
Peer-to-Peer vs. the Internet:

A Discussion of the Proper and Practical
Location of Functionality

James P.G. Sterbenz

Lancaster University, Computing Department
InfoLab 21, South Drive, Lancaster LA1-4WA, UK

University of Massachusetts, Department of Computer Science
140 Governors Drive, Amherst, MA 01003-9264, USA

jpgs@sterbenz.org

Abstract. Peer-to-peer information sharing has become one of the dom-
inant Internet applications, measured not only in the number of users,
but also in the network bandwidth consumed. Thus, it is reasonable to
examine the location of support functionality such as self-organisation,
resource discovery, multipoint-to-multipoint group communication, for-
warding, and routing, to provide the needed service to applications while
optimising resource usage in the network.
This position paper is intended to stimulate discussion in two related
areas: First, where should functionality to support peer-to-peer applica-
tions be located: in the network, or as an application overlay among end
systems. Second, where can functionality be located, given the practical
constraints of the modern Internet including closed systems and middle-
boxes, as well as administrative, legal, and social issues. We will discuss
the performance implications of these decisions, including whether low
latency bounds for delay sensitive peer-to-peer applications (such as dis-
tributed network computing) can ever be achieved in this environment.

Keywords. network architecture, peer-to-peer, client/server, end-to-end
arguments, protocol layering, policy, tussle

1 Introduction and Problem

The dominant driver for Internet traffic in the 1990s was the Web, which is a
client/server application that benefits from network support, particularly caching.
Peer-to-peer information sharing applications have become one of the dominant
Internet applications, measured not only in the number of users, but also in the
network bandwidth consumed [1,2].

Thus, it is reasonable to consider where peer-to-peer support functionality
such as self-organisation, resource discovery, multipoint-to-multipoint commu-
nication, forwarding, and routing should reside to provide the needed service
to applications, while optimising resource usage in the network. It is also rea-
sonable to consider where such functionality can reside given practical issues;
social, economic, and administrative constraints frequently do not allow desired
placement of functionality.

Dagstuhl Seminar Proceedings 04411
Service Management and Self-Organisation in IP-based Networks
http://drops.dagstuhl.de/opus/volltexte/2005/115 c©2005 James P.G. Sterbenz



2 J.P.G. Sterbenz

1.1 What Does in the Network Mean?

The expression “in the network can” mean three things:1

Functional – The functional view is based on the layer of the protocol stack:
physical, link, and network layer (1–3) functions are in the network; the
session, transport, and application layers (4–7) are not. An example of a
function that may be functionally in the network is multicast; it is a native
capability of IP with IGMP implemented at layer 3. Application layer mul-
ticast is not in the network, being deployed when network layer multicast is
not provided in the network or doesn’t provide the required service model
(such as reliable multicast).

Topological – The topological view has to do with whether or not functions
and resources are co-located with network nodes (either core or access net-
works), located with subscriber end systems, or located between at the net-
work edge. For example, locating caches (topologically) in the network re-
duces response time and can also reduce aggregate bandwidth usage. Topo-
logically in the network does not imply functionally in the network, however.
Caching is an application layer service (not functionally in the network), even
if a network layer enhancement such as deep packet header filtering with IP
address rewriting or active networking is the enabler of this service.

Administrative – The administrative view relates to what entity has owner-
ship and control of a particular function. For example, a network provider
may own caches co-located with network nodes (administratively and topo-
logically in the network), or a third party service provider may manage
caches (administratively out of the network and topologically either in or
out of the network depending on their location). Administrative placement
of functionality and services is frequently dictated more by business model
than technical concerns.

In the context discussing the location of peer-to-peer functionality, we are
primarily concerned with the functional distinction, that is whether functionality
is embedded in the network at layer 3, or is an application overlay at layer 7.
However, note that an overlay established by end users is not in the network by
any of these three criteria. In particular, the overlay is functionally above layer 3,
is topologically outside the network on end systems, and administratively outside
the network because it is owned and managed by end users.

1.2 Peer-to-Peer vs. Client/Server

It is important to remember that most networks were initially designed as peer-
to-peer infrastructure, notably the ARPANET that evolved to the Internet, as
well as enterprise networks such as DECNET2

1 These three items are quoted with minor changes from [3], which was based ideas
initially formulated in [4].

2 Note that while SNA began as a star-topology host attach, it evolved to a peer-to-
peer mesh.



Peer-to-Peer vs. the Internet 3

It was only the convergence of client/server hype and the dominance of the
Web (which is inherently client/server) that led to a common perception that
the Internet was fundamentally client/server.

This problem was exacerbated by myopic service providers that began to en-
gineer their infrastructure (particularly for ADSL and HFC) in an asymmetric
manner under the assumption that network traffic was fundamentally asymy-
metric.

When peer-to-peer file sharing emerged as a significant application, network
service providers were surprised because the their previous assumptions about
network traffic were challenged. Some researchers, however, weren’t a bit sur-
prised that a new application changed traffic patterns, even though we didn’t
know in advance that it would be Napster that would be the killer app of the
year 2000.3

An important lesson from this is that just as the client/server model wasn’t
right for everything, neither is the peer-to-peer model.

2 What Should be in the Network

Traditional network layer functions consist of addressing, forwarding, routing,
signalling, and (optionally) traffic management. Peer-to-peer information sharing
require a number of of these support services, in particular:

Resource discovery of information that is to be shared
Multipoint group communication among groups of peers
Routing to establish paths between peers
Forwarding of information along the path route
Signalling among peers in support of the above functions

Peer-to-peer information sharing applications are almost always constructed
as application layer overlays, even though they must perform many of the func-
tions traditionally associated with the network layer. So we will first examine
what functionality should be in the network, guided by the end-to-end argu-
ments.

2.1 The End-to-End Arguments

The end-to-end arguments [5], as originally expressed, guide us on where func-
tions must and should be placed. The first part of the arguments describe what
functions must be located end-to-end and is paraphrased as:

Functions required by communicating applications can be correctly
and completely implemented only with the knowledge and help of the
applications themselves. Providing these functions as features within the
network itself is not possible.

3 Just as quickly Napster has faded due to futile attempts by the RIAA and MPAA
to control the direction of the future. But peer-to-peer file sharing has not faded,
and is not likely to.



4 J.P.G. Sterbenz

The reason for this is that a concatenation of hop-by-hop functions doesn’t
compose end-to-end. The canonical examples of such functions are error control
and encryption. In the former case, even if link-level reliability is implemented,
packets can still be lost (for example due to congestion). In the latter case, even
if link-layer encryption is done, cleartext is passed through switches and can be
eavesdropped. Therefore these functions must be done at the end systems to
provide end-to-end reliability and privacy, respectively; implementation in the
network is functionally redundant.

The second part of the argument, however, gives guidance on which end-to-
end functions may also be located hop-by-holy for performance reasons:

It is beneficial to duplicate an end-to-end function hop-by-hop if the
result is an overall (end-to-end) improvement in performance.

For example, error control must be performed for a reliable delivery service. But
in the case of a local-area lossy wireless link that is part of a wide-area end-
to-end path, significant performance benefits result from link-layer reliably, so
that the majority of retransmissions are in the short control loop rather than
end-to-end.

2.2 End-to-End Transparence

Another distinct issue is the end-to-end transparence provided by the original
ARPANET and early Internet.4

For better or worse, end-to-end address transparency is dead with the ad-
vent of NATs (network address translators) and middleboxes in the network.
Furthermore, while DHCP provides convenient automatic configuration for mo-
bile clients, it is normally imposed on all clients by consumer Internet service
providers, preventing the static IP addresses needed by servers and peer-to-peer
clients. This is in part so that the service providers don’t need to worry about
IP address administration (unless a higher service class is charged) and in part
to discourage consumers from running servers (recall that asymmetric networks
were designed with the assumption that customers would only be clients in a
client/server relationship).

This forces users to implement peer-to-peer applications as an overlay (and
not call anything a server since this violates most consumer ISP terms of service
agreements).

2.3 Functional Placement Alternatives

There are number of alternatives should be considered for placement of peer-to-
peer functionality in the network; these relate to the earlier discussion of what
is in or out of the network.
4 This transparency, as well as a stateless core for resiliency are part of the original

ARPANET design decisions [6,7] and are distinct from the end-to-end arguments;
see [3] for a discussion of this vs. the ARPANET design decisions.



Peer-to-Peer vs. the Internet 5

Protocol stack layer – application, network overlay, end-to-end transport, net-
work, link, MAC, all subject to requirements dictated by the end-to-end
arguments (functionally in or out of the network)

Plane – data, control, or management
Topology – end system, edge node, access network, core network
Control authority – end user, enterprise, third party application service provider,

network service provider, switch vendor (administratively in or out of the
network)

The significant number of options demands careful analysis to balance the
proper choice of implementation, balancing resource utilisation of processing,
memory, bandwidth, energy, and latency, as well as between user and network
service provider.

3 What Can be in the Network

We have described the range of choices to the research community on where
functionality should be placed, but this doesn’t necessarily result in a corre-
sponding set of choices on where functionality can be placed in the network, due
to a number of constraints.

3.1 Lessons from Past Network Deployments

First, it is instructive to look at the lessons from past attempts to place func-
tionality in the network to improve the performance and service delivered to
users.

Multicast is clearly a case where deployment could result in significant im-
provements in aggregate bandwidth utilisation. Thus, there is compelling
motivation to deploy multicast in the network (both functionally at layer 3
and topologically). However, in spite of over two decades of research in mul-
ticast [8,9] and a well codified Internet standard [10] we have yet to see any
significant deployment of intradomain multicast, and no ability to multicast
interdomain (except for tunneling hacks).

QOS (quality of service) has compelling motivation for a number of delay, band-
width, and loss sensitive applications. But despite two decades of research
and standards development (inlcluding ATM [11,12], IntServ [13,14] and Diff-
Serv [15]), QOS mechanisms have seen almost no deployment in the Internet.
Applications still must rely on significantly over-provisioned networks to per-
form well; voice over IP frequently relies on network infrastructure completely
segregated from data traffic.

Routing for large network scale (e.g. [16,17]) and policy [18] has been the sub-
ject of research for over a decade , but interdomain routing in the Internet
is still a serious problem (as evidenced by the multitude of papers published
that propose ways to fix the problems with BGP), with no relief in sight.



6 J.P.G. Sterbenz

IPvN (where N �= 4) as well as other attempts to evolve the Internet architec-
ture in a systematic way have failed so far. The most notable case is IPv6
[19] for which the jury is still out (but may be hung). What we do see is a
series of hacks attemping to improve security (see below) and to prevent IP
address space exhaustion (CIDR [20] and NATs [21]); the latter may well
preclude the need for global IPv6 deployment.

Security The Internet was not designed as a secure infrastructure; the problems
are well known and have led to significant research over the last decade.
However, even attempts to separately secure some of the fundamental control
protocols (such as DNS security [22] and secure BGP [23]) have not led to
deployments. The only successful deployments of security mechanisms have
been at the edge (e.g. firewalls) or end-to-end (e.g. SSL – [24]), outside the
network in all three senses: functionally, topologically, and administratively.

This list of some of the more notable failures is sobering, particularly when
comparing the research effort to the real-world impacty. Sadly, it seems that the
research community has extremely limited influence on the Internet, excepting
the multitude of tweaks and hacks to the existing architecture.

A discussion of the reasons for this lack of influence are beyond the scope
of this paper, but clearly network service providers must be convinced that
such deployments are in their own financial interest. It is important to note
that service providers (and switch vendors) are for-profit businesses that have
relatively short-term interests and are not often swayed by long-term strategic
arguments.

3.2 Lessons from Past Application Deployments

There are also lessons to be learned from previous large-scale application de-
ployments.

The Web was a marvelous creation, and while its current form is a synthesis
of older ideas (in particular hypertext [25] and graphical user interfaces), it
revolutionised the way that we use the Internet. It was, however, deployed
without longer term thought to overall performance and impact on network
infrastructure. Minor improvements were introduced by the persistent state
in HTTP/1.1 [26], but fundamental improvements are needed to deliver the
subsecond response time needed by interactive applications. These problems
include the two round trips needed for a single transaction (in the significant
number of cases that persistent state is not reusable), as well as the more
recent quantity of dynamic content that prevents caching and prefetching.
Application designers generally do not pay attention to the systemic opti-
misations needed for good performance.

Peer-to-peer file sharing applications need functionality that is not provided
by current Internet service offerings, including resource discovery and mul-
tipoint group communication. Furthermore, users are frequently prevented
by ISPs from having stable IP addresses. The response has been to avoid



Peer-to-Peer vs. the Internet 7

these problems by implementing peer-to-peer applications as an application
overlay oblivious of, and frequently at odds with the underlying network
infrastructure. As in the case of the Web, most of these applications are
deployed after rapid development, without the application of research prin-
ciples or systematic evaluation and choice of alternative mechanisms.

Unfortunately, just as the research community has limited impact on the
network infrastructure, it seems to have only limited impact on the deployment
of applications.

3.3 Overlays and Translucency

Given that peer-to-peer sharing applications are implemented as application
overlays, we should examine the implications. Overlays provide an extremely
useful abstraction for network virtualisation [27,28]. In the case of current peer-
to-peer file sharing applications, however, end-to-end overlays are being used for
the wrong reason. In this case the overlay is a hack to impelment function that
the network can’t or won’t provide (but arguably should), rather than because
these applications have a fundamental need for network virtualisation.

The problem is that opaque overlays obscure the underlying topology and
performance characteristics of the network, making it difficult to provide needed
service to applications. For example, it is impossible to establish a path with
a needed low-latency bound between Boston and New York if the end-to-end
path is on IP overlaid on an ATM PVC through Chicago overlaid on a wide-area
SONET ring through Dallas, and the application doesn’t know this and can’t
request QOS guarantees from the network.

What is needed is not opacity, but translucency, that is the ability to for a
overlay to determine the characteristics of the underlay so that it can adapt its
operation accordingly. Similarly, the overlay should be able to convey its desired
behaviour to the underlay so that it can deliver the needed service model and
performance characteristics. This requires knobs and dials 5 in which the dials
instrument the underlay to the overlay, which can in turn use knobs to influence
the underlay behaviour. This is an overlay–underlay control loop that is needed
for the same reasons as interlayer awareness control loops.

While this doesn’t solve the problem of functionality that isn’t in the network
but ought to be, it at least provides the possibility for better performance to the
application while inducing less load on the network.

3.4 Performance Prospects

So what does this mean for the prospects to deliver performance needed to appli-
cations? There is no systemic performance engineering of the Internet as a whole.
Instead, all we have are fragmented piecewise optimisations that frequently have

5 as described in [3] based on ideas presented in [29]



8 J.P.G. Sterbenz

side-effects and do not interact in a manner to benefit overall performance. In-
dividual optimisations move problems elsewhere (at best) and frequently make
things worse overall. This is in stark contrast to the traditional PSTN where
the Bell System and European PTTs carefully engineered the entire system (at
least in their geographical sphere of influence). While this is not practical for
the global internet, a bit less chaos and anarchy in Internet engineering would
be a good thing.

Consider the prospects for the two most important performance metrics:

Bandwidth is a performance attribute that can be purchased. That is, given
a consumer with sufficient wealth, a service provider can deliver the needed
bandwidth by engineering sufficient link and switch capacity. Even when
multiple competing network service providers are involved, it is not difficult
to concatenate high-bandwidth network paths. That is, users can buy pipes
that are as fat as they can afford.

Latency bounds are much more difficult to achieve. The current Internet ar-
chitecture has no mechanism for bounding latency (and recall that QOS
mechanisms to achieve this haven’t been deployed). It is much harder to
imagine how applications that need low latency can obtain this service with-
out dedicated links of known topology from a single service provider. Thus
users cannot buy pipes that are as short as they may need.

Note that not all peer-to-peer applications are file sharing. Some emerging
applications, such as distributed computing and process control require low de-
lays that are simply not achievable in the current Internet.

Furthermore, peer-to-peer file sharing applications frequently impose far more
load on the network than would be the case for careful implementation in the
network, sometimes due to the tussle [30] needed to overcome the resistance of
the network to such applications.

4 Conclusions

While the tone of this paper is intentionally pessimistic to be provocative, the
problems are real. Even though the research community is capable of analysing
where peer-to-peer functionality should go, for this analysis to have any real
impact we must find some way of influencing both the network providers and
application developers.

It may be impossible to deploy future delay-sensitive such as distributed
computing on the current Internet, but rather we may see a hack of dedicated
extranets for the purpose.

References

1. Sprint ATL: IPMON. http://ipmon.sprintlabs.com (2005)
2. Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., Faloutsos, M.: Is P2P Dying

or just Hiding? In: IEEE GLOBECOM, IEEE (2004)



Peer-to-Peer vs. the Internet 9

3. Sterbenz, J.P., Touch, J.D.: High-Speed Networking: A Systematic Approach to
High-Bandwidth Low-Latency Communication. John Wiley, New York (2001)

4. Sterbenz, J.P.: “What Belongs in the Network and What Does in the Network
Mean?”. In: IFIP/IEEE Protocols for High-Speed Networks PfHSN’96. (1996)

5. Saltzer, J., Reed, D., Clark, D.: “End-to-End Arguments in System Design”. In:
Proceedings of IEEE ICDCS 2, IEEE (1981) 509–512

6. McQuillan, J.M., Walden, D.: “The ARPA Network Design Decisions”. Computer
Networks 1 (1977) 243–289

7. Clark, D.D.: “The Design Philosophy of the DARPA Internet Protocols”. In: SIG-
COMM ’88: Symposium Proceedings on Communications Architectures and Proto-
cols, ACM Press (1988) 106–114

8. Kadaba, B.K., Jaffee, J.M.: “Routing to Multiple Destinations in Computer Net-
works”. IEEE Transactions on Communications COM-31 (1977) 343–351

9. Deering, S.E.: “Multicast Routing in Internetworks and Extended LANs”. In: SIG-
COMM ’88: Symposium Proceedings on Communications Architectures and Proto-
cols, ACM Press (1988) 55–64

10. Deering, S.E.: Host Extensions for IP Multicasting. Internet RFC 1112 / STD 005
(1989)

11. Turner, J.S.: “Design of an Integrated Services Packet Network”. IEEE Journal
on Selected Areas in Communications SAC-4 (1986) 1373–1380

12. ATM Forum, ed.: Traffic Management Specification Version 4.0. ATM Forum, New
York (1996)

13. Zhang, L., Deering, S.E., Estrin, D., Shenkar, S.: “RSVP: a New Resource reSer-
Vation Protocol”. IEEE Network 9 (1993) 8–18

14. Bradan, R., Clark, D., Shenker, S.: Integrated Services in the Internet: an
Overviewe. Internet RFC 1633 (1994)

15. Blake, S., Black, D.L., Carlson, M.A., Wang, Z., Weiss, W.: An Architecture for
Differentiated Services. Internet RFC 2475 (1998)

16. Castineyra, I., Chiappa, N., Steenstrup, M.: The Nimrod Routing Architecture.
Internet RFC 1992 (1996)

17. Cornely, T., Oster, G., Cherukuri, R., Dykeman, D., eds.: Private Network–
Network Interface Specification Version 1.1. ATM Forum, New York (2002)

18. Steenstrup, M.: An Architecture for Inter-Domain Policy Routing. Internet RFC
1478 (1993)

19. Blake, S., Black, D.L., Carlson, M.A., Wang, Z., Weiss, W.: An Architecture for
Differentiated Services. Internet RFC 2475 (1998)

20. Rekhter, Y., Li, T.: An Architecture for IP Address Allocation with CIDR. Internet
RFC 1518 (1993)

21. Srisuresh, P., Egevang, K.: Traditional IP Network Address Translator. Internet
RFC 3022 (2001)

22. Eastlake, D.E.: DNS Security Extensions. Internet RFC 2535 (1999)
23. Kent, S., Lynn, C., Seo, K.: “Secure Border Gateway Protocol (S-BGP)”. IEEE

Journal on Selected Areas in Commuincations 18 (2000) 582–592
24. Freir, A.O., Karlton, P., Kocher, P.C.: The SSL Protocol Version 3.0. Internet

Draft draft-freier-ssl-version3-02.txt (work in progress) (1996)
25. Bush, V.: “As We May Think”. Atlantic Monthly 176 (1945) 101–108
26. Fielding, R.T., Gettys, J., Mogul, J.C., Nielsen, H.F., Masinter, L., Leach, P.J.,

Berners-Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. Internet RFC 2616
(1999)

27. Touch, J.: “Dynamic Internet Overlay Deployment and Management Using the
X-Bone”. Computer Networks 3 (2001) 117–135



10 J.P.G. Sterbenz

28. Scott Shenker, L.P., Turner, J.: “Overcoming the Internet Impasse through Vir-
tualization”. In: ACM Hot Topics in Networks (HotNets) III, ACM Press (2004)

29. Clark, D.D.: “Protocol Design and Performance”. In: INFOCOM ’95 tutorial
notes. (1995)

30. Clark, D.D., Wroclawski, J., Sollins, K.R., Braden, R.: “Tussle in Cyberspace:
Defining Tomorrow’s Internet”. In: SIGCOMM 2002: Proceedings of the 2002
conference on Applications, technologies, architectures, and protocols for computer
communications, ACM Press (1988) 347–356


	Peer-to-Peer vs. the Internet:A Discussion of the Proper and Practical Location of Functionality
	James P.G. Sterbenz



