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1 Introduction

Heterogeneous multi-logic theories arise in different contexts: they are needed for
the specification of large software systems, as well as for mediating between dif-
ferent ontologies. This is because large theories typically involve different aspects
that are best specified in different logics (like equational logics, description logics,
first-order logics, higher-order logics, modal logics), but also because different
formalisms are in practical use (like RDF, OWL, EML). Using heterogeneous
theories, different formalims being developed at different sites can be related,
i.e. there is a formal interoperability among languages and tools. In many cases,
specialized languages and tools have their strengths in particular aspects. Using
heterogeneous theories, these strengths can be combined with comparably small
effort. By contrast, a true combination of all the involved logics into a single
logic would be too complex (or even inconsistent) in many cases.

We propose to use institutions as a formalization of the notion of logical
system. Institutions can be related by so-called institution morphsims and co-
morphisms. Any graph of institutions and (co)morphisms can be flattened to
a so-called Grothendieck institution, which is kind of disjoint union of all the
logics, enriched with connections via the (co)morphisms.

This semantic basis for heterogeneous theories is complemented by the het-
erogeneous tool set, which provides tool support. Based on an object-oriented in-
terface for institutions (using type classes in Haskell), it implements the Grothendieck
institution and provides a heterogeneous parser, static analysis and proof support
for heterogeneous theories. This is based on parsers, static analysers and proof
support for the individual institutions, and on a heterogeneous proof calculus
for theories in the Grothendieck institution.

2 Institutions

Institutions are the central abstract notion that is the basis for a theory of
structured specification and proving independent of the underlying logical sys-
tem. Naturally, this notion is also the basis for heterogeneous theories. While
institutions capture model theory, entailment systems are a related abstract no-
tion capturing proof theory. Finally, an institution equipped with an entailment
is called a logic.
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Many different logics, including first-order [11], higher-order [4], polymorphic
[18,20], modal [5,23, 6], temporal [8], process [8], behavioural [3], and object-
oriented [21, 9, 13, 22, 1] logics have been shown to be institutions. Recently, there
has been interest in institutions in connection with XML and databases [1].

A specification formalism is usually based on some notion of signature, model,
sentence and satisfaction. These are the usual ingredients of Barwise’s abstract
model theory [2]. Contrary to Barwise’s notions, institutions of Goguen and
Burstall [11] do not assume that signatures are algebraic signatures and thus
cover a much larger variety of logics. Indeed, the theory of institutions assumes
nothing about signatures except that they form a class and that there are signa-
ture morphisms, which can be composed in some way. This amounts to stating
that signatures form a category.

There is also nothing special assumed about the form of the sentences and
models. Given a signature X', the X-sentences form just a set, while the X-models
form a category (taking into account that there may be model morphisms).

Signature morphisms lead to translations of sentences and of models (thus,
the assignments of sentences and of models to signatures are functors). There
is a contravariance between the sentence and the model translation: sentences
are translated along signature morphisms, while models are translated against
signature morphisms.

Informally, this can be motivated as follows. Forget for a moment the above
generality and think of signatures as of sets of certain symbols. Think of sentences
over a signature X as derivation trees over some grammar, decorated at the nodes
with the symbols from . Then sentence translation along a signature morphism
o: X — X' keeps the structure of the derivation tree, but replaces the symbols
decorating the nodes, using ¢. This explains why sentences are translated along
signature morphisms.

Concerning models over a signature: they have to interpret the symbols from
the signature somehow. Thus, a Y-model can be seen as a map M going from
the symbols of X to some semantical domain. Now given a X’-model M’ and
a signature morphism o: Y — X', by composing the interpretation map M’
with o we get a new interpretation map, let us call it M’|,, which is a X-model!
(M'|, is also called the o-reduct of M’.) This explains why models are translated
against signature morphisms.

Of course, these explanations just have motivating purpose: there can be
institutions with a completely different view of signatures, models and sentences.
However, they shed some light on how many typical institutions work.!

Finally, institutions have a satisfaction relation between models and sen-
tences, which has to be invariant under the simultaneous translation of sentences
and models w.r.t. a given signature morphism.

This leads to the following formal definition [11].

Definition 1. An institution I = (Sign’,Sen’, Mod’, =1) consists of
— a category SignI of signatures,

! Indeed, the above explanation has been formalized as so-called parchments [16].



— a functor Sen’: Sign’ — Set giving, for each signature X, the set of sen-
tences Sen’ (%), and for each signature morphism o: X — X', the sentence
translation map Sen’ (¢): Sen’ (X) — Sen’ (X'), where often Sen’ (0)(y) is
written as o(¢p),

— a functor Mod': (Signl)"p — CAT ?giving, for each signature X, the cat-
egory of models Mod' (X)), and for each signature morphism o: ¥ — 3, the
reduct functor Mod’ (¢): Mod' (£") — Mod’ (%), where often Mod’ (¢)(M’)
is written as M’|, (the o-reduct of M),

— a satisfaction relation =5 C [Mod!(X)| x Sen’(¥) for each ¥ € Sign’,

such that for each o: X — X’ in Sign’ the following satisfaction condition holds:

M ES o(p) & M|, E5 ¢

for each M’ € Mod”(%’) and ¢ € Sen’(X). O

Example 2. The institution Eq¢~ of equational logic. Signatures are many-sorted
algebraic signatures consisting of a set of sorts and a set of function symbols
(where each function symbol has a string of argument sorts and a result sort).
Signature morphisms map sorts and function symbols in a compatible way. Mod-
els are just many-sorted algebras, i.e. each sort is interpreted as a carrier set,
and each function symbol is interpreted as a function between the carrier sets
specified by the argument and result sorts. Reducts are constructed as sketched
above. Sentences are equations between many-sorted terms, and sentence trans-
lation means replacement of the translated symbols. Finally, satisfaction is the
usual satisfaction of an equation in an algebra. ad

Example 3. The institution FOL~ of many-sorted first-order logic with equal-
ity. Signatures are many-sorted first-order signatures, i.e. many-sorted algebraic
signatures enriched with predicate symbols. Models are many-sorted first-order
structures. Sentences are first-order formulas, and again sentence translation
means replacement of the translated symbols. Satisfaction is the usual satisfac-
tion of a first-order sentence in a first-order structure. a

Example 4. The institution PFOL™ of partial first-order logic with equality.
Signatures are many-sorted first-order signatures enriched by partial function
symbols. Models are many-sorted partial first-order structures. Sentences are
first-order formulas containing existential equations, strong equations, defined-
ness statements and predicate applications as atomic formulas. Satisfaction is
defined using total valuations of variables, while valuation of terms is partial
due to the existence of partial functions. An existential equation holds if both
sides are defined and equal, whereas a strong equation also holds if both sides
are undefined. A definedness statement holds if the term is defined. A predicate
application holds if the terms contained in it are defined, and the correspond-
ing tuple of values is in the interpretation of the predicate. This is extended to
first-order formulas as usual. a

2 CAT be the (quasi-)category of categories and functors.



Many familiar basic concepts from logic can be defined over any institution:

Definition 5. Given a set of Y-sentences I' and a Y-sentence ¢, then ¢ is a
semantic consequence of I', written I' Ex ¢, iff for all Y-models M, we have
M x5 I' implies M =5 ¢, where M =5 I’ means M |=x ¢ for each ¢ € I'.
Two sentences are semantically equivalent, written ;1 || ¢a, if they are satisfied
by the same models. Two models are elementary equivalent, written My = Mo,
if they satisfy the same sentences. An institution is compact iff I' =5 ¢ implies
I'" =5 ¢ for some finite subset I of I'. A theory is a pair (X, I") where I is
a set of Y-sentences, and is consistent iff it has at least one model. A theory
morphism (X, I") — (X', I"") is a signature morphism o: ¥ — X such that
I'" Ex/ o(I). A theory morphism o: (X, I") — (X', I') is conservative iff each
(X, I')-model has at least one expansion (along o) to a (X', I'’)-model.? O

A logic is an institution equipped with an entailment system (-x)x¢|sign|
see [14] for details. Logics are required to be sound: if I' b5 ¢ then I' Ex .
The converse implication is called completeness.

3 Institution Comorphisms

We now come to the task of relating different institutions. Institution comor-
phisms [10] relate two given institutions. A typical situation is that an institu-
tion comorphism expresses the fact that an institution is embedded or encoded
into another one.

An institution comorphism from an institution I to an institution J consists
of the following components:

— a translation @ of I-signatures to J-signatures. Given an I-signature X, the
task is to find a J-encoding ¢(X) of X' in some way. In particular, the model
category of @¢(X) should approximate the model category of X somehow.

— a translation « of I-sentences to J-sentences. The reason why the sentence
translation goes along with the signature translation is similar to the rea-
son why the sentence translation within an institution goes along with the
signature morphism. Namely, if a signature X in I is encoded by the presen-
tation ¢(X) in J, it is expected that each symbol in X is translated to some
corresponding symbol in @(X). Now if we assume that a Y-sentence ¢ is a
derivation tree decorated with some symbols from X, the translation ax(p)
just keeps the structure of the tree and translates the symbols according to
the correspondence of symbols in X' and @(X).

— atranslation § of J-models to I-models, giving the above mentioned relation
between X-models in I and @(X)-models in J. Here, we again have the

3 Besides this model-theoretic notion of conservativeness, there also is a weaker
consequence-theoretic notion: I'" |= () implies I' = ¢, and a proof-theoretic no-
tion coinciding with the consequence-theoretic one for complete logics: I + o ()
implies I' - ¢. We here prefer the model-theoretic notion, since this agrees with a
model semantics of theories.



contravariance of the model translation, as in the definition of institution.
Often it happens that there is also a model translation 7 in the opposite
direction. However, while § is formalized as a natural transformation, 7 is
not always natural (see [12] for a counterexample). Naturality of 3 is essential
for heterogeneous theories, see [15].

We impose a satisfaction condition on comporphisms as well: we require
that a translated model satisfies a sentence iff the original model satisfies the
translated sentence.

More formally, given institutions I and J, an institution comorphism p =
(®,, 3): I — J consists of

— a functor @: SignI HSignJ,
— a natural transformation a: Sen’ — Sen” o &,
— a natural transformation 8: Mod” o 7 — Mod?

such that the following satisfaction condition is satisfied for all ¥ € Sign’,
M' € Mod”(#(%)) and ¢ € Sen’(%):

M ':é(z) 042(90) a4 ﬁZ(M/) ':IZ‘ ©-

Together with obvious compositions and identities, this gives us the category
Colns of institution and institution comorpisms.

In more detail, this means that each signature ¥ € Sign’ is translated to a
signature @(X) € Sign‘], and each signature morphism o: X — X’ € SignI is
translated to a signature morphism @(o): $( %) — &(%’) € Sign”. Moreover, for
each signature X' € Signl7 we have a sentence translation map ax: SenI(E) —
Sen”(¢(%)) and a model translation functor 35 : Mod” (#(%)) — Mod’(X).
Natu§ality of @ and B means that for any signature morphism o: X — X’/ €
Sign’,

Sen!(X) ¥~ Sen’ (¢(X))
Sen’ (o) Sen” (#(0))
Sen!(¥') — > Sen” (6(5"))
and
Mod! (%) % Mod’ (6(X))
Mod! (o) Mod’ (¢(c))
ﬁ ’
Mod!(¥') <————— Mod’ (#(%"))
commute.



Example 6. There is an institution comorphism going from equational logic to
first-order logic with equality. An algebraic signature is translated to a first-
order signature by just taking the set of predicate symbols to be empty. Sentence
translation is just inclusion of equations into first-order sentences. A first-order
model with empty set of predicates is translated by just considering it as an
algebra. O

The notion of institution comorphism can be varied in several ways by chang-
ing the directions of the arrows or even, in the case of semi-morphisms, omitting
the arrows [10,24]. For simplicity, we will stick to comorphisms as introduced
above.

4 Grothendieck Institutions

Heterogeneous theories can be viewed as theories in a Grothendieck construction.
Diaconescu’s Grothendieck institution construction [7] basically flattens a dia-
gram of institution and morphisms. We here recall the Grothendieck institution
for the comorphism-based case [17]:

Definition 7. An indexed coinstitution is a functor Z: Ind°®? — Colns into the
4

category Colns of institutions and institution comorphisms®.

Conceptually, an indexed coinstitution is just a graph of institutions and
institution comorphisms (together with some way to compose the comorphisms).

The basic idea of the Grothendieck institution is that all signatures of all
institutions are put side by side, and a signature morphism in this large realm
of signatures consists of an intra-institution signature morphism plus an inter-
institution translation (along some institution comorphism). The other compo-
nents are then defined in a straightforward way.

Definition 8. Given an indexed coinstitution Z:Ind°? — Colns, define the
Grothendieck institution T# as follows:

— signatures in Z% are pairs (X, i), where i € |Ind| and X a signature in the
institution Z (1),

— signature morphisms (o, e): (X1,1) — (X2, j) consist of a morphism e: j —
i € Ind and a signature morphism o: ®*(¢) (%) — 5, (here, Z(e): Z(i) —
Z(4) is the institution comorphism corresponding to the arrow e:j — i in
the indexed coinstitution, and $Z(¢) is its signature translation component),

— the (X, 7)-sentences are the X-sentences in Z(i), and sentence translation
along (o, e) is the composition of sentence translation along o with sentence
translation along Z(e),

4 Indeed, the name is justified by the fact that the category of institutions and insti-
tution comorphisms is isomorphic to the category of coinstitutions and coinstitution
morphisms. A coinstitution is an institution with model translations covariant to
signature morphisms, while sentence translations are contravariant.



— the (X, 4)-models are the X-models in Z(4), and model reduction along (o, ¢)
is the composition of model translation along Z(e) with model reduction
along o, and

— satisfaction w.r.t. (X,4) is satisfaction w.r.t. X in Z(4). O

The importance of the definition of Grothendieck institution lies in the fact
that any of the institution independent logical notions introduced in Def. 5
directly carries over to Grothendieck institutions. T'wo such notions are e.g. con-
sistency of theories and conservativity of theory extensions (morphisms); these
notions play an important role for formal ontologies.

5 The Heterogeneous Tool set (HETS)

Basic specifications / Graph of CASL \ Structured and

(logic-specific tools for sublanguages and architectural

CASL and extensions) proposed extensions specifications
Text CSP-CASL Text
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Abstract syntax HasCASL SB-CASL Abstract syntax

\
Static analysis CASL Static analysis

x
\ /y
\
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\_/

(Slgnature,‘Sentences) SubEO
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Interfaces FOL Interfaces

\ XML, Z\Terms / \ ° - H‘orn:\ ° / \ XML, j—\Terms /

Theorem prover
(e.g. HOL-CASL)
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Development graph

=
Il

PFOL=

Rewriter J

MAYA
(e.g. ELAN-CASL)

Heterogeneous proof engine

Management of proofs & change
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The Heterogeneous Tool Set HETS is a tool implementing the theory devel-
oped so far. Its architecture is depicted above. HETS has an abstract interface
corresponding to concept of institution (or more precisely, entailment system —
since model theory is not directly implementable) in Haskell.

HETS implements this by providing a type class Logic. Logic is a multipa-
rameter type classes with functional dependencies [19]. Such a type class can be
thought of as a formal parameter signature. Logic contains types for signatures,
signature morphisms, sentences, abstract syntax of basic specifications etc., and
functions for parsing, printing, static analysis, and proving. Based on this ab-
stract interface, we have implemented heterogeneous tools for parsing and static
analysis of heterogeneous CASL. The static semantic analysis yields a so called



development graph (a kind of module graph) over the Grothendieck institution,
and we are currently implementing the corresponding proof calculus.

Technically, heterogeneity is realized as follows. On top of the type class
Logic, an existential datatype is constructed. Usually, existential types are used
to realize e.g. heterogeneous lists, where each element may have a different type.
We use lists of (components of) institutions and comorphisms instead. This
leads to an implementation of the Grothendieck institution over an indexed
coinstitution.

We have instantiated this general framework with institution-specific analy-
sis tools for CAsL, HASCAsL, Haskell, Csp-CASL and MODALCASL. We are cur-
rently adding support for OWL-DL. Future work will interface existing theorem
proving tools with specific institutions in HETS. We already have implemented
an experimental interface to the theorem prover Isabelle.

The Heterogeneous Tool Set is available at www.tzi.de/cofi/hets.
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