Executive Report : Dagstuhl 06361
Computing Media and Languages for

Space-Oriented Computation
September 3-8, 2006

Fréderic, Jean-Louis, André

May 18, 2007

Traditional models of computation have abstracted out physical locations in space (e.g.
the Internet, superscalar processors, unit delay wires, uniform memory delay) and imple-
mentations predominantly perform computations in time (i.e. sequentially). Most of our
common data structures are spatially agnostic (e.g. arrays). But:

1. As scaling continues (both as primitive elements shrink to the atomic scale, and the
number of elements composed scales up), computations must be distributed in space
and location in space impacts the performance and feasibility of the computation.

2. As we couple and embed computing in the physical world (e.g. smart building, reactive
surfaces, programmable matter, distributed robotics), position and shape are primary,
serving as both the input to computation and a key part of the desired result of the
computation.

3. As we understand natural computing systems (e.g. cells, ant colonies, system’s biology)
location and topology define the computation.

Consequently, it is important to make space not an issue to abstract away, but a first-order
effect that we optimize. The distinguishing feature of spatial computing then is that com-
putation is performed distributed in space and position and distance metrics matter to the
computation.

During the workshop, three thematic areas have been identified: intensive computing
where space is used as a mean and as a resource, computation embeded in space where
location is important for the problem and space computation where space is fundamental
to the problem and is a result of a computation. Figure 1 summarises some application in
these three categories.

Dagstuhl Seminar Proceedings 06361
Computing Media and Languages for Space-Oriented Computation
http://drops.dagstuhl.de/opus/volltexte/2007/1025



Represent Space

GIS
Video code
Vision
Radar
Scientific Compute
Simulated Morphogengsis
Games

Social Networking
EDA/Optimization
Chess

Artification Eyolution

Swarm Robotics
Ad hoc Networks
Reactive Surface
Shape/self-assem.
Rendering
Ambient Computing
Distributed Control

Sort
NeuralNet
Wireless:base
Network Route
Cryptography
SAT/Model Check
Semantic Net

Wirelegs:handset

Embed Space

Figure 1: Example Spatial Computing Applications and their Relation to Three Categories

1 Coping with Space (Computationally Intense)

When we build anything more than the most trivial, sequential processor, the computation
is distributed across space. The computation may be composed spatially as a pipeline or
systolic array running on a Field-Programmable Gate Array (FPGA), or the computation
may be a set of cooperating sequential threads running on a multicore processor. Now
that we can place hundreds of processors or tens of thousands of spatial datapath elements
on an economical silicon die, even inexpensive systems must cope with the distribution
of computations across space. At today’s aggressive clock rates (e.g. Gigahertz) it takes
multiple clock cycles to cross even a single die, making delay, and hence performance, a
strong function of the distance between communicating operators. Physical locality mat-
ters. VLSI complexity theory has provided some approaches and tools to model these
spatial aspects of computing; however, these spatial effects take on more universal impor-
tance and impact as today’s single-chip, programmable components have the capacity for
highly parallel computations where the placement of an element of a computation has a
strong impact on feasibility and performance of the computation. The continual march of
Moore’s Law places more components on a die and shrinks the fraction of a die one can
cross in a single clock cycle; these trends increase the importance of spatial computation
over time.



2 Embedded in Space

The physical world performs computations all the time; springs compute a restorative
force, capacitors integrate current, and cells compute responses to stimuli. As we attempt
to better understand natural processes (e.g. morphogenesis, immune system), we must
understand the computations they perform. Further, we can potentially bring the benefits
of engineered design to physical objects by controlling the computation they perform:

e smart materials — provide new properties to physical matter by controlling the compu-
tation and response
e synthetic biology — engineers the computation inside cells to control molecular synthe-
sis or response systems
e programmable matter — forms physical shapes and objects which interact with the world
as the output of a computation
These tasks require sensing, computation, and actuation on large ensembles of elements
distributed in space. The position in the ensemble is an important part of sensing (input)
and the position of an element in the ensemble is an essential part of the actuation (output);
the position may also be essential to the integrity and stability of the ensemble. Continued
miniaturization of robotics and control over biological elements (e.g. engineered cells),
suggests a Moore’s-Law-like curve for physically programmable ensembles in space. Con-
trolling, programming, and understanding these spatial ensembles demands new theory and
models to answer questions, such as: How do we connect between desired global behavior
of the ensembles and the local behavior of the primitive elements?

3 Represent Space

In both computationally intensive, spatially distributed computations and computations em-
bedded in space, we must represent the space as part of the computation. This representa-
tion is also necessary for simulation of natural systems (e.g. cellular behavior, biological
systems, circuit simulation, heat and fluid flow, electromagnetic wave propagation). While
we could layer abstractions on top of an existing, space-agnostic programming language,
this creates an additional burden to spatial programming—forcing the programmer to rea-
son both about the spatial system and the discipline for modeling the spatial systems on
top of the conventional programming language. Alternately, can we create or augment
programming languages that naturally capture the spatial aspects and semantics of these
spatial programming tasks?

The spatial program must take into account the fact that computation is spatially dis-
tributed among potentially heterogeneous local islands of computation (e.g. processing
elements (e.g. gates, microprocessors), cells, devices (e.g. transistors, capacitors, diodes),
materials with different behavior (e.g. insulators, conductors)). Not only must we model
spatial connections, many of these computations proceed by computing and implementing
changes to their topology, and this must be captured and supported in the computational



model. Ideally, we would like to program at a high level of abstraction so as to lighten
the burden exposed to the programmer. At the same time, a good abstraction will facilitate
portability so that a program can run on arbitrary spatial computing media, including FP-
GAs, amorphous computers, multicore processors, and natural platforms such as chemical
reaction diffusion computers, DNA self-assembly, and natural or synthetic cellular assem-
blies.

This leads us to ask: “What are the correct, relevant abstraction for spatial comput-
ing?” Researchers have approached this problem both bottom up and top down. Bottom
up researchers are developing libraries of generic, robust primitives which can run effi-
ciently on arbitrary computing media; these primitives capture known, spatially-distributed
algorithms and capabilities and allow designers to think more abstractly about the compu-
tational media. Existing primitives include: establishing a set of coordinates, generating
gradients, using gradients to move particles, and computing a Voronoi Tesselation. Top
down researchers propose new languages where the declared data structure natively repre-
sent a space and the computation which occurs at each location in the space. We expect, a
mature spatial programming framework will bridge between the bottom up and top down
approaches—allowing high level behavior to be efficiently translated to low-level behav-
iors.

4 Cross Cutting Issues

Each of these three views of spatial computing have their own motivation and rationale.
However, they are clearly intertwined. While various concerns and issues take on different
priorities in each domain, a common set of theory and techniques may be applicable across
the domains. e.g.

e Distributed, self-organizing, and potentially fault-tolerant computations are essential
for computations embedded in space. Such algorithms can also ease programming of
computationally intensive computations.

e Intensive computations address how to use the spatial parallelism of a large spatial me-
dia to accelerate hard computations. Computations embedded in space will ultimately
need to perform such computations on their ensemble of components. For example, a
moving programmable matter application will ultimately need to both compute (ren-
der) the next shape it should form and perform the movement to assume the computed
shape.

e Programming languages which model space give us ways to efficiently, compactly, and
cleanly program these spatially distributed computations, whether embedded in a space
or computationally intense.



5 Summary

With the cheap availability of high capacity spatial computing substrates, an emerging un-
derstanding of natural systems, and the possibility of computationally engineered matter,
the importance of spatial aspects of computation is growing. These different manifesta-
tions of spatial computing have clear intersections where they can share common theory,
tools, and insights. A solid mastery of spatial computation will allow us to transform our
engineering capabilities, our understanding of the natural world, and ultimately the world
in which we live.

6 Acknowledgements

This fruitfull event was made possible thanks to the cordial reception and the perfect sup-
port of all the Dagsthul staff. The coordinators of the workshop wish particularly thanks
Jutka Gasiorowski, Angelika Mueller and Annette Beyer for their patience and constant
help. Our acknowledgements also goes to all the participants that have made this first
meeting a success.



