Analogy and Agents, pages 242-291. Springer, 1999. Lecture Notes in Artificial
Intelligence, Volume 1562.

Joseph Goguen. Data, schema and ontology integration. In Proceedings, Work-
shop on Combinination of Logics, pages 21-31. Center for Logic and Computation,
Instituto Superior Tecnico, Lisbon, Portugal, 2004.

Joseph Goguen. Information integration in instutions, 2004. To appear in a volume
dedicated to Jon Barwise, edited by Larry Moss.

15

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.
26.
27.
28.

29.

30.

31.

32.

33.

34.

35.

Joseph Goguen. Ontology, society, and ontotheology, 2004. To appear, Proceedings,
Conference on Formal Ontology in Information Systems (FOIS’04). Available at
http://www.cs.ucsd.edu/ goguen/pps/fois04.ps.

Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39(1):95-146, January 1992.

Joseph Goguen and Fox Harrell. Style as a choice of blending principles, 2004. To
appear, Proceedings, Workshop on Style and Meaning in Language, Art Music and
Design.

Joseph Goguen and Grigore Rogu. Institution morphisms. Formal Aspects of
Computing, 13:274-307, 2002.

Joseph Goguen and William Tracz. An implementation-oriented semantics for
module composition. In Gary Leavens and Murali Sitaraman, editors, Foundations
of Component-based Systems, pages 231-263. Cambridge, 2000.

Robert Goldblatt. Topos, the Categorial Analysis of Logic. North-Holland, 1979.
Yannis Kalfoglou and Marco Schorlemmer. Information-flow-based ontology map-
ping. In Robert Meersman and Zahir Tari, editors, Proc. Intl. Conf. on Ontologies,
DataBases, and Applications of Semantics for Large Scale Information Systems,
volume 2519 of Lecture Notes in Computer Science, pages 1132-1151. Springer,
2002.

Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the state of the
art. Knowledge Engineering Review, 18(1):1-31, 2003.

Robert Kent. Distributed conceptual structures. In Harre de Swart, editor, Sizth
International Workshop on Relational Methods in Computer Science, pages 104—
123. Springer, 2002. Lecture Notes in Computer Science, volume 2561.

Robert Kent. Formal or axiomatic semantics in the IFF, 2003. Available at
suo.ieee.org/IFF /work-in-progress/.

Robert Kent. The IFF foundation for ontological knowledge organization. In Gior-
gio Ghelli and Gosta Grahne, editors, Knowledge Organization and Classification
in International Information Retrieval. Haworth, 2003.

Bruno Latour and Steve Woolgar. Laboratory Life. Sage, 1979.

Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
Till Mossakowski. Heterogeneous specification and the heterogeneous tool set,
2004. Habilitation thesis, University of Bremen, to appear.

Young-Kwang Nam, Joseph Goguen, and Guilian Wang. A metadata integra-
tion assistant generator for heterogeneous distributed databases. In Ontologies,
DataBases, and Applications of Semantics for Large Scale Information Systems,
pages 1332-1344. Springer, 2002. Lecture Notes in Computer Science, volume 2519.
Young-Kwang Nam, Joseph Goguen, and Guilian Wang. A metadata tool for
retrieval from heterogeneous distributed XML documents. In P.M.A. Sloot et al.,
editors, Proceedings, International Conference on Computational Science, pages
1020-1029. Springer, 2003. Lecture Notes in Computer Science, volume 2660.
Benjamin C. Pierce. A taste of category theory for computer scientists. Technical
Report CMU-CS-90-113, Carnegie-Mellon University, 1990.

Erhard Rahm and Philip Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal, 10(4):334-350, 2001.

John Sowa. Knowledge Representation: Logical, Philosophical and Computational
Foundations. Brooks/Coles, 2000.

Alfred Tarski. The semantic conception of truth. Philos. Phenomenological Re-
search, 4:13-47, 1944.

16

36. Guilian Wang, Joseph Goguen, Young-Kwang Nam, and Kai Lin. Critical points
for interactive schema matching. In Jeffrey Xu Yu, Xuemin Lin, Hongjun Lu,
and YanChun Zhang, editors, Advanced Web Technologies and Applications, pages
654-664. Springer, 2004.

17

