Compiler-Driven Power Optimizations in the
Register File of Processor-Based Systems

José L. Ayala and Marisa Lépez-Vallejo

Universidad Politécnica de Madrid, Departamento de Ingenieria Electrénica
Ciudad Universitaria s/n, 28040 Madrid, Spain
{jayala,marisa}@die.upn.es

Abstract. Continuing advances in semiconductor technology have al-
lowed dramatic performance gains for general-purpose microprocessors
and embedded systems with the fact that power consumption is also
increased. Moreover, a new problem arises because the power savings
achievable with low level techniques are reaching their theoretical maxi-
mum. Therefore, high level techniques to reduce the power consumption
in processor-based systems are needed.

In this context, this work proposes different power-saving techniques for
the register file of processor-based systems by means of a power-aware
compiler. These techniques modify the compiler optimizations to im-
prove the behavior of a supporting hardware which reduces the energy
consumption without performance penalty. This paper also shows the
ongoing work on multi-processor systems on-a-chip, which extend the
target of the proposed power optimization mechanisms.

Keywords. Power consumption, register file, out-of-order, MPSoC, com-
piler support, power-aware.

1 Introduction

Processor-based systems represent nowadays a significant fraction of the semi-
conductor market. Several indicators support this fact. First, applications exe-
cuted by microprocessor-based systems were related to scientific processing appli-
cations. Currently, these applications have reached the user market by executing
complex applications in movile cell-phones, digital cameras, movile computers
and PDAs, devices for handicapped or cars. Second, the complexity of the scal-
ing, in terms of number of integrated transistors in the silicon die, has been
doubled every two years following the Moore’s Law. The predictions for the next
few years keep close to this trend. Also, in terms of working frequency, the lead
microprocessors frequency doubles every two years.

This trend in the extension and increasing complexity of the processor-based
systems is followed by an increase on the power dissipation of these devices. The
power dissipation of current architectures (like Pentium IV) is over the ten kilo-
watts. The expectation of tens of kilowatts dissipated in the next five years makes

Dagstuhl Seminar Proceedings 05141
Power-aware Computing Systems
http://drops.dagstuhl.de/opus/volltexte/2005/305

2 J. L. Ayala, M. Lopez-Vallejo

the power delivery and dissipation of these systems to be prohibitive. Moreover,
the power density becomes too high to keep junctions at low temperature.

In current embedded and high-performance processors, the register file con-
sumes a sizable fraction of the total power and becomes a dominant source
of energy dissipation when other power saving mechanisms have been applied.
Register file power consumption depends very much on the system configura-
tion, mainly on the number of integrated registers, cache size and existence
of a branch predictor table (i.e. depends on the relative size of other memory
devices). In the Motorola’s M.CORE architecture, the register file energy con-
sumption could achieve 16% of the total processor power and 42% of the data
path power [1]. In out-of-order processors with a large number of physical regis-
ters which are implemented as part of the Re-Order Buffer (in Pentium III, for
example), this structure dissipates as much as 27% of total energy according to
some estimates [2].

Moreover, many recent compiler optimizations increase the register pressure,
and there is a current trend towards implementing larger register files. Large
register files present several advantages: decreased power consumption in the
memory hierarchy (cache and main memory) by eliminating accesses, improved
performance by decreasing path length and reduced memory traffic by removing
load and store operations. However, current research in this area [4] and the
efforts on optimizing spill code indicate a need for more registers. Sophisticated
optimizations can increase the number of variables and the register pressure; fur-
thermore, global variable register allocation can increase the number of required
registers. The number of registers, the register pressure and the aggressive com-
piler optimizations (by allocating global variables, promoting aliased variables
and inlining) will lead to increase the energy consumption.

As was said before, the size of the register file in embedded and high per-
formance processors has shown a significan increase and this motivates the need
for efficient techniques to reduce register file energy consumption in embedded
systems. This paper is based on a technique which is characterized by an ab-
sence of performance penalty. It is based on the observation that a register is
only used when an instruction reads from it or writes to it, the register is ”idle”
at all other times. By keeping the idle registers in a low power (or ”drowsy”)
state [5] a significant amount of energy can be saved. Most registers are idle in
any given cycle since at most three registers are accessed by an issued instruc-
tion. The compiler and architectural modifications we propose in this paper allow
the drowsy registers to be turned back to the ”active” state as the instruction
accesses them.

Compiler-techology traditionally has focused on improving the program size,
quality and performance of the compiled code. However, not many approaches
have targeted the power optimizations. Also, the majority of compiler driven
approaches to power reduction have focused on embedded processors, while there
is not so much work on superscalar out-of-order processors.

In this paper we present two different techniques to reduce the power con-
sumption of the register file in out-of-order architectures by means of a power-

Compiler-Driven Power Optimizations in Processor-Based Systems 3

Memory cell array

read
Write worg—{ WW RAW |_|Read word addr A
decoder [WWb decoder
read
Bit ling— WB Read word addr
datain |driverg

Sense
amplifiey

write address

write enable

Fig. 1. Register file.

aware compiler. The first technique allows a reduction in the number of ports of
the register file by modifying the assignment of registers (and saving energy in
this way). The second technique focuses on optimizing the loop unrolling mech-
anism of the compiler. This work is currently being extended to multi-processor
environments, where the defined power saving techniques find a very promising
room.

The rest of the paper is organized as follows: section 2 explains the founda-
tions of the approach, while related work is summarized in 3. The techniques to
reduce the number of ports and the modification of the loop unrolling mechanism
are explained in sections 4 and 5 respectively. Our ongoing work on MPSoCs is
shown in section 6 and section 7 finishes the paper with some conclusions.

2 Foundations

In a typical configuration, the register file is an array of N words by M bits. Any
of the N words can be simultaneously accessed by two read ports and a single
write port. A block diagram of the register file, shown in Figure 1, shows that
the register file contains seven distinct types of functional blocks [6]. These are
the memory cell array, the read address decoders and word line drivers, the write
address decoder, the bit line drivers, the sense amplifiers, the output latches, and
the comparators.

The memory cell array stores the bits of data. When any of the ports accesses
the memory cell array, the read or write operation is performed on every memory
cell in the selected row simultaneously. Each read address decoder is responsible
for decoding a logs N-bit address to determine which of the rows is selected for
each read operation. The read word line drivers are responsible for driving the

4 J. L. Ayala, M. Lopez-Vallejo

9,
1007 T6R/EW

LTI 1216 W
SRIAW
80% 4R2W

70%
6l
50"

40"

access lime power area

Fig. 2. Effects of size and number of ports on access time, power and area

read word lines accordingly. The write address decoder selects the row to be
written. The write word line drivers drive the write word lines while the bit line
drivers provide input data to the memory cells.

The independent read and write address decoders allow parallel access to up
to three register operands of an instruction. Also, some registers in the register
file will never be used due to the locality of data in the code. Therefore, the
register file is underutilized most of the time, and this fact will be used to keep
those free registers in a low-power state which saves energy [5].

More in detail, the main goals of our research work in this area are to provide
the architectural extensions and compiler support to reduce the power consump-
tion in the register file of processor-based systems by reducing the number of
ports of this device and by modifying the loop unrolling mechanism. Finally,
these ideas will be extended to the multi-processor systems-on-a-chip.

3 Related Work

Most of the previous work on the register file has been related to general size
reduction techniques. Some of the authors propose distributed schemes as op-
posed to a central implementation [7] as well as split microarchitectures into
distributed clusters [8].

Other interesting works on reducing the size of the register file propose multi-
level implementations [9] or interleaved banks [10]. In [11], the authors also apply
voltage scaling techniques to reduce the power consumption when the register
file is not accessed.

Compiler optimization mechanisms have been proposed to reduce power con-
sumption in microprocessors [12], but these approaches only work on code op-
timizations and do not use hardware support. Also, there are solutions based

Compiler-Driven Power Optimizations in Processor-Based Systems 5

on code versioning and selection by the compiler using heuristics and profile
data [13]. The compiler approaches proposed in this work will be also supported
with hardware modifications which improve the results in terms of applicability
and energy consumption.

Compiler optimizations such as power-aware instruction selection, i.e., choos-
ing the instruction sequence that will cause the lowest energy dissipation when
the program is executed, will not require changes in the hardware to reduce
energy consumption [14]. Often, optimizing for performance will result in a pro-
gram that also yields good energy results. There are cases, however, where these
two goals will result in different instruction sequences. The compiler optimization
technique register pipelining is an example for this effect [15]. Previous works
have also targeted the register file optimization by means of compiler-based
techniques such as software pipelining [16], variations to the register renaming
task [17], or architecture reconfiguration [18].

Therefore, as was previously said, our work will consider both energy con-
sumption and performance as target variables to be optimized with the proposed
techniques.

4 Reduction of Number of Ports in the Register File

It is well known that the number of ports and the size of the register file impact
on its energy consumption. Figure 2 shows the effects of size and number of
ports on access time, energy and area for 128-, and 256-entry register files having
various combinations of read and write ports [19]. The numbers were calculated
using a modified version of CACTI 3.0 [20] assuming a 0.18 pm technology. The
authors consider four configurations of the register file: one with 16-read and
8-write ports; another with 12-read and 6-write ports; other configuration with
8-read and 4-write ports; and a last one with 4-read and 2-write ports. These are
intended to support 8-, 6-, 4-, and 2-issue machines respectively. These values
are normalized against a 256-entry register file with 16R/8W ports. Figure 2
illustrates quite dramatically the penalty paid in access time, energy and area
as the number of ports is increased.

Our approach splits the register file into independent banks with a reduced
number of ports per bank. Those banks that are not required by any operand
coded in the instruction word are kept in a low-power state to save as much
energy as possible [21]. The energy savings in this approach are due to the
voltage scaling applied and the reduced number of ports enabled in every access
to the register file.

The architectural modifications presented in this approach are also supported
by a power-aware compiler where the register assignment has been modified in
order to efficiently use those banks.

The compiler selected to perform the implementation of the improved register
assignment policy is the GNU compiler gce 3.2 which is publicly available, gen-
erates high quality code and supports multiple embedded and high-performance
Processors.

6 J. L. Ayala, M. Lopez-Vallejo

while not
availabl

select
register from
FIFO

start

next
instruction?,

different bank

Fig. 3. Register assignment algorithm

Gcee, when assigning an architectural register to the instruction operands,
retrieves the first available register from a list (a FIFO) of free registers. The
order of the registers inside the list is not representative and depends on the
specific hardware architecture. Since gcc does not consider any restriction on
assigning the registers, these are selected consecutively and, therefore, all the
operands in our approach would come from the same register file bank if no
modification to the register assignment algorithm is accomplished.

The register assignment policy implemented in the compiler modifies the tra-
ditional assignment by promoting every operand in the instruction to a different
register file bank. With this modification, the number of ports in every register
file bank is reduced since less accesses per bank are performed in parallel.

The algorithm followed by the compiler to assign the architectural registers
is shown in Figure 3. First, the first available register in the list of free registers
is selected. This register is double-checked to be free and not system-reserved
and, after that, compared to the registers assigned to the other operands of the
instruction. If the register file bank for the operand under assignment matches
any of the other operands of the instruction, this register is promoted to the next
bank and the procedure is repeated. When the register is selected, the liveness
of the register is calculated and the annotation is generated.

After the register assignment is completed, it results that every operand of
the instruction has been disposed in a different register file bank.

4.1 Experimental Results

The architecture that will be described in the following paragraphs, as well as
the compiler modifications, have been implemented and simulated to verify the
correctness of the approach and the energy savings obtained. The SimpleScalar’s
version used in our experiments is 4.0 because this later version includes an

Compiler-Driven Power Optimizations in Processor-Based Systems 7

selected
register

R8

R9

R10 FIFO of

freeregisters

freed
register

Fig. 4. FIFO of free registers

optimized implementation of the register renaming algorithm for out-of-order
Processors.

The simulated baseline configuration counts with a multi-ported register file
implementation with 256 registers and 22R/11W ports (as found in many imple-
mentations, like x86) and it is configured as a 3-issue machine. The benchmarks
used in the experiments come from the MediaBench suite.

Analysis of the Number of Banks It is clear that increasing the number of
sub-banks of the register file, higher energy savings are expected since a bigger
portion of the register file can be kept into the low-power state when it is not
accessed. However, there are two main limitations to this idea. First, sometimes
when increasing the number of sub-banks from one configuration to another,
the number of ports per bank has to be kept constant to meet the performance
constraints and avoid pipeline stalls. The energy per access, which is related to
the number of ports, does not decrease and the energy savings also decrease due
to the increased number of banks. Therefore, some energy penalty can appear
when increasing the number of banks.

Second, the alive registers required by the application before any of them
can be freed (liveness). When the compiler assigns registers during the register
allocation phase, it takes them from a list (or FIFO) of free registers, and gives
them back to the list when the live period of the register has finished and it can
be freed (see Figure 4). If the compiler does not find a free register in the list it
has to insert no-operation cycles waiting for available registers.

The analysis of the liveness of the registers assigned by the compiler shows
which is the minimum size of the sub-banks to assure that they will never run out
of free registers. This analysis is performed as a previous phase to the compilation
with the unmodified compiler (the register assignment policy is not modified),

8 J. L. Ayala, M. Lopez-Vallejo

aaEEHUMKEERR

Fig. 5. Energy consumption for the different banks configuration

and can be dumped into a text file containing the liveness of every register and
the beginning and ending instruction.

The presented analysis has been performed for the whole set of benchmarks
(from the MediaBench suite) used in the simulations, showing that the maximum
number of banks that meets the performance constraints in every benchmark
is six. Thus, two new configurations have been implemented and simulated to
obtain the energy savings: 5-bank configuration and 6-bank configuration.

Simulations Attending to the impact of the number of ports in the energy
consumption, for the 5-bank configuration the total energy consumption of the
register file is reduced to a 72.37% of the baseline configuration when splitting
the register file into five banks. The 6-bank configuration shows an extra decrease
on these savings (the total energy consumption is reduced to a 66.32% of the
baseline configuration). It should be noticed that configurations with more banks
could not improve these numbers. For example, the 7-bank configuration reduces
the energy consumption to a 86.84% because the number of required ports per
bank has to be kept equal to the 6-bank configuration (6 ports per bank in both
cases). This fact reflects the first limitation on selecting the number of sub-banks,
as was previously explained. Also, it has to be noticed how the complexity of the
implementation and the access time to the register file have been dramatically
reduced with these last two configurations.

Equally to the 4-bank configuration, the low-power policy is applied later to
obtain greater energy savings. Figure 5 shows the resulting energy consumption
of the register file for the three analyzed configurations when the low-power
policy is applied. As can be observed, the average energy consumption is heavily
decreased in both configurations since a bigger portion of the register file can
be turn into the low-power state when it is not required for any instruction.
Those benchmarks with less energy consumption correspond to those with more
instructions requiring only one operand, while the consumption is increased when
more multi-operand instructions are executed.

When increasing the number of register file banks (and thus, when decreasing
the number of read and write ports) the pipeline could stall if the issue-width
of the machine can not be fed by a sufficient number of register file ports. In

Compiler-Driven Power Optimizations in Processor-Based Systems 9

55

45

3,51

%

2,51

bt bl

adpm basicmath bitcount blowfish CRC32 dikstia FFT lame patrcia asort findael sha stingsearc susan AVERAGE

Fig. 6. Performance penalty of the 6-bank register file

the selected configurations, such behavior can be observed for the 6-bank con-
figuration (Figure 6). As can be noticed, the performance penalty shown for the
6-bank configuration (2.3% on average) is in accordance with previous published
works. [22,23]

5 Optimizations of the Loop-Unroller

Loop unrolling intends to increase instruction level parallelism of loop bodies by
unrolling the loop body multiple times in order to schedule several loop itera-
tions together. The transformation also reduces the number of times loop control
statements are executed. As loop unrolling reduces execution time through ef-
fective exploitation of ILP from different iterations, it has been presented in the
past as an effective compiler mechanism to reduce the energy consumption.

However, loop unrollers perform better for in-order architectures. Current
widely-available compilers are not able to exploit the dynamic scheduling fa-
cilities found in out-of-order processors, and the ILP improvements are not so
spectacular. On the other hand, the unroll of outer loops (or the unroll of inner
loops by large factors) exploits the register requirements and increases the en-
ergy consumption on the register file. Recent research in modern architectures
has shown how loop unrolling proved to have little effect in terms of program
execution time [24]. Moreover, these works did not consider the increment on
energy consumption due to the increased register usage when the unrolling takes
place.

This section presents a power-aware unroller mechanism to efficiently reduce
the energy consumption in the register file of out-of-order processors. The mod-
ified unroller considers the following alternatives:

— Selection of an unroll factor which fits the register requirements into the
available register file bank.

— Use of a dedicated unroll bank of registers to perform unrolling in a safe,
energy-controlled space.

— Deactivation of the loop unrolling optimization.

10 J. L. Ayala, M. Lopez-Vallejo
5.1 Selection of the Unroll Factor

Once register assignment is performed by the compiler and before any loop un-
roll has taken place, the number of required registers inside the ness is perfectly
known. The loop unroller exploits the register requirements by placing several
copies of the same code and increasing in this way the register demands. Sub-
sequent compiler optimizations (for example, software pipelining) will reduce
the number of demanded registers by promoting unused registers or reusing
operands.

Therefore, even though the exact number of required registers cannot be
known in advance, this number can be estimated. Gce performs an initial es-
timate of this parameter based on a worst-case estimation, and such number
can be retrived from the gcc’s source code and used for our purposes. Also, a
post-compilation phase can be considered to tune the unroll factor regarding the
effective factor used during the first compilation.

Once the estimated number of required registers is known, the unroller can
select the unroll factor which fits the register requirements into the available
register file bank while the others remain off.

5.2 Use of the Unroll Bank of Registers

The previous phase can result in the selection of an unroll factor too small if the
loop requires a great amount of registers. This reduced unroll factor could deter-
mine a penalty in the system performance because other optimizations such as
common-subexpresion elimination, induction-variable optimizations, instruction
scheduling or software pipelining loose effectiveness. For that reason, an unroll
bank of registers will be considered.

This unroll bank of registers consists of a bank with reserved registers, whose
size is bigger than any of the register file banks, and that remains off during
normal execution. When needed, the unroll bank has to be explicitly turned on
by the compiler, switching off the rest of register file banks (i.e. the working
register file bank is reconfigured to a bigger one to be used during the loop).

In order to perform this operation, the registers currently used as inputs in-
side the loop have to be moved to the unroll bank of registers (the contents have
to be copied). Also, when the loop exits, the output registers have to be moved to
the register file bank they belong to. This requires some extra clock cycles to per-
form the operation, which negatively impact the system performance. Therefore,
this compiler optimization will only be allowed in long and frequently executed
loops with strong register requirements (i.e. those loops which represent higher
energy savings and whose energy-execution trade-off is justified).

Clearly, there is a performance and area overhead due to the use of the extra
bank, and the movement of registers from the register file. The section 5.4 will
show how this overhead is negligible in a practical case.

Compiler-Driven Power Optimizations in Processor-Based Systems 11

S EEEEEEFTEEE -

adpcm basiomath bitcount blowfish CRC32 dijkstra FFT lame. patricia qsort rijndael sha stingsearc susan AVERAGE
h

Fig. 7. Percentage of failed loops

5.3 Deactivation of the Loop Unrolling Optimization

Previous compilation phases can return an error result if the estimated unroll
factor remains below a threshold, or the required registers inside a target loop
cannot be fed by the unroll bank of registers. In those cases, provided that the
main goal is power reduction, the loop unrolling optimization will be deactivated
for the loop under consideration. When the estimated unrolling factor is below
the previously set threshold, the optimization will be deactivated. Therefore, the
banked approach previously presented can perform without modification and the
energy savings will correspond to those unused register file banks.

5.4 Experimental Results

Figure 7 shows the percentage of failed loops (those that exploit the register
demands and cannot be fed by the register file banks) over the total number
of loops, and for some benchmarks selected from the MiBench suite. As can be
seen, the behavior of every bechmark regarding the percentage of failed loops
is quite different, ranging from the 2.2% of the susan benchmark, to the 24.6%
of bitcount. The baseline architecture for these simulations corresponds to that
described in section 4.

The loop unroller factor is estimated after a post-compilation stage. In this
approach, the compiler is allowed to finish the compilation process and, after
recovering the selected unroll factor, recompiled with the new selection. Figure 9
shows the percentage of failed loops after the unroll factor has been selected on
the post-compilation estimation. As can be seen, those failed loops due to the
wrong estimation of the unroller loop are corrected, and the average count of
failed loops is decreased to 5.96%. However, the unroller factor cannot always
be effectively tuned and some failed loops still remain.

Figure 9 also shows the percentage of failed loops after compilation using an
unroll bank of 64 registers and targeting the most-time consumming loop in the
benchmark. As can be seen, some of the benchmarks (those with a loop which
represents a significant portion of the execution time) present in this approach
a better behavior, while others (those where a significant loop cannot be found)

12 J. L. Ayala, M. Lopez-Vallejo

adpom basicmath bitcount blowfish CRC32 dikstra FFT lame patricia gsort rindael sha stingsearc susan AVERAGE
h

Fig. 8. Performance penalty after the use of the unroll bank of registers

‘ [selection [l bank [] deactivation ‘

adpem basicmath bitcount blowfish CRC32 dikstra FFT lame patricia qsort fijndael sha stingsear susan AVRG
ch

Fig. 9. Energy savings in the register file for the three unroller optimizations

have increased the percentage of failed loops. In average, the percentage of failed
loops have been decreased to a 5.52%.

For this approach, the performance penalty incurred by the extra clock cycles
needed to use the unroll bank of registers has also been measured (Figure 8). In
average, this does not represent more than a 3%. There is also a performance
penalty in terms of area of the die for the unroll bank. Usually, when target-
ing low-power, area of the chip can be sacrified in order to meet the energy
constraints.

Some of the benchmarks’ loops cannot be fit in the register file banks by tun-
ing the loop unrolling factor and meeting at the same time the defined threshold.
For those loops, the loop unrolling optimization is deactivated. The size of the
register file banks (32 register) has been selected in the way that they can feed
the register demands for every benchmarks when no unrolling is applied. There-
fore, the percentage of failed loops after the deactivation of the unrolling is very
reduced (Figure 9).

Finally, Figure 9 shows the energy savings in the register file for the three
different approaches related to the loop unrolling optimization (selection of the
unroll factor, unroll bank and deactivation of the optimization). In this graph, it

Compiler-Driven Power Optimizations in Processor-Based Systems 13

can be observed the improvement in terms of energy savings when simultaneously
using all these approaches.

6 Ongoing Work: Extension to MPSoCs

The semiconductor industry is still facing several technological challenges to
build the MPSoC systems. They require an enormous computational perfor-
mance (2 - 30GOPS) with low energy consumption demands (0.3- 2W) [25].
Although current desktop processors offer these performance requirements, they
consume too much power (10-100 W) [26]. Therefore, while keeping the perfor-
mance figures, the power consumption needs to be at least two or three orders of
magnitude lower. Within this context, methods to reduce the power consumption
of the new MPSoC platforms are in great need.

Analyzing current implementations of MPSoCs and the trend on the market,
it can be said that the trends in future platforms are:

— Platforms with an increasing number of processing units, working in coop-
eration to perform the work;

— Heterogeneous architectures with different kind of processors, hardware ac-
celerators and co-processors;

— Shared implementation of functional units for the optimal use of resources;

— Availability of low-power modes of operation;

6.1 Proposed Architectural Extensions

The work developed in this section has been performed with the use of CRISP [27].
CRISP has been developed at the Katholieke University of Leuven and IMEC,
and consists of a high-level simulation platform of heterogenous architectures
and its framework for the automatic generation of compilers.

The baseline architecture described by CRISP counsists of a selectable number
of processing elements (VLIW processors) which communicate with a shared reg-
ister file through a full crossbar network (Figure 10). This architecture has been
extended and modified in the following way to support the unrolling mechanisms
proposed in this paper:

— The shared register file among all processing elements has been split into
several banks which can be independently accessed by the processors. Then,
a Dynamic Voltage Scaling (DVS) technique is applied to turn the unused
banks into a low power state and thus save as much energy as possible in
the system.

— Every processing element includes now an additional local register file with
a reduced size compared to the shared register. All these local register files
are switchted off during normal functioning.

— Hardware support is provided to the compiler to power up more than one
bank of registers in the shared register file or local register files in several pro-
cessing elements when they are needed. In normal execution of the system,

14 J. L. Ayala, M. Lopez-Vallejo

Al

]
! i Vvddl Vdd2
I
! I
: egister file| register file | é vV
|
I

processor processor

shared register file

‘
‘
| (|

‘

processor processor

Fig.10. CRISP architecture

most of the banks of the shared register file will be kept in a low-power state
thanks to the modified register assignment implemented in the compiler.
When needed, the register file banks or local register files will be powered
up to feed the register demands of the code. The selection between both
configurations (extra banks in the shared register file, or local register file) is
based on energy considerations analyzed by the compiler using our proposed
unrolling mechanisms for MPSoC systems (Section 5).

6.2 Benchmark Selection and Preliminary Results

The benchmarks used for the experimental work have been selected to analyze
all the parameters that have a strong impact in the MPSoC behavior. These
benchmarks are:

— MPEG-2: This video coding algorithm has been selected due to its low data
dependency (the coding effort is not dependent on the video sequence), pro-
cessing layer by layer, and high parallelization possibilities.

— JPEG2000: This image coding algorithm presents high data dependency, and
high parallelization possibilities.

The preliminary simulations on this topic show how the results highly de-
pend on the parallelization possibilities of the benchmark, as well as the data
dependencies between the processors in the MPSoC. Those benchmarks where
the algorithm can be independently split into several processors (with scarce or
no inter-processor communication) are able to take advantage of the proposed
approach. Moreover, the capability to detect the data dependencies between
processors helps on deciding the best unrolling policy and the precise use of the
unroll-bank.

Compiler-Driven Power Optimizations in Processor-Based Systems 15

7 Conclusions and Future Research

The reduction of complexity and energy consumption in the register file is a
primary goal in the design of complex processor-based systems. This research
work has shown how the use of power-aware compilers can provide significant
savings in this device by a careful design of the underlying architecture.

This work presents different compiler-based mechanisms to target power and
complexity optimizations in the register file of out-of-order processors. In partic-
ular, a reduction of the number of ports in the register file (which impacts on the
energy consumption and design complexity) by means of a banked architecture
and a specific register assignment is presented.

Also, several unrolling policies have been evaluated and proposed to reduce
the energy consumption in the register file of single-processor and MPSoC ar-
chitectures.

The ongoing research work carried out by our group is focused on the analysis
of the impact of compiler optimizations in the power consumption of the register
file, as well as the automatic tunning of these optimizations to improve the
energy savings. Also, this work is currently being extended to work at different
granularity levels (loop, function, etc), with heterogenous MPSoC architectures,
and also targeting the cache hierarchy.

Acknowledgements

This work was supported by the Spanish Ministry of Science and Technology
under contract TIC2003-07036.

The authors would like to thank Alex Veidenbaum (from University of Cali-
fornia in Irvine), David Atienza (from Complutense University of Madrid) and
Praveen Raghavan (from IMEC) for their support and constructive feedback in
this work.

References

1. Gonzales, D.R.: Micro-RISC Architecture for the Wireless Market. In: Interna-
tional Symposium on Microarchitecture. (1999)

2. Folegnani, D., Gonzélez, A.: Energy-Effective Issue Logic. In: International Sym-
posium on Computer Architecture. (2001)

3. Mahlke, S.A., Chen, W.Y., Chang, P.P., Hwu, W.: Scalar Program Performance
on Multiple-Instruction Issue Processors with a Limited Number of Registers. In:
Hawaii International Conference on System Sciences. (1992) 34-44

4. Postiff, M., Greene, D., Mudge, T.: The Need for Large Register File in Integer
Codes. Technical Report CSE-TR-434-00, Electrical Engineering and Computer
Science Department. The University of Michigan (USA) (2000)

5. Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.N.: Drowsy Caches:
Simple Techniques for Reducing Leakage Power. In: International Symposium on
Computer Architecture. (2002)

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. L. Ayala, M. Lopez-Vallejo

Steidl, S.A.: A 32-Word by 32-Bit Three-Port Bipolar Register File Implemented
Using a SiGe HBT BiCMOS Technology. PhD thesis, Rensselaer Polytechnic In-
stitute (2001)

Zyuban, V.V., Kogge, P.M.: The energy complexity of register files. In: Interna-
tional Symposium on Low Power Electronics and Design. (1998)

Seznec, A., Toullec, E., Rochecouste, O.: Register write specialization register read
specialization: A path to complexity-effective wide-issue superscalar processors. In:
MICRO. (2002)

Cruz, J.L., Gonzélez, A., Valero, M., Topham, N.P.: Multiple-banked register file
architecture. In: nternational Symposium on Computer Architecture. (2000)
Park, 1., Powell, M.D., Vijaykumar, T.N.: Reducing register ports for higher speed
and lower energy. In: MICRO. (2002)

Koen, J.P., Langendoen, K., Sips, H.J.: Application-directed voltage scaling. IEEE
Transactions on Very Large Scale Integration (TVLSI) 11 (2003) 812 — 826
Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Ye, W.: Influence of compiler opti-
mizations on system power. In: Design Automation Conference. (2000)

Azevedo, A., Issenin, I., Cornea, R., Gupta, R., Dutt, N., Veidenbaum, A., Nicolau,
A.: Architectural and compiler strategies for dynamic power management in the
copper project. In: International Workshop on Innovative Architecture. (2001)
Parikh, A., Kim, S., Kandemir, M., Vijaykrishnan, N., Irwin, M.: Instruction
scheduling for low power. Journal of VLSI Signal Processing (2004) 129-149
Steinke, S., Schwarz, R., Wehmeyer, L., Marwedel, P.: Low power code generation
for a RISC processor by register pipelining. Technical report, Dept. Comput. Sci.
XII, Univ. Dortmund, Dortmund, Germany (2001)

Akturan, C., Jacome, M.F.: FDRA: A software-pipelining algorithm for embedded
VLIW processors. In: Proceedings of ISSS. (2000) 34—40

Ayala, J.L., Lépez-Vallejo, M., Veidenbaum, A.: Energy-efficient register renaming
in high-performance processors. In: Proceedings of WASP. (2003)

Ayala, J.L., Lopez-Vallejo, M.: Improving register file banking with a power-aware
unroller. In: Proceedings of PARC. (2004)

Zyuban, V.V., Kogge, P.M.: The energy complexity of register files. In: Proceedings
of ISLPED. (1998)

Reinman, G., Jouppi, N.: An integrated cache timing and power model. Technical
report, COMPAQWestern Research Lab (1999)

Ayala, J.L., Lépez-Vallejo, M., Veidenbaum, A.: Power-aware register renaming
in high-performance processors using compiler support. In: Proceedings of IWIA.
(2004)

Farkas, K.I., Jouppi, N.P., Chow, P.: Register file design considerations in dynam-
ically scheduled processors. In: International Symposium on High Performance
Computer Architecture. (1996)

Janssen, J., Corporaal, H.: Partitioned register file for TTAs. In: International
Symposium on Microarchitecture. (1995)

Seng, J.S., Tullsen, D.M.: The effect of compiler optimizations on Pentium 4 power
consumption. In: Workshop on Interaction between Compilers and Computer Ar-
chitectures. (2003)

Viredaz, M., Wallacha, D.: Power evaluation of a handheld computer. IEEE Micro
23 (2003) 66-74

Bose, P., et al.: Early-stage definition of Ipx: A low power issue-execute processor.
In: Proceedings of PACS. (2002)

Compiler-Driven Power Optimizations in Processor-Based Systems 17

27. Barat, F., Jayapala, M., Aa, T.V., Lauwereins, R., Deconinck, G., Corporaal, H.:
Low power coarse-grained reconfigurable instruction set processor. In: 3th Interna-
tional Conference on Field Programmable Logic and Applications, 1st - 3rd Sept.
2003, in Lisbon, Portugal (2003)

	Compiler-Driven Power Optimizations in the Register File of Processor-Based Systems
	José L. Ayala and Marisa López-Vallejo

