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Abstract

We address the problem of sequence prediction for nonstationary sto-
chastic processes. In particular, given two measures on the set of one-way
infinite sequences over a finite alphabet, consider the question whether
one of the measures predicts the other. We find some conditions on local
absolute continuity under which prediction is possible.

1 Introduction

Let a sequence xt, t∈ IN of letters from some finite alphabet X be generated
by some probability measure µ. Having observed the first n letters x1,...,xn we
want to predict what is the probability of the next letter being x, for each x∈X .
This task is motivated by numerous applications — from weather forecasting and
stock market prediction to data compression. It also generalizes to the problem
of reinforcement learning in an arbitrary (non-Markov) environment. Indeed, in
the sequence prediction problem Markov measures generalize to stationary and
ergodic measures, for which prediction is possible, as will be explained below.
However, such generalization is not possible in active (reinforcement) learning
problems, and thus one has to look for probabilistic conditions that generalize.

If the measure µ is known completely then the best forecasts one can make
for the (n+1)st outcome of a sequence x1,...,xn is µ-conditional probabilities of
xn+1 being x∈X given x1,...,xn. On the other hand, it is immediately apparent
that if nothing is known about the distribution µ generating the sequence then
no prediction is possible, since for any predictor there is a measure on which
it errs (gives grossly wrong probability forecasts) on every step. Thus one has
to restrict the attention to some class of measures. Laplace was perhaps the
first to address the question of sequence prediction, his motivation being as fol-
lows: Suppose that we know that the Sun has risen every day for 5000 years,
what is the probability that it will rise tomorrow? He suggested to assume
that the probability that the Sun rises is the same every day and the trials are
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independent of each other. Thus Laplace considered the task of sequence predic-
tion when the true generating measure belongs to the family of Bernoulli i.i.d.
measures with binary alphabet X = {0,1}. The predicting measure suggested
by Laplace was ρL(xn+1 = 1|x1,...,xn) = k+1

n+2 where k is the number of 1s in
x1,...,xn. The conditional probabilities of Laplace’s measure ρL converge to the
true conditional probabilities µ-almost surely under any Bernoulli i.i.d measure
µ. This approach generalizes to the problem of predicting any finite-memory
(e.g. Markovian) measure. Moreover, in [4] a measure ρR was constructed for
predicting an arbitrary stationary measure. The conditional probabilities of
ρR converge to the true ones on average, where the average is taken over time
steps (that is, in Cesaro sense), µ-almost surely for any stationary measure µ.
However, as it was shown in the same work, there is no measure for which condi-
tional probabilities converge to the true ones µ-a.s. for every stationary µ. Thus
we can see that already for the problem of predicting outcomes of a stationary
measure two criteria of prediction arise: prediction in the average (or in Cesaro
sense) and prediction on each step, and the solution exists only for the former
problem.

But what if the measure generating the sequence is not stationary? A differ-
ent assumption one can make is that the measure µ generating the sequence is
computable. Solomonoff [6, Eq.(13)] suggested a measure ξ for predicting any
computable probability measure. The key observation here is that the class of
all computable probability measures is countable; let us denote it by (νi)i∈IN .
A Bayesian predictor ξ for a countable class of measures (νi)i∈IN is constructed
as follows: ξ(A) =

∑∞
i=1wiνi(A) for any measurable set A, where the weights

wi are positive and sum to one1. The best predictor for a measure µ is the
measure µ itself. The Bayesian predictor simply takes the weighted average of
the predictors for all measures in the class — for countable classes this is possi-
ble. It was shown by Solomonoff [7] that ξ-conditional probabilities converge to
µ-conditional probabilities almost surely for any computable measure µ. In fact
this is a special case of a more general (though without convergence rate) result
of Blackwell and Dubins [1] which states that if a measure µ is absolutely contin-
uous with respect to a measure ρ then the conditional measure ρ given x1,...,xn

converges to µ given x1,...,xn in total variation µ-almost surely. Convergence
in total variation means prediction in a very strong sense — convergence of
probabilities of arbitrary events (not just the next outcome), or prediction with
arbitrary fast growing horizon. Since for ξ we have ξ(A)≥wiνi(A) for every
measurable set A and for every νi, each νi is absolutely continuous with respect
to ξ.

Thus the problem of sequence prediction for certain classes of measures (such
as the class of all stationary measures or the class of all computable measures)
was often addressed in the literature. Although the mentioned classes of mea-
sures are sufficiently interesting, it is often hard to decide in applications with

1It is not necessary for prediction that the weights sum to one. In [7] and [8] wi =2−K(i)

where K stands for the prefix Kolmogorov complexity, and so the weights do not sum to 1.
Further, the ν and ξ are only semi-measures.
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which assumptions does a problem at hand comply; not to mention such practi-
cal issues as that a predicting measure for all computable measures is necessarily
non-computable itself. Moreover, to be able to generalize the solutions of the se-
quence prediction problem to such problems as active learning, where outcomes
of a sequence may depend on actions of the predictor, one has to understand
better under which conditions the problem of sequence prediction is solvable. In
particular, in active learning, the stationarity assumption does not seem to be
applicable (since the predictions are non-stationary), although, say, the Markov
assumption is often applicable and is extensively studied. Thus, we formulate
the following general questions which we start to address in the present work:

General motivating questions. For which classes of measures is sequence
prediction possible? Under which conditions does a measure ρ predict a measure
µ?

As we have seen, these questions have many facets, and in particular there
are many criteria of prediction to be considered, such as almost sure conver-
gence of conditional probabilities, convergence in average, etc. Extensive as the
literature on sequence prediction is, these questions in their full generality have
not received much attention. One line of research which exhibits this kind of
generality consists in extending the result of Blackwell and Dubins mentioned
above, which states that if µ is absolutely continuous with respect to ρ, then ρ
predicts µ in total variation distance. In [3] a question of whether, given a class
of measures C and a prior (“meta”-measure) λ over this class of measures, the
conditional probabilities of a Bayesian mixture of the class C w.r.t. λ converge
to the true µ-probabilities (weakly merge, in terminology of [3]) for λ-almost
any measure µ in C. This question can be considered solved, since the authors
provide necessary and sufficient conditions on the measure given by the mixture
of the class C w.r.t. λ under which prediction is possible. The major difference
from the general questions we posed above is that we do not wish to assume that
we have a measure on our class of measures. For large (non-parametric) classes
of measures it may not be intuitive which measure over it is natural; rather,
the question is whether a “natural” measure which can be used for prediction
exists.

To address the general questions posed, we start with the following obser-
vation. As it was mentioned, for a Bayesian mixture ξ of a countable class of
measures νi, i∈IN , we have ξ(A)≥wiνi(A) for any i and any measurable set A,
where wi is a constant. This condition is stronger than the assumption of ab-
solute continuity and is sufficient for prediction in a very strong sense. Since we
are willing to be satisfied with prediction in a weaker sense (e.g. convergence of
conditional probabilities), let us make a weaker assumption: Say that a measure
ρ dominates a measure µ with coefficients cn >0 if

ρ(x1, . . . , xn) ≥ cnµ(x1, . . . , xn) (1)

for all x1,...,xn.

The concrete question we pose is, under what conditions on cn does (1)
imply that ρ predicts µ? Observe that if ρ(x1,...,xn)>0 for any x1,...,xn then
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any measure µ is locally absolutely continuous with respect to ρ (that is, the
measure µ restricted to the first n trials µ|Xn is absolutely continuous w.r.t. ρ|Xn

for each n), and moreover, for any measure µ some constants cn can be found
that satisfy (1). For example, if ρ is Bernoulli i.i.d. measure with parameter
1
2 and µ is any other measure, then (1) is (trivially) satisfied with cn = 2−n.
Thus we know that if cn≡ c then ρ predicts µ in a very strong sense, whereas
exponentially decreasing cn are not enough for prediction. Perhaps somewhat
surprisingly, we will show that dominance with any subexponentially decreasing
coefficients is sufficient for prediction, in a weak sense of convergence of expected
averages. Dominance with any polynomially decreasing coefficients, and also
with coefficients decreasing (for example) as cn =exp(−

√
n/logn), is sufficient

for (almost sure) prediction on average (i.e. in Cesaro sense). However, for
prediction on every step we have a negative result: for any dominance coefficients
that go to zero there exists a pair of measures ρ and µ which satisfy (1) but ρ
does not predict µ in the sense of almost sure convergence of probabilities. Thus
the situation is similar to that for predicting any stationary measure: prediction
is possible in the average but not on every step.

Note also that for Laplace’s measure ρL it can be shown that ρL dominates
any i.i.d. measure µ with linearly decreasing coefficients cn = 1

n+1 ; a generaliza-
tion of ρL for predicting all measures with memory k (for a given k) dominates
them with polynomially decreasing coefficients. Thus dominance with decreas-
ing coefficients generalizes (in a sense) predicting countable classes of measures
(where we have dominance with a constant), absolute continuity (via local ab-
solute continuity), and predicting i.i.d. and finite-memory measures.

2 Notation and Definitions

We consider processes on the set of one-way infinite sequences X∞ where X
is a finite set (alphabet). In the examples we will often assume X = {0,1}.
The notation x1:n is used for x1,...,xn and x<n for x1,...,xn−1, xt ∈ X . The
symbol µ is reserved for the “true” measure generating examples. We use Eν

for expectation with respect to a measure ν and simply E for Eµ (expectation
with respect to the “true” measure generating examples).

For two measures µ and ρ define the following measures of divergence.

(d) Kullblack-Leibler (KL) divergence

dn(µ,ρ|x<n)=
∑
x∈X

µ(xn =x|x<n)log
µ(xn =x|x<n)
ρ(xn =x|x<n)

,

(d̄) average KL divergence

d̄n(µ,ρ|x1:n)=
1
n

n∑
t=1

dt(µ,ρ|x<n),
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(a) absolute distance

an(µ,ρ|x<n)=
∑
x∈X

|µ(xn =x|x<n)−ρ(xn =x|x<n)|,

(ā) average absolute distance

ān(µ,ρ|x1:n)=
1
n

n∑
t=1

at(µ,ρ|x<n).

Definition 1 (Convergence concepts) We say that ρ predicts µ

(d) in KL divergence if dn(µ,ρ|x<n)→0 µ-a.s. as t→∞,

(d̄) in average KL divergence if d̄n(µ,ρ|x1:n)→0 µ-a.s.,

(Ed̄) in expected average KL divergence if Eµd̄n(µ,ρ|x1:n)→0,

(a) in absolute distance if an(µ,ρ|x<n)→0 µ-a.s.,

(ā) in average absolute distance if ān(µ,ρ|x1:n)→0 µ-a.s.,

(Eā) in expected average absolute distance if Eµān(µ,ρ|x1:n)→0.

The argument x1:n will be often left implicit in our notation. A measure ρ
converges to a measure µ in total variation (tv) if supA⊂σ(

S∞
t=nX t)|µ(A|x<n)−

ρ(A|x<n)|→ 0 µ-almost surely. Some other measures of prediction ability are
considered in Section 4. The following implications hold (and are complete and
strict):

d ⇒ d̄ Ed̄
⇓ ⇓ ⇓

tv ⇒ a ⇒ ā ⇒ Eā

to be understood as e.g.: if d̄n → 0 a.s. then ān → 0 a.s, or, if Ed̄n → 0 then
Eān→0. The horizontal implications⇒ follow immediately from the definitions,
and the ⇓ follow from the following Lemma:

Lemma 2 (a2 ≤2d) For all measures ρ and µ and sequences x1:∞ we have:
a2

t ≤2dt and ā2
n≤2d̄n and (Eān)2≤2Ed̄n.

Proof. Pinsker’s inequality [2, Lem.3.11a] implies a2
t ≤ 2dt. Using this and

Jensen’s inequality for the average 1
n

∑n
t=1[...] we get

2d̄n =
1
n

n∑
t=1

2dt ≥
1
n

n∑
t=1

a2
t ≥

(
1
n

n∑
t=1

at

)2

= ā2
n

Using this and Jensen’s inequality for the expectation E we get 2Ed̄n≥Eā2
n≥

(Eān)2.
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3 Main results

First we consider the question whether property (1) is sufficient for prediction.

Definition 3 (Dominance) We say that a measure ρ dominates a measure µ
with coefficients cn >0 iff

ρ(x1:n) ≥ cnµ(x1:n).

for all x1:n.

Suppose that ρ dominates µ with decreasing coefficients cn. Does ρ predict
µ in (expected, expected average) KL divergence (absolute distance)? First let
us give an example.

Proposition 4 (Dominance of Laplace’s measure) Let ρL be the Laplace
measure, given by ρL(xn+1 =a|x1:n)= k+1

n+|X | for any a∈X and any x1:n∈Xn,
where k is the number of occurrences of a in x1:n (this is also well defined for
n=0). Then

ρL(x1:n) ≥ n!
(n + |X | − 1)!

µ(x1:n)

for any measure µ which generates independently and identically distributed
symbols. This bound is sharp.

Proof. We will only give the proof for X ={0,1}, the general case is analogous.
To calculate ρL(x1:n) observe that it only depends on the number of 0s and 1s
in x1:n and not on their order. Thus we compute ρL(x1:n)= k!(n−k)!

(n+1)! where k is
the number of 1s. For any measure µ such that µ(xn =1)=p for some p∈ [0,1]
independently for all n, and for Laplace measure ρL we have

µ(x1:n)
ρL(x1:n)

=
(n + 1)!

k!(n− k)!
pk(1− p)n−k

= (n + 1)
(

n

k

)
pk(1− p)n−k

≤ (n + 1)
n∑

k=0

(
n

k

)
pk(1− p)n−k = n + 1,

for any n-letter word x1,...,xn where k is the number of 1s in it. The bound is
attained when p=1, so that k=n, µ(x1:n)=1, and ρL(x1:n)= 1

n+1 .
Thus for Laplace’s measure ρL and binary X we have cn =O( 1

n ). As men-
tioned in the introduction, in general, exponentially decreasing coefficients cn are
not sufficient for prediction, since (1) is satisfied with ρ being a Bernoulli i.i.d.
measure and µ any other measure. On the other hand, the following proposition
shows that in a weak sense of convergence in expected average KL divergence
(or absolute distance) the property (1) with subexponentially decreasing cn is
sufficient. We also remind that if cn are bounded from below then prediction in
the strong sense of total variation is possible.
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Theorem 5 (Ed̄→0 and Eā→0) Let µ and ρ be two measures on X∞ and
suppose that ρ(x1:n)≥ cnµ(x1:n) for any x1:n, where cn are positive constants
satisfying 1

n logc−1
n → 0. Then ρ predicts µ in expected average KL divergence

Eµd̄n(µ,ρ)→0 and in expected average absolute distance Eµān(µ,ρ)→0.

The proof of this theorem is based on the same idea as the proof of conver-
gence of Solomonoff predictor to any of its summands in [4], see also [2].

Proof. For convergence in average expected KL divergence we have

Eµd̄n(µ,ρ)=
1
n
E

n∑
t=1

∑
xt∈X

µ(xt|x<t)log
µ(xt|x<t)
ρ(xt|x<t)

=
1
n

n∑
t=1

EEtlog
µ(xt|x<t)
ρ(xt|x<t)

=
1
n
Elog

n∏
t=1

µ(xt|x<t)
ρ(xt|x<t)

=
1
n
Elog

µ(x1:n)
ρ(x1:n)

≤ 1
n

logc−1
n →0,

where Et stands for the µ-expectation over xt conditional on x<t.
The statement for expected average distance follows from this and Lemma

2.
With a stronger condition on cn prediction in average KL divergence can be

established.

Theorem 6 (d̄→0 and ā→0) Let µ and ρ be two measures on X∞ and sup-
pose that ρ(x1:n) ≥ cnµ(x1:n) for every x1:n, where cn are positive constants
satisfying

∞∑
n=1

(log c−1
n )2

n2
< ∞. (2)

Then ρ predicts µ in average KL divergence d̄n(µ,ρ)→0 µ-a.s. and in average
absolute distance ān(µ,ρ)→0 µ-a.s.

In particular, the condition (2) on the coefficients is satisfied for polynomially
decreasing coefficients, or for cn =exp(−

√
n/logn).

Proof. Again the second statement (about absolute distance) follows from the
first one and Lemma 2, so that we only have to prove the statement about KL
divergence.

Introduce the symbol En for µ-expectation over xn conditional on x<n.
Consider random variables ln = logµ(xn|x<n)

ρ(xn|x<n) and l̄n = 1
n

∑n
t=1lt. Observe that

dn=Enln, so that the random variables mn=ln−dn form a martingale difference
sequence (that is, Enmn =0) with respect to the standard filtration defined by
x1,...,xn,... . Let also m̄n = 1

n

∑n
t=1mt. We will show that m̄n → 0 µ-a.s. and

l̄n→0 µ-a.s. which implies d̄n→0 µ-a.s.
Note that

l̄n =
1
n

log
µ(x1:n)
ρ(x1:n)

≤ log c−1
n

n
→ 0.
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Thus to show that l̄n goes to 0 we need to bound it from below. It is easy to see
that nl̄n is (µ-a.s.) bounded from below by a constant, since ρ(x1:n)

µ(x1:n) is a positive
µ-martingale whose expectation is 1, and so it converges to a finite limit µ-a.s.
by Doob’s submartingale convergence theorem, see e.g. [5, p.508].

Next we will show that m̄n→0 µ-a.s. We have

mn =log
µ(x1:n)
ρ(x1:n)

−log
µ(x<n)
ρ(x<n)

−Enlog
µ(x1:n)
ρ(x1:n)

+Enlog
µ(x<n)
ρ(x<n)

=log
µ(x1:n)
ρ(x1:n)

−Enlog
µ(x1:n)
ρ(x1:n)

.

Let f(n) be some function monotonically increasing to infinity such that

∞∑
n=1

(log c−1
n + f(n))2

n2
< ∞ (3)

(e.g. choose f(n)= logn and exploit (logc−1
n +f(n))2≤ 2(logc−1

n )2+2f(n)2 and
(2).) For a sequence of random variables λn define

(λn)+(f) =
{

λn if λn ≥ −f(n)
0 otherwise

and λ
−(f)
n =λn−λ

+(f)
n . Introduce also

m+
n =

(
log

µ(x1:n)
ρ(x1:n)

)+(f)

−En

(
log

µ(x1:n)
ρ(x1:n)

)+(f)

,

m−
n =mn−m+

n and the averages m̄+
n and m̄−

n . Observe that m+
n is a martingale

difference sequence. Hence to establish the convergence m̄+
n → 0 we can use

the martingale strong law of large numbers [5, p.501], which states that, for
a martingale difference sequence γn, if E(nγ̄n)2 <∞ and

∑∞
n=1Eγ2

n/n2 <∞
then γ̄n→ 0 a.s. Indeed, for m+

n the first condition is trivially satisfied (since
the expectation in question is a finite sum of finite numbers), and the second
follows from the fact that |m+

n |≤ logc−1
n +f(n) and (3).

Furthermore, we have

m−
n =

(
log

µ(x1:n)
ρ(x1:n)

)−(f)

−En

(
log

µ(x1:n)
ρ(x1:n)

)−(f)

.

As it was mentioned before, logµ(x1:n)
ρ(x1:n) converges µ-a.s. either to (positive) infin-

ity or to a finite number. Hence
(
logµ(x1:n)

ρ(x1:n)

)−(f)

is non-zero only a finite number

of times, and so its average goes to zero. To see that En
(
logµ(x1:n)

ρ(x1:n)

)−(f)

→0 we
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write

En

(
log

µ(x1:n)
ρ(x1:n)

)−(f)

=
∑

xn∈X
µ(xn|x<n)

(
log

µ(x<n)
ρ(x<n)

+log
µ(xn|x<n)
ρ(xn|x<n)

)−(f)

≥
∑

xn∈X
µ(xn|x<n)

(
log

µ(x<n)
ρ(x<n)

+logµ(xn|x<n)
)−(f)

and note that the first term in brackets is bounded from below, and so for the
sum in brackets to be less than −f(n) (which is unbounded) the second term
log µ(xn|x<n) has to go to −∞, but then the expectation goes to zero since
limu→0ulogu=0.

Thus we conclude that m̄−
n → 0 µ-a.s., which together with m̄+

n → 0 µ-a.s.
implies m̄n→0 µ-a.s., which, finally, together with l̄n→0 µ-a.s. implies d̄n→0
µ-a.s.

However, no form of dominance with decreasing coefficients is sufficient for
prediction in absolute distance or KL divergence, as the following negative result
states.

Proposition 7 (d 6→0 and a 6→0) For each sequence of positive numbers cn

that goes to 0 there exist measures µ and ρ and a number ε>0 such that ρ(x1:n)≥
cnµ(x1:n) for all x1:n, yet an(µ,ρ|x1:n)>ε and dn(µ,ρ|x1:n)>ε infinitely often
µ-a.s.

Proof. Let µ be concentrated on the sequence 11111... (that is µ(xn =1)=1
for all n), and let ρ(xn=1)=1 for all n except for a subsequence of steps n=nk,
k∈ IN on which ρ(xnk

=1)=1/2 independently of each other. It is easy to see
that choosing nk sparse enough we can make ρ(11...1n) decrease to 0 arbitrary
slowly; yet |µ(xnk

)−ρ(xnk
)|=1/2 for all k.

Thus for the first question — whether dominance with some coefficients
decreasing to zero is sufficient for prediction, we have the following table of
questions and answers, where, in fact, positive answers for an are implied by
positive answers for dn and vice versa for the negative answers:

Ed̄n d̄n dn Eān ān an

+ + − + + −

However, if we take into account the conditions on the coefficients, we see some
open problems left, and different answers for d̄n and ān may be obtained. Follow-
ing is the table of conditions on dominance coefficients and answers to the ques-
tions whether these conditions are sufficient for prediction (coefficients bounded
from below are included for the sake of completeness).
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Ed̄n d̄n dn Eān ān an

logc−1
n =o(n) + ? − + ? −∑∞

n=1
logc−1

n

n2 <∞ + + − + + −
cn≥c>0 + + + + + +

We know from Proposition 7 that the condition cn≥c>0 for convergence in dn

can not be improved; thus the open problem left is to find whether log c−1
n =o(n)

is sufficient for prediction in d̄n or at least in ān. We conjecture that the answer
to the first question is negative and to the second it is positive.

Conjecture 8 (d̄ 6→0) i) There exist a sequence of numbers cn that (monoton-
ically) goes to 0, measures µ and ρ and a number ε>0 such that logc−1

n =
o(n), ρ(x1:n)≥cnµ(x1:n) for any x1:n, yet d̄n(µ,ρ|x1:n)>ε infinitely often
µ-a.s.

ii) Suppose a measure ρ dominates a measure µ with such coefficients cn that
logc−1

n =o(n). Then ρ predicts µ in average absolute distance ān(µ,ρ)→0
µ-a.s.

Another open problem is to find out whether any conditions on dominance
coefficients are necessary for prediction; so far we only have some sufficient
conditions. On the one hand, the obtained results suggest that some form of
dominance with decreasing coefficients may be necessary for prediction, at least
in the sense of convergence of averages. On the other hand, the condition (1)
is uniform over all sequences which probably is not necessary for prediction.
As for prediction in the sense of almost sure convergence, perhaps more subtle
behavior of the ratio µ(x1:n)

ρ(x1:n) should be analyzed, since dominance with decreasing
coefficients is not sufficient for prediction in this sense.

4 Miscellaneous

Special cases. In Section 3 we have shown that Laplace’s measure ρL for
X = {0,1} dominates any Bernoulli i.i.d. measure with linearly decreasing co-
efficients. It can also be shown that a generalization of ρL to a measure ρk

L

for predicting any measure with memory k, for a given k, dominates any such
measure with polynomially decreasing coefficients (namely, c−1

n =O(n|X |
k

). The
measure ρR from [4] for predicting any stationary measure was constructed as
a sum of ρk

L with positive weights: ρR(x1..n)=
∑∞

k=1wkρk
L(x1..n). By construc-

tion, ρR dominates any finite memory measure with polynomially decreasing
coefficients. It is interesting to find whether ρR (or any other measure which
predicts all stationary measures) dominates every stationary measure with some
subexponentially decreasing coefficients (or at least dominates non-uniformly).
Clearly, this is a special case of the general open question — whether some form
of dominance with decreasing coefficients is necessary for prediction.
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Other measures of divergence. The last question we discuss is criteria
of prediction other than introduced in Section 2. Apart form the measures
of divergence of probability measures that we considered we mention also the
following:

(s) squared distance

sn(µ,ρ|x<n)=
∑
x∈X

(µ(xn =x|x<n)−ρ(xn =x|x<n)2,

(h) Hellinger distance

hn(µ,ρ|x<n)=
∑
x∈X

(
√

µ(xn =x|x<n)−
√

ρ(xn =x|x<n )2,

the average squared distance s̄n and the average Hellinger distance h̄n are in-
troduced analogously to ān and d̄n. It is easy to check that all negative results
obtained hold with respect to sn and hn as well. Positive results for sn and hn

follow from corresponding positive results for KL divergence dn and inequalities
sn(µ,ρ)≤ dn(µ,ρ) and hn(µ,ρ)≤ dn(µ,ρ), see e.g. [2, Lem.3.11]. Expected ab-
solute convergence Ean→0 (also called convergence in the mean) and expected
KL convergence Edn→0 may also be considered.

5 Outlook and Conclusion

In the present work we formulated and started to address the question for which
classes of measures sequence prediction is possible. Towards this aim we defined
the notion of dominance with decreasing coefficients (a condition on local ab-
solute continuity) and found some forms of it which are sufficient for prediction.
Besides the more concrete open problems posed, a general program for answer-
ing the general questions formulated can be outlined as follows: We would like
to find some conditions on dominance with decreasing coefficients which are
necessary and sufficient for prediction; for those notions of prediction ability for
which this is not possible, more subtle behavior of the ratio µ(x1:n)

ρ(x1:n) should be
analyzed to obtain conditions both necessary and sufficient for prediction. This
should give rise to an abstract characterization of classes of measures for which
a measure satisfying such conditions for all measures in the class exists; that
is, to a description of classes of measures for which prediction is possible. It is
expected that such characterization will naturally lead to a construction of a
predictor as well — perhaps in form of a Bayesian integral. The next step will
be to extend this approach to the task of active learning.
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