06361 Abstracts Collection
Computing Media and Languages for
Space-Oriented Computation
— Dagstuhl Seminar —

André DeHon', Jean-Louis Giavitto? and Fréderic Gruau®

1 CalTech - Pasadena, US
andre@acm.org
2 Univ. of Evry, FR
giavitto@ibisc.univ-evry.fr
3 Univ. Paris Sud, FR

frederic.gruau@lri.fr

Abstract. From 03.09.06 to 08.09.06, the Dagstuhl Seminar 06361 “Com-
puting Media and Languages for Space-Oriented Computation” was held
in the International Conference and Research Center (IBFI), Schloss
Dagstuhl. During the seminar, several participants presented their cur-
rent research, and ongoing work and open problems were discussed. Ab-
stracts of the presentations given during the seminar as well as abstracts
of seminar results and ideas are put together in this paper. The first sec-
tion describes the seminar topics and goals in general. Links to extended
abstracts or full papers are provided, if available.

Keywords. Hardware architecture, computing medium, space-oriented
computation, nonconventional programming models

06361 Executive Report — Computing Media and
Languages for Space-Oriented Computation

With the cheap availability of high capacity spatial computing substrates, an
emerging understanding of natural systems, and the possibility of computation-
ally engineered matter, the importance of spatial aspects of computation is grow-
ing. These different manifestations of spatial computing have clear intersections
where they can share common theory, tools, and insights. A solid mastery of
spatial computation will allow us to transform our engineering capabilities, our
understanding of the natural world, and ultimately the world in which we live.

Keywords: Hardware architecture, computing medium, space-oriented compu-
tation, nonconventional programming models

Joint work of: DeHon, André; Giavitto, Jean-Louis; Gruau, Fréderic
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1025
Dagstuhl Seminar Proceedings 06361

Computing Media and Languages for Space-Oriented Computation
http://drops.dagstuhl.de/opus/volltexte/2007,/1026

http://drops.dagstuhl.de/opus/volltexte/2007/1025

2 A. DeHon, J.-L. Giavitto and F. Gruau
Proposed Definition of Spatial Computing

A general purpose computing system where position matters for performance or
functionality and is embedded in a space whose geometry is defined by commu-
nication cost.

Such computers are spatially distributed collections of communicating process-
ing elements of nearly comparable power for which the cost (time/energy) to
communicate between any two elements that are far apart is at least propor-
tional the length of the shortest path between them. Path length is defined
in the graph that has an edge between two elements if they can communicate
directly.

Precise communication cost: {2(d)

Joint work of: Seth, John, Kati, Daniel?, Jake, Guy, Christian, Frederic

Proposed Definition of Spatial Computing

Processors are laid out quasi-homogeneously on a manifold in 2D/3D space in
which the induced topology and communication bandwidth relates linearly to
distance, when average in space.

Joint work of: Gruau, Fréderic

Application Discussion Outbrief

What applications should we consider as drivers and motivators for future spatially-
oriented computing systems? This list was collected from all participants. We
further identify three characteristics of applications that make them spatial in
nature and categorize the applications based on these characteristics.

Keywords: Spatial computing, computationally intense, represnet space, em-
bedded in space

Accommodating Defects in Spatial Computing Outbrief

Defects will become highly prevelant when we can assemble computers with a
very large number (e.g., 10°) of processing elements. The mechanisms for coping
with this at the hardware, software, and algorithm levels are not clear. What
is clear is that without sufficient coping mechanisms, defects will be a crucial
limiting factor to scaling a system to such a large number of elements.

Keywords: Defects, faults, tolerance, robust, language mechansims

Computing Media and Languages for Space-Oriented Computation 3

Local / Global Discussion Outbrief

Large spatial computing systems will be comprised of a huge number of process-
ing elements (e.g., 10%). What is the right way to program these computers:
specify the local program behaviour to accomplish a predictable emergent global
outcome, or specify the global program behaviour and compile this into a num-
ber of local programs? Either way appears to be challenging and with pitfalls.

Keywords: Synthesis, local programming, global programming, emerging be-
haviour

Joint work of: Lemieux, Guy; Coore, Daniel

Programming Manifolds

Jacob Beal (MIT - Cambridge, USA)

Many programming domains involve the manipulation of values distributed through
a manifold-examples include sensor networks, smart materials, and biofilms. This
paper describes a programming semantics for manifolds based on the amorphous
medium abstraction, which places a computational device at every point in the
manifold. This abstraction enables the creation of programs that automatically
scale to networks of different size and device density. This semantics is currently
implemented in our language Proto and compiles for execution on Mica2 Motes.

Keywords: Amorphous computing, spatial computing, Proto
Joint work of: Beal, Jacob; Bachrach, Jonathan

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1023

How Should People Program For Spatial Computers?

Katherine Compton (University of Wisconsin - Madison, USA)

Problem:

— Programmers accustomed to sequential will need to program for spatial com-
puters

Two Questions (for now):

— What should the descriptions/IDEs look like?
— What requirements will we impose on the programmers?

The aim of this talk is to foster discussion on the topic of programming method-
ologies for spatial computers.

http://drops.dagstuhl.de/opus/volltexte/2007/1023

4 A. DeHon, J.-L. Giavitto and F. Gruau

An Introduction to Amorphous Computing

Daniel Coore (The University of the West Indies - Mona, SAM)

We present the Amorphous Computing model: a massively distributed system
where processing elements are irregularly positioned, communicate locally and
are identically programmed. We identify some of the results so far at controlling
these systems, and we discuss the lessons learned for designing programming
languages that are especially suited to this type of distributed system. Specifi-
cally, we recommend a layered approach to language design, where at the very
bottom there is a programming language that is used to program the individual
elements, and refers only to activities that can be described in terms of local
interactions. Above this layer, we suggest at least one other layer, in which ob-
jectives for emergent behaviour are specified in ways that can be systematically
translated to the first layer. This approach has already proved to be successful
for pattern formation in Amorphous Computing, and we expect that it can be
used successfully for many other applications in amorphous computing. On that
basis, it appears worthy of pursuit as a general approach to controlling emer-
gence on even complex systems that do not conform exactly to the amorphous
computing model.

Keywords: Amorphous computing, swarm computing, self-organizing patterns

Challenges and Opportunities for Spatial Computing

André DeHon (University of Pennsylvania, USA)

With today’s integrated circuit (IC) capacity, we can build very large and capa-
ble computing systems. While traditional, temporal computing structures cannot
fully exploit the capacity now available on modern ICs, spatial computing struc-
tures can harness this capability; the importance of spatial computing only grows
as IC scaling continues to offer even greater capacities. Further, today’s spatial
computing structures can be highly programmable, creating opportunities to
adapt the computation to the problem, data set, and environment. Nonetheless,
physical issues create challenges for all large-scale computing structures. Inter-
connect delay, energy, and size can be dominant effects demanding computations
be organized to exploit spatial locality. Traditional programming approaches de-
veloped for ASICs (e.g. VHDL) or sequential computing (e.g. C) do not provide
appropriate abstractions to encourge good, scalable spatial computing solutions
and do not allow aggressive optimization of spatial designs. Consequently, we
need new models, abstractions, and algorithms to fully exploit spatial comput-
ing.

Computing Media and Languages for Space-Oriented Computation 5

As important steps towards programming these spatial computing systems,
we introduce system architectures that guide designers to useful organizational
strategies to exploit these spatial computing ICs in a manner consistent with
the parallelism and control in the application, and design patterns that teach
developers how to solve recurring problems in scalable, spatial computing design.

Keywords: Spatial computing, interconnect, system architecture, design pat-
terns

Organizations in Space

Peter Dittrich (Universitit Jena, D)

In this talk we will investigate space at different scales.

As an example, we study a chemical computing system or a reaction system
where molecules are spreaded over a two-dimensional grid. In order to look at
this grid at different spatial scales, we need a means to aggregate information,
that is, a way to change resolution of our microscope looking at that system.
We take chemical organization theory for this task. Molecules are aggregated by
mapping them to the organization they generate.

We will see that different organizations appear at different scale, providing
different kinds of information. Techniques for selecting the right scale are sug-
gested.

Keywords: Chemical computing, spatial reaction systems, chemical organiza-
tion theory, organic computing

Joint work of: Speroni di Fenizio, Pietro; Dittrich, Peter

N-synchronous Kahn Networks

Christine Eisenbeis (INRIA Futurs - Orsay, F)

The design of high-performance stream-processing systems is a fast growing do-
main, driven by markets such like high-end TV, gaming, 3D animation and
medical imaging. It is also a surprisingly demanding task, with respect to the
algorithmic and conceptual simplicity of streaming applications.

In search for improved productivity, we propose a programming model and
language dedicated to high-performance stream processing. This language builds
on the synchronous programming model and on domain knowledge — the pe-
riodic evolution of streams — to allow correct-by-construction properties to be
proven by the compiler, including resource requirements and delays between in-
put and output streams. Automating this task avoids tedious and error-prone
engineering, due to the combinatorics of the composition of filters with multiple
data rates and formats. Our language is thus provided with a relaxed notion of

6 A. DeHon, J.-L. Giavitto and F. Gruau

synchronous composition, called n-synchrony: two processes are n-synchronous
if they can communicate in the ordinary (0-)synchronous model with a FIFO
buffer of size n.

Technically, we extend a core synchronous data-flow language with a notion
of periodic clocks, and design a relaxed clock calculus (a type system for clocks)
to allow non strictly synchronous processes to be composed or correlated. This
relaxation is associated with two sub-typing rules in the clock calculus. Delay,
buffer insertion and control code for these buffers are automatically inferred from
the clock types through a systematic transformation into a standard synchronous
program.

Keywords: Synchrounous languages, stream processing, correct-by-construction,
resource constraints, subtyping

Joint work of: Cohen, Albert; Duranton, Marc; Eisenbeis, Christine; Pagetti,
Claire; Plateau, Florence; Pouzet, Marc

See also: Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, F.
Plateau, and Marc Pouzet. N-Sychronous Kahn Networks. In 33th ACM Symp.
on Principles of Programming Languages (PoPL’06), Charleston, South Car-
olina, pages 180-193, January 2006.

Data structure as spaces : computing in space and space in
computation

Jean-Louis Giavitto (University of Evry, F)

The dynamics of natural systems are often described by specifying the basic
interactions of subsystems. The specification of the elementary interacting sub-
systems leads to a topological structure. This point of view is easely extended
to more artefactual systems like programs and their execution. In this point of
view, a data structure is a space where some computations occur.

This idea underlies an experimental declarative programming language called
MGS. MGS introduces the notion of topological collection: a set of values orga-
nized by a neighborhood relationship. The basic computation step in MGS relies
on the notion of path : a path C is substituted for a path B in a topological col-
lection A. This step is called a transformation and several features are proposed
to control the transformation applications.

By changing the topological structure of the collection, the underlying com-
putational model is changed. The topological point of view enables a unified view
on several computational mechanisms. Some of them are initially inspired by bi-
ological or chemical processes (Gamma and the CHAM, Lindenmayer systems,
Paun systems and cellular automata).

The numerous examples developped to validate the MGS idea, we drawn
three lessons:

Computing Media and Languages for Space-Oriented Computation 7

— the multiset topology (underlying the chemical programming paradigm) is
a universal one (i.e. all other topology can be recovered from this one);

— optimization problems that follows the Bellman principle (dynamic program-
ming) are especially well suited to the chemical programming paradigm be-
cause no synchronization constraint are necessary;

— if usual algorithmic recquires sophisticated interactions, the simulation of
natural systems (e.g. in physics) focuses on a very simple and local pattern.

Keywords: Topological collection, declarative and rule-based programming lan-
guage, rewriting, Paun system, Lindenmayer system, cellular automata, Cayley
graphs, combinatorial algebraic topology.

Full Paper:
http://mgs.ibisc.univ-evry.fr/

Proposed spatial computing definition

Seth C. Goldstein (CMU - Pittsburgh, USA)

A general purpose computing system where position matters for performance or
functionality and is embedded in a space whose geometry/topology is defined by
communication distance.

Programming Matter

Seth C. Goldstein (CMU - Pittsburgh, USA)

draft

In this talk we describe methods of proramming ensembles of spatially dis-
tributed computing elements. We ground the talk using claytronics, an instance
of programmable matter. Claytronics is an ensemble of computing systems which
contain a means of computing, communicating, actuating, sensing, and adhering
to other units.

Keywords: Programmable Matter, Claytronics, 3D rendering

Formal Verfication: Issues and Challenges

Daniel Grofe (Universitat Bremen, D)

Due to increasing design complexity and intensive reuse of components, verifying
the correctness of circuits and systems becomes a more and more important
factor.

http://mgs.ibisc.univ-evry.fr/

8 A. DeHon, J.-L. Giavitto and F. Gruau

In the meantime it has been observed that verification becomes the major
bottleneck, i.e. up to 80% of the design costs are caused by verification. Due to
this and the fact that pure simulation cannot guarantee suffcient coverage formal
verification methods have been proposed.

In this talk after a brief motivation of the overall topic the verification sce-
narios are discussed. Then the underlying proof techniques are described.

In the main part Bounded Model Checking as one formal verification method
is explained. In a case study We focus on a HW/SW Co-Verification approach
for embedded systems. Finally research challenges and directions for future work
are given.

Tutorial on blob computing

Frédric Gruau (Université Paris Sud, F)

General view of the project " Blob Computing ": the objective is to propose a
model of parallelism combining genericity and scalability. A blob machine is a low
level parallel virtual machine. It is generic, in the sense that it does not limit a
priori the domain of the possible applications. Its primitive are conceived simple
enough to be installed on a range of scalable hardware platform hardware , both
fine grain or coarse grain, and powerful enough to be the target of a compiler
allowing to program via a high-level object oriented language called the blob
language. The tutorial will present the blob machine, its properties, and the
blob langage, with example of programms, illustrating the concept of parallel
data structures.

We propose a modelof parallelism emancipated from the sequential dogma,
having the potentiality to combine genericity and scalability. It allows to program
a scalable computing medium , that is shaped just like space: homogeneous,
isotrope, with only local connections 2D or 3D between processors. The model
uses two levels:

The first level, " the system level ", implements the virtual blob machine
capable of self developing, « building itself » by using three types of building
blocks: mealy automata, links and blobs. Automata are treated as punctual, in-
separable objects, while blobs and links are conceptually comparable to physical
objects of variable size. Blob behaves as membranes and allows to group together
a set, of sub blobs. Blobs are thus encapsulated. A link behaves as a thread con-
necting two blobs at every extremity, and allows to install a communication
channel between them. Every blob (resp. every link) possesses a finite state
mealy automaton which actions can trigger the division (resp. duplication) or
the fusion (resp. destruction) of the blobs (resp. of the link) under their control.
The configuration of the machine at a given moment is a network of automata
with connections between two automata if 1-they both control a blob, and one
is contained in the other one. 2-one controls a link and the other one control a
blob connected to that link; the key of the blob approach is to manipulated very
simple basic building block: blob, links as well as system calls defined above (to

Computing Media and Languages for Space-Oriented Computation 9

copy or delete those object); This simplicity allows to make the system itself
responsible for dynamically mapping those building block onto the harware. To
obtain a good parallel performance, just the system has to guarantee that the
mapping homogenizes the density of automata while maintaining close by pair
of automata which are neighbor.

In the second level, one programs the machine virtual blob. A program com-
piled as a mealy automaton is loaded. This automaton controls an ancestor blob,
which creates links and divides iteratively, so developing a network of automatas,
communicating towards the outside via a set of fixed blob playing the role of
ports. It is certainly very difficult to program with such a self developping ma-
chine, however: 1-The automaton is compiled from a high-level language: the
blob language. 2-the programming makes no supposition on hardware, for ex-
ample its granularity can vary from the very fine : cellular automata, or FPGA;
to a 2D grid of classic processors, 3- the program can run in parallel on whatever
of these hardware devices, as soon as the virtual machine is installed on it 4-
The blob machine possesses a theoretical property of universality in connection
with the parallelism which demonstrates its expressiveness. It was also used in
learning, since 1992 under the name of " cellular encoding ".

The tutorial will present the virtual blob machine, its theoretical underpin-
ning, and the highlevel blob langage. Exemple of programs will be given to illus-
trate the concept of parallel data structure, where each data is stored together
with methods, as in object oriented programming, with the additionnal feature
of being able to run in parallel. The complexity of the presented programms is
presented

Keywords: Blob computing, spatial computing, massive parallelism, cellular
automata

Programming self developing blob machines for spatial
computing.

Frédric Gruaw (Université Paris Sud, F)

This is a position paper introducing blob computing: A Blob is a generic primi-
tive used to structure a uniform computing substrate into an easier-to-program
parallel virtual machine. We find inherent limitations in the main trend of to-
day’s parallel computing, and propose an alternative unifiying model trying to
combine both scalability and programmability. We seek to program a uniform
computing medium such as fine grain 2D cellular automata, or more generally
coarse grain 2D grids of Processing Elements, using two levels:

In the first "system level", a local rule or run time system is implemented on
the computing medium. It can maintain global connected regions called blobs.
Blobs can be encapsulated. A blob is similar to a deformable elastic membrane
filled with a gas of atoms. (elementary empty blobs). Blobs are interconnected
using channels, which act as a spring to bring connected blobs closer to each

10 A. DeHon, J.-L. Giavitto and F. Gruau

other. The system implements in a distributed way: movement, duplication and
deletion of blobs and channels. It can also propagate waves to communicate
signals intra-blob, or inter-blob.

In the second "programmable level", each blob and channel contains a finite
state automaton, with output instruction triggering duplication or deletion .
Execution starts with a single ancestor blob that duplicates and creates channels
repeatedly, thus generating a network of automata. It installs a higher level
virtual machine on top of a low level uniform computing medium. This "blob
machine" is an example of "self developing automata network".

We present in detail, the blob machine, and how to program it using a higher
level language called blob ml. We illustrate the execution of many examples
of small programs They all exhibits optimal complexity results, under some
reasonable hypothesis concerning the -not yet finished to implement - system
level, and considering the model of VLSI complexity.

Keywords: Cellular automata, amorphous computing, blob machine, blob com-
puting, massive parallelism, graph rewriting, parallism, parallel langage

Joint work of: Gruau, Frédric; Eisenbeis, Christine

Building Systems from Actors —An approach to
addressing the spatial software crisis

Jorn W. Janneck (Xilinz - San José, USA)

The availability of large spatial computing devices (Platform FPGAs) has cre-
ated a "spatial software crisis"—a huge gap between the potential productivity
of spatial programmers, and the productivity they currently enjoy by using HDL-
based programming practices.

This talk discusses characteristics of potential remedies, and alludes to one
approach currently developed at Xilinx, for the area of DSP.

Keywords: Spatial software crisis, actors, dataflow, CAL, spatial programming,
FPGA

Genetic Programming of an Algorithmic Chemistry

Christian Lasarczyk (Kamen, D)

We present Algorithmic Chemistries and how to evolve solutions using Genetic
Programming. Special emphasize is put on the integration of variability and
robustness, because this has been an issue implementing the recombination op-
eration.

Outline

+Motivation

Computing Media and Languages for Space-Oriented Computation 11

++Computer Architecture
++Evolvability

++4Artificial Chemistry
+Implementation

++Chemical Representation
++Genetic Programming
+Results

++Algorithm and Problem Design
+-+Evolution Properties
++Solution Properties
++Height, Time and Assembling
+Outlook

+-+Space vs. Time
++Robustness
++AC-Architecture

Keywords: Algorithmic Chemistry, Genetic Programming, Spatial Computa-
tion, Space Oriented Computation

Joint work of: Lasarczyk, Christian; Banzhaf, Wolfgang

Getting Real... FPGA and Silicon Trends for Spatial
Computing

Guy Lemieuz (University of British Columbia - Vancouver, CA)

Silicon will be the most important medium, in the form of an FPGA, for re-
alizing spatial computers and raising their popularity in the near term. In an
FPGA, long wires are prefabricated and can be customized though programming
connectivity to implement almost any network and computational element. This
provides for a very rich design space where locality/position matters and affects
performance/cost.

Keywords: FPGAsS, silicon computing, spatial computing, array of processors

Specification and Analysis at the Nanoscale

John Savage (Brown Univ. - Providence, USA)

Self-assembled architectures will be regular structures at the mesoscale but ran-
dom or uncertain at the nanoscale. Although defects and faults will occur in
nanoscale components at very high rates, chips will also contain very reliable
lithographic-scale components that can be used to good effect. Discovery al-
gorithms will be used to identify the unpredictable structure at the nanoscale
including defects. Nanoscale chips will be programmed rather than designed at

12 A. DeHon, J.-L. Giavitto and F. Gruau

the physical level and converted to layouts, as is the case with VLSI. Chip pro-
gramming will require smart compilers that utilize both high-level functional
specifications as well as discovered architectural information. Modeling will help
to understand the inherent limitations of these new technologies. The VLSI
model will be extended to include stochastic assembly and wire delays compa-
rable to gate delays.

Keywords: Stochastic assembly, reliable computation, modeling, analysis

Paths and Patches: Declarative Handling of
Higher-Dimensional Data-Structures.

Antoine Spicher (University of Evry, F)

Rewriting systems (RS) are a computing tool that is well suited to model and
specify complex systems. Classical RS make it possible to handle terms organized
into tree-like data structures. Such data structures are not expressive enough to
describe complex organizations. The goal of the MGS (Modéle Général de Sim-
ulation) project is to develop new rewriting techniques operating on arbitrary
data-structures, using a topological point of view. Pursuing this goal, we devel-
oped two new concepts:

— Topological collections, which represent data structures in a unified manner
based on concepts from topology,

— Transformations, which are case-based functions for specifying rewriting
rules on topological collections.

These concepts have been implemented in an experimental functional lan-
guage.

In this presentation, we introduce a new kind of topological collection based
on cellular complexes, and a new kind of transformation that makes it possible
to match patterns of collections of any dimension. In this context, we will discuss
the shortcomings of a "path pattern" language that led us to the development
of a more powerful "patch pattern" language. Elements of implementation and
examples of MGS code will be presented. The latter include: Floyd-Fulkerson al-
gorithm, wave propagation, diffusion-limited aggregation, generation of fractals,
surface subdivision, and an abstract simulation of neurulation.

	06361 Abstracts Collection Computing Media and Languages for Space-Oriented Computation --- Dagstuhl Seminar ---
	 André DeHon, Jean-Louis Giavitto and Fréderic Gruau

