
Frederic Gruau and Christine Eisenbeis

Programming  self  developing  blob 
machines for spatial computing.
Abstract: This is a position paper introducing blob computing: A 
Blob is a generic primitive used to structure a uniform computing  
substrate  into  an easier-to-program parallel  virtual  machine.  We 
find  inherent  limitations  in  the  main  trend  of  today’s  parallel  
computing,  and  propose  an  alternative  unifiying  model  trying  to 
combine both scalability and programmability. We seek to program 
a  uniform  computing  medium  such  as  fine  grain  2D  cellular  
automata, or more generally coarse grain 2D grids of Processing  
Elements, using two levels:

In  the  first  “system  level”,  a  local  rule  or  run  time  system  is  
implemented  on  the  computing  medium.  It  can  maintain  global  
connected regions called blobs. Blobs can be encapsulated. A blob 
is  similar  to  a  deformable  elastic  membrane filled with  a gas of  
atoms.  (elementary  empty  blobs).  Blobs  are  interconnected  using  
channels, which act as a spring to bring connected blobs closer to  
each other. The system implements in a distributed way: movement,  
duplication  and  deletion  of  blobs  and  channels.  It  can  also 
propagate waves to communicate signals intra-blob, or inter-blob.

In  the  second  “programmable  level”,  each  blob  and  channel 
contains a finite state automaton, with output instruction triggering 
duplication or deletion . Execution starts with a single ancestor blob  
that duplicates and creates channels repeatedly, thus generating a 
network of automata. It  installs a higher level virtual machine on  
top of a low level uniform computing medium. This “blob machine” 
is an example of “self developing automata network” 

We present in detail, the blob machine, and how to program it using 
a higher level language called blob ml. We illustrate the execution  
of  many  examples  of  small  programs  They  all  exhibits  optimal  
complexity  results,  under some reasonable  hypothesis  concerning 
the -not yet finished to implement – system level, and considering  
the model of VLSI complexity. 

Citation about a computer using physical objects as primitives, like 
blobs and channels, which has given us inspiration:  “The kinematic 
model  [of  self  reproducing  machine]  deals  with  the  geometric-
kinematic  problems  of  movement,  contact,  positioning,  fusing  and  
cutting” John Von Neumann [1] 

Table of Contents
I Introduction ........................................................................................1

A Blob machines as a vertical approach to spatial computing ...... 1
1 Spatial computing on a computing medium ......................... 1
2 The three directions of spatial computing research .............. 2
3 A vertical approach to spatial computing ............................. 2
4 Hardware freedom ................................................................ 3

B Blob machine as a new approach to parallelism ........................ 3
1 Motivating a unified parallel model. .................................... 3
2 Self Developing Machines (SDM) ....................................... 3
3  Parallelization is a “folding problem”.  ............................... 4
4  Preliminary folding on a static automata graph. ..................4
5 Direct programing of a dynamic automata graph. ................ 5
6 Automatizing the architecture-dependent folding  ............... 5

II The blob machine ............................................................................. 5
A The formal model .......................................................................5

1 Configuration of the blob machine ....................................... 6
2 Instructions of the blob machine: ......................................... 6
3 The complexity model .......................................................... 7
4 Implementation results ..........................................................8

B Different incarnations of a blob machine ................................... 8
1 Fine grain .............................................................................. 8

2 Coarse grain .......................................................................... 8
III The blob ml language ......................................................................8

A  Sets ............................................................................................ 9
1 Specifying computation on sets ............................................ 9
2 Iterative set division with quicksort ......................................9

B Array .........................................................................................10
1 Basic function manipulating arrays .................................... 10
2 Aligning arrays with extended forall loops ........................ 10
3 Parallel divide and conquer ................................................ 11

C Linked list .................................................................................12
1 Vertical list ..........................................................................12
2 Vertical list using Set of objects ......................................... 12
3 Channel Implementation .....................................................13
4 Horizontal list for input / output ......................................... 13

D Multidimensional grid and arrays ............................................ 14
IV Conclusion: paying the price for programmability.  ..................... 15

I Introduction
We will first present blob machines as a natural approach to program 
« a computing medium », and as such, interesting for the community 
of people working on spatial computing. Then, we widen the scope 
of  interest  and  motivates  blob  machines  as  a  generic  way  of 
formulating  a  parallel  algorithm,  simplifying  the  problem  of 
mapping software to hardware while remaining largely architecture 
independent. 

A Blob machines as a vertical approach to 
spatial computing

1 Spatial computing on a computing medium
Spatial  computing  is  an  umbrella  term  regrouping  different 
approaches,  all  making  the  hypothesis  that  future  computing 
platforms – whether vlsi, bio, or nano- will be made of a huge 
number of Processing Elements (PEs) homogeneously embedded 
in  a  2D or  3D space ,  where  huge  means  that  it  will  not  be 
possible to establish rapid communication between an arbitrary 
pair  of  components.  More  precisely,  each  PE  has  a  set  of 
coordinates in space and communication time will be on average 
more or less proportional to metric distance in space, which is 
just  what  the VLSI complexity model  spells out  [2]. Moreover, 
individual components are very likely to be subjected to faults or 
defects, to such a point that in some cases, it could be considered 
as a normal regime. Such an architecture, that we like to call a 
“computing medium” in this article, includes different models:

•Regular  models:  any  2D  grid  of  PEs  with  only  local 
connections such as Cellular automata, Systolic arrays, circuit 
with nano tubes. 

•Irregular models relaxing the constraint of christal regularity 
and synchronism such as sensor networks in the amorphous 
model [3] bio films of bacteria [4] or DNA computers [5].

•Reconfigurable  models:  FPGA  need  a  little  adjustment  of 
definition to be considered as computing media because they 
use long lines where communication does happen faster than 
just a time proportional to the distance. But because the long 
lines are costly, there are few of them. So, if one considers 
communication bandwidth averaged in space, i.e. between two 
groups of logic blocks, instead of two logic blocks, then the 
long line effect is smoothed out. The usefulness of such long 
lines for better efficiency or more robustness is pervasive in 
many network found in nature called “scale free” network [6], 
for  example  genetic  regulation  networks,  protein  interaction 
networks, or neural circuitry. 

Spatial computing calls for a departure from computing in time, 
i.e. using a traditional centralized approach, with a step by step 

1
Dagstuhl Seminar Proceedings 06361
Computing Media and Languages for Space-Oriented Computation
http://drops.dagstuhl.de/opus/volltexte/2007/1024



modification of a global state. Intuitively, to exploit the space, 
computation  should  rather  unfold  in  space,  by  dynamic 
construction  of  spatial  entities  such  as  circuit,  membranes  of 
dividing cells, bacteria, or even network of moving processors. 
Also, many architectural building blocks such as shared memory 
or  all  to  all  routers  used  in  traditional  distributed  computing 
cannot be used permanently to establish communication through 
an  entire  spatial  computer,  because  they  do  not  directly  scale 
while complying with the VLSI complexity model.

2 The three directions of spatial computing 
research

In this new horizons, one can distinguish three levels of research 
depending on the time scales of available hardware:

1- Research that use « industrial » existing hardware platforms 
such as mainly FPGA. Here,  position matters for performance. 
FPGAs  already  exhibit  the  feature  of  a  computing  medium, 
though in a bounded form, because a dice is bounded in area. To 
be efficient,  this bound has to be dealt  with in the first  place. 
Existing architectural building blocks from the FPGA/distributed 
computing  community  are  combined  through  a  language 
description  that  allow  compile  time  or  run  time  unfolding  of 
those building block in space. Bounded space implies a careful 
study of how much, when, and where to unfold, Dehon [7]. 

2- Research on not yet existing hardware done with simulations. 
Here,  position  matters  for  functionality.  The  underlying 
hypothesis is  that  technology,  whether nano – bio or vlsi  will 
offer hardware platform large enough so that reasoning purely in 
this space becomes the right thing to do. Rather than its bounded 
nature, the study focuses on space itself, and its local properties, 
such  as  being  faulty,  not  synchronous  nor  regular.  One  can 
classify approaches on a vertical axis from hardware to software: 

•Approaches  dealing  with  the  hardware  itself,  develop  new 
technology enabling spatial computing such as nanotubes  [8] 
or based on chemical reaction [5]. In the programmable matter 
framework of Goldstein  [9],  processing elements themselves 
can move: The poetic approach at EPFL [10] develops a chip 
specialized  in  bio  inspired  algorithm  including  evolution, 
development and learning. 

•Approaches  implementing  some  computational  tasks  of 
spatial  nature  using  original  models  :  the  MIT  amorphous 
group developed the fascinating amorphous computing model, 
and showed how to solve a number of different tasks such as 
finding a set of coordinates or simulating physical phenomena 
[3].  Using  the  chemical  computing  model,  Adamatzky 
computes the voronoi tessellation [11]. Toffoli [12] proposes a 
model also called programmable matter focusing on efficient 
compilation  towards  cellular  automata,  he  can  remove  the 
noise of images, generate textures.

•Some  of  the  preceding  approaches  are  more  focused  on 
choosing  spatial  tasks  which  can  be  considered  as  building 
block primitives – such as the propagation of a gradient, and 
movement according to a gradient. Those building block can 
be combined using a language description: Coore develops the 
Growing  Point  language  [13],  Nagpal  proposes  a  language 
based on primitives for folding a sheet of paper as in Origami 
[14]

3-Research completely abstracting the hardware and focusing only on 
languages.  Here,  position  matter  for  expressiveness.  Giavitto  and 
Michel  [15] [16] propose to use as the computation space, the data 
structure itself. They show that reasoning in space can be profitable in 
itself,  with regard to expressiveness The Gamma formalism  [17] is 
based  on  the  parallelism  happening  in  chemical  reaction.  Gamma 
avoids any possible artificial  sequentialization,  which leads to  very 
concise programs. Paun [18] develops the formal language theory of 
P-system made of encapsulated membranes, with chemical reaction 
taking place inside. In the “ambient” approach, Cardelli [19] programs 

alebraic systems of encapsulated membranes. Compared to P-system, 
the language is more focused on programming, and describing the real 
cell for simulation purpose.

Ideally, the overall goal of level 2 and 3 is to discover bottom up 
new principle  so  as  to  provide  a  vertical  model  fully  organizing 
computation  in  a  potentially  unbounded  space,  from  hardware 
building blocks to programming models, using a library of higher 
level  primitives.  We  view  it  as  perpendicular,  and  thus 
complementary to level 1, which goal is to implement the relevant 
space time trade off necessary to obtain challenging performance on 
existing bounded platform.

3 A vertical approach to spatial computing
Both the research of Coore, and Nagpal are in the spirit of a two 
stages  vertical  long term approach to  spatial  computing:  1-  They 
implement a library of higher level primitives with spatial algorithm. 
2- They develop a language to combine these primitives. However, 
for the moment, their  language can describe only how to develop 
fixed  structures.  Once  the  structure  is  laid  out  on  the  computing 
medium,  it  cannot  evolve  any  more.  This  severely  limit  the 
programing  possibilities.  The  blob  computing  project  follows  the 
same spririt, but without such limitations. A blob can be seen as a 
generic distributed-computing primitive that installs a higher level 
virtual machine on top of a low level uniform computing medium. 
The machine has simple building blocks: blobs and channels, with a 
set of 14 primitive machine instructions (see table  1) realizing the 
antagonist requirements of generic efficiency, and expressivity: 

• Downward,  when  they need to  be implemented  as  spatial 
algorithms,  they  are  sufficiently  simple  to  be  installed 
efficiently on an arbitrary computing medium. Although for 
the moment, it has only been partially implemented.

• Upward, when they need to be combined in a programming 
language  description,  they  are  sufficiently  expressive  for 
general purpose programming (e.g. Non spatial algorithm) to 
take place. 

Furthermore, blobs and channels can move, and place themselves on 
the  hardware.  In  the  following  paragraph,  we  do  a  step  by  step 
justification  of  why  blobs  and  channels  are  necessary  building 
blocks to use for spatial computing, in the long term, and why they 
should  move.  This  allow  to  introduce  a  key  concept  of  blob 
computing called hardware freedom.

Why blobs? Blobs allow to compartmentalize the medium. Blobs act 
functionally  like membranes dividing the computing medium into 
different  connected  region.  Such  a  compartmentalization  is  not 
required if  one consider simple « spatial like » algorithm, such as 
setting up a gradient in order to measure distance to a given point, or 
simulating simple physical phenomena such as the wave propagation 
done by E.  Rauch.  In  those cases,  the problem can be solved by 
having all participating PEs execute globally the same simple local 
rule.  This  can  be  extended  to  algorithms  actually  computing 
something,  such  as  doing  a  reduction,  applying  a  commutative 
associative operator like “sum”, on a collection of data. However, as 
soon as an algorithm needs to execute different types of tasks, and 
would  like  to  run  those  in  parallel,  compartmentalization  of  the 
computing medium into disjoint connected regions, allows different 
part of the medium to run different programs, more efficiently: each 
connected region has to store and execute only the one program it 
runs.

Why channels? Channels install virtual communication link between  
remote  compartments.Without  channels,  a  compartment  could  only 
talk to its directly adjacent compartment. 

Why move blobs? To accommodate dynamic allocation. Assume one 
has two tasks to execute, and decide to divide the medium in two, thus 
creating two compartments, one for each task. Now, if the tasks make 
some dynamic allocation,  one cannot  predict  at  compile time,  how 
much resources  each  task  should  be  given,  and  thus,  how big  the 

2



compartment should be, and where to install the frontier between both 
compartments.  If  the  frontier  of  the  compartment  can  dynamically 
move after it has been installed, then, it will allow the system to adjust 
the location of the separating membrane and by that, the amount of 
hardware resources allocated to each task. The system does a form of 
run time load balancing.

4 Hardware freedom
Blobs  are  software  elements  structuring  the  hardware  computing 
medium. Dynamically moving blobs implies moving freely software 
on hardware. This is an example of an organization principle that we 
like  to  call  freeing  software  from  hardware  or  more  simply 
« hardware  freedom »,  which  is  one  of  the  main  concept  of  blob 
computing. Software is normally conceived as being permanently tied 
to hardware. Let us illustrates what it means to free it, and reason for 
freeing it with three simple examples: 

•Example 1: “Hardware free processes”. A run time ystem doing 
dynamic  load  balancing  is  able  to  migrate  processes  between 
processors without modifying the semantic, so as to balance the 
load of each processors of the machine.

•Example 2:  “Hardware free memory”. If you store a data in a 
memory cell, you do no expect it to jump to the next memory cell, 
under  the  pressure  of  adjacent  memory cells,  as  if  they where 
elastic  physical  objects.  It  would  nevertheless  be  nice  for  the 
memory to self organize toward homogeneous occupation in the 
advent of over crowded and under crowded region. But instead of 
a  globally  indexed  memory  one  would  need  an  associative 
memory,  using pattern matching on labels to  bind addresses to 
data.  Such  a  mechanism  is  robust  to  change  in  the  particular 
location of the adressed data. On the other hand, it can be time 
expensive, because it implies searching a matching label on the 
entire memory. It is used by biological systems: for example, the 
beginning or the ending of genes within a genome are localized 
using specific markers. Its inherent robustness makes it also useful 
when  doing  automatic  programing  using  genetic  algorithms  as 
shown by Ray  [20].  Note that the garbage collector of modern 
functional language partially implements hardware free memory, 
being able to defragment memory at run time.

•Example 3: “Hardware free circuit”. In FPGAs, once a circuit 
has been (re)configured on a sub rectangle of the chip, its inputs 
and outputs are bound to ports, or to adjacent circuits on the same 
FPGA.  The  net  list  of  bits  configuring  the  circuit  is  tied  to 
hardware,  and  stays  immobile  on  the  chip,  while  the  circuit 
executes.  Moving  it  would  imply  a  lot  of  additional  control 
circuitry to save the current state, move the bits of configuration, 
restore the state, and reroute the inputs and outputs. Furthermore, 
todays  FPGA are  not  conceived for  local  reconfiguration.  It  is 
usually a central external host that manages where and what to 
reconfigure. It would nevertheless be nice, to be able to locally 
« push » circuits on an FPGA by pressuring against each other as 
if they where elastic physical objects. This would allow to locally 
modify already loaded circuit at runtime, without having to plan it 
in advance, and without having to reconfigure the whole FPGA. 
In this situation, installing an operator, or a circuit line between 
two operators, would loose the dramatic intensity of a decisive 
action  that  needs  to  be  done  as  efficiently  as  possible.  That 
operator or this line can always move by itself ater creation.

B Blob  machine  as  a  new  approach  to 
parallelism

1 Motivating a unified parallel model.
Sequential  machines  built  after  the  Von  Neumann  architecture 
abstraction have a simple conceptual model of programming which 
could be just summarized as “a step by step modification of a global 
state”. The state being stored in a memory and the modifying part 

being the processor. For parallel machine, there exists already many, 
highly  relevant,  models,  adapted  to  different  hardwares: 
multiprocessor  machine,  VLSI  or  FPGA  circuit.  There  does  not 
exists  a  unified  simple  model  which  could  qualify  has  the 
counterpart of the sequential model. We look for such a model that 
matches the essential word “parallelism” and allows to think of any 
parallel hardware in a conceptual way. 

On one hand,  the  search  for  a  unified model  could  in  fact  seem 
useless. Indeed, if one consider only cost or performance criteria, 
then  parallel  models  either  originate  from  a  given  commercially 
viable parallel technology such as FPGA, PC farms, and the Internet 
grid,  or  else,  they  are  conceived  as  a  mere  acceleration  of  a 
sequential model by speeding up loops operating on arrays. There 
does exist notable exceptions such as data flow graph and data flow 
computers  [21], which did originate from new ways of conceiving 
computation in parallel. 

Figure  1:  Artistic  Illustration of  the  bizarre  though well  
accepted  dichotomy  between  processor  and  memory.  
(courtesy of Paula Femenias)

On the other hand, the biggest issue may not be performance, but the 
difficulty to program and parallelize algorithms running on parallel 
hardware. Here, the lack of a unified model is probably one of the 
big obstacles to considering parallel or distributed machine as “easy” 
or  “standard”  programmable  devices.  Therefore,  a  necessary 
prerequisite  for  a  unified  parallel  model  to  be  worthwhile,  is  to 
provide  a  simplified  framework  for  parallel  programing  and 
parallelization. 

A blob machine is a particular instanciation of a simple conceptual 
model called Self Developing Machine, or SDMs  which was born 
out of our strong desire to discover the parallel counterpart of the 
sequential model. SDMs, as we will see, make minimal assumptions 
as to the target parallel architecture, and propose new way to address 
the issue of parallelization.

2 Self Developing Machines (SDM)
 The  von  Neumann  sequential  model  immediately  implies  a 
dichotomy  between  a  huge  passive  part:  the  memory  storing  the 
global state, and a small very active part: the processor modifying 
that  global  state  illustrated in  figure  1.  SDM offer  an alternative 
decentralized  organization.  The  configuration  of  an  SDM  is  a 
labeled graph whose vertices are automata. Each automata has only a 

3



finite state, i.e. a small bounded memory, and has output actions that 
add or suppress vertices or edges in the graph, or modifies the labels 
of vertices and edes. Some specific vertices called “port” stay fixed 
during  the  development  and  make  parallel  input  and  output. 
Universality  in  SDM comes from the ability  of  the  graph to  self 
develop and expand in an active computing medium (as defined in 
page  1),  instead  of  allocating  data  in  a  passive  memory.  While 
expanding, the graph exhibits more and more parallelism. An SDM 
is of course a virtual machine, since we do not assume that automata 
and edge are created or destroyed physically. 

3  Parallelization is a “folding problem”. 
What is the central  difficulty  of  parallelization? Call  operator,  an 
element of circuit which computes an arithmetic or logic operation. 
The execution of a computer program generates a “compute graph”. 
Vertices represent the operators and an edge connects an operator 
that produces a data to an operator that consumes this data. Every 
operator is used only once: it is a directed graph without loops. In 
parallelism one  usually  consider  task  graphs  which  are  a  similar 
concept, but were tasks are coarser grain than just operators. Now, 
consider  the  graph  of  a  parallel  hardware,  where  vertices  are 
Processing Elements (PEs) and edges are communication channels. 
To distinguish both graph, we use the word edge and vertex, for the 
compute  graph,  nodes  and  links  for  the  PE  network.  A  parallel 
execution is defined by a mapping m associating each operator to a 
PE and a scheduling of the operators within a PEs. We argue that the 
mapping and scheduling are the central difficulty:

Assume  first  that  the  network  has  no  router,  so  that  only  local 
communications are allowed, and forget scheduling for a moment. 
Operators that are linked need to be executed either on the same PE 
or on direct neighbor PEs, to support the communication of the data 
from  the  producer  operator  to  the  consumer  operator.  So  the 
mapping  m  preserves  adjacency  and  is  therefore a  graph 
homomorphism [22]from the compute graph, to the PE network, the 
latter being completed by adding a recurrent channel from each node 
to itself so that each PE is adjacent to itself. This homomorphism is 
usually called the mapping of a task graph to hardware. We propose 
to call it a folding, because the morphism is usually not one to one, 
each  PE  having  to  execute  more  than  one  operator.  The  graph 
homomorphism  problem  is  a  canonical  NP-complete  problem.  It 
generalizes  various  other  well-studied  problems  such  as  graph 
coloring  and  finding  cliques  [23].  NP-completeness  is  a  strong 
argument  of  pointing at  the folding as  being the  essence of  why 
programming parallel algorithm is more difficult

Secondly, if the target parallel hardware uses a network with router, 
then we can define a  similar more general  concept of  folding by 
mapping each edge to a communication path in the network of PEs. 
In general, the folding should verify properties in order to guaranty a 
good performance, the formulation of which may vary depending on 
the target platform:

•[distributed computing version] map arrays and computation on a 
network  of  PEs  so  as  to  balance  load  and  minimize 
communications. 
•[VLSI or FPGA version] map a circuit on a die so as to minimize 
area and long wires.

The problem of finding a legal execution is simplified by the router, 
or by the ability of drawing long lines in VLSI or FPGAs, but the 
global  problem  remains  of  the  same  order  except  it  is  now 
formulated as a problem of optimizing cost functions on the folding: 
minimizing  the  communication  path  length  to  optimize 
communication latency, or homogeneously distributing the vertices 
to balance load.

Thirdly, finding the optimal folding, may also be dependent on the 
scheduling of operators within each PE. But the scheduling problem 
can be grouped with the mapping problem, to be also formulated as a 
graph homomorphism problem: one has to map the compute graph 
to a target graph defined as follows: the vertices are PEs indexed by 

integer, and an edge goes from pt to p't' if p=p' or p is neighbor of p' 
and t' > t. 

Last, one can consider further architechtural constainrs, and encode 
it in the target graph. For example, a node may not be able so send 
one data item through two links in a single time step. In summary, 
we argue that parallelisation is difficult because it implies matching 
a “soft  graph” to a given “hard graph”.  Because this difficulty is 
inherent, there simply does not exists a nice programming language 
that will  remove it  in the general  case. If  this folding problem is 
indeed the  guordian knot to cut,  then a  unified model  of  parallel 
spatial machine has to explicitely tackle it rather than hide it. 

4  Preliminary folding on a static automata 
graph.
Because the folding problem is not tractable in the general case, the 
standard procedure is to consider restricted cases. On one side, one 
uses  specific  language  constructs  to  restrict  the  set  of  possible 
compute graphs, on the other side, the architecture has to be chosen 
in a predefined family. One obtains a subset of compute graphs and a 
subset  of  PE  networks  enough  tunned  to  each  other  so  that  the 
folding becomes tractable.

 Furthermore, the folding is done in two steps: the compute graph is 
first  folded onto an intermediate  graph by merging subsets  of  its 
vertices  n1,  ...,nk into  a  single  vertex  and  locally  scheduling  the 
operations of n1, ...,nk in sequence. Since it has now to perform many 
operations, rather than a single one, vertices need to be labeled by 
Finite  State  Automaton,  (FSA)  rather  than  simply  memory  less 
arithmetic  operators.  The  FSA  formalism  includes  the  local 
scheduling. So what we obtain, now, is an FSA graph instead of an 
compute graph. The final folding to hardware is indeed simplified, 
because by mapping an automaton on hardware, one simultaneously 
map all the operations that this automaton is doing. 

•Example 1: In distributed computing in general, one can describe 
a problem by its task graph, where tasks are bigger than simply 
operators.  This  is  already  an  intermediate  folded  form  of  the 
underling compute graph. Each task regroups a big chunk of the 
whole  compute  graph,  and  by  mapping  a  task  to  a  PE,  one 
simultaneously maps all its associated operators. The partition in 
tasks is given by the algorithm, and tries to minimize inter-task 
communication. This approach also commonly called “macro data 
flow” [24] can be adapted to execution on the Internet grid. Since 
communication  is  particularly  expensive,  tasks  must  be 
sufficiently  coarse  grained  to  keep  a  node  busy  computing  on 
local data, before it has to communicate.

•Example  2:  The  reconfigurable  community  is  also  used  to 
program FPGA with task graphs. They put the extra requirement 
that data flows as streams between tasks, so as to do pipelined 
computation: the SCORE project of A. Dehon [7] is representative 
of this approach. Language constructs specify “streamed circuits” 
where vertices have memory, and data streams between vertices. 
Here all the data is contained in the stream. The compute graph is 
already  described  in  a  consistent  folded  form in  the  streamed 
circuit, which can be mapped onto an FPGA, by adding all the 
necessary buffers and using standard CAD tools. In SCORE, the 
streamed circuit is itself specified in a parameterized way, so that 
it can unfold on the available hardware by trading space for time. 
The success of the system comes from having correctly identified 
stream has being an important key to easily obtain performance on 
FPGA, and giving language constructs to support those streams so 
as as we said, it defines a soft and a hard domain enough tunned to 
each other to ensure tractable efficient folding.

•Example 3: In data parallelism, one considers arrays and nested 
loops  accessing  those  arrays  with  affine  combination  of  loop 
indexes. The compute graph has a shape of a multidimensional 
lattice  [25].  A  mathematical  analysis  of  the  dependency  graph 
allows to describe this lattice in a parameterized form, exposing 
the  parallelism.  This  lattice  is  embedded  in  a  k-dimensional 
discrete space. In particular, with High Performance Fortran [26], 

4



the programmer himself specifies “templates” to explicitly align 
all  the  arrays  on  such  a  virtual  k-dimensional  space.  This 
intermediate  graph  is  not  yet  in  a  folded  form,  but  its  high 
regularity makes it easy to fold it onto a regular 2D grid of PEs. 
One uses a simple projection on a 2 dimensional discrete space, 
respecting data dependencies. If the grid is not big enough, one 
needs to additionally wrap computation around it, or to tile the 2D 
grid,  which  constitute  the  final  folding.  The  computation  of 
optimized projections, wrapping or tiling remains tractable as long 
as the number of loops is small. This can lead to either automatic 
synthesis  of  systolic  arrays,  or  automatic  parallelization  on 
networks of PEs.

All those existing approaches preliminary fold the compute graph on 
a static circuit. This suits very well algorithms for signal processing 
or  scientific  computation  using  matrix  algebra.  However,  many 
algorithms cannot be programmed into a fixed size, static circuit. In 
particular:  algorithm  with  dynamic  features  such  as  quicksort  , 
where the shape of the compute graph is data dependent. To provide 
more  programmability,  the  blob  machine  offers  an  added 
mechanism, allowing dynamic instantiation of circuits.

5 Direct programing of a dynamic automata 
graph.
We are  working  out  a  similar  match  between  a  set  of  language 
constructs,  and an architectural  domain,  but  with  the  ambition of 
having a broader scope: we would like arbitrary scalability on the 
hardware side, and no limit in genericity on the software side. 

•For  the  architecture,  we  only  put  the  constraint  of  the  spatial 
computing  framework  (see  page  1).  One  of  the  main  design 
concern of those architectures that we called “computing media” 
is precisely to scale in arbitrary size.

•For the language, the first idea is simple: given that the folding 
and  scheduling  are  the  difficult  thing,  let  the  programmer  do 
them! So he will program directly a folded-scheduled form of the 
compute graph, that is to say: a graph of Finite State Automata 
(FSA). The second idea is that to be more generic than just static 
circuits,  we use the Self  Developing Machine (SDM) described 
page  3 where  the  automata  not  only  perform  some  fixed 
arithmetic operations, but also locally modify the topology of the 
graph itself, by adding or removing vertices or edges using self 
developing instructions.

 The language specifies the parallel development of a network, node 
by node. Thus, on one hand, it describes a spatially extended object, 
i.e a circuit, which is needed for exposing parallelism. On the other 
hand, it  does not sacrifice the capability of dynamic instantiation, 
needed  for  programmability.  Folding  the  compute  graph  on  a 
dynamic circuit is illustrated in the quicksort program 1 p 10. Each 
integer n1,  .., nk  to sort is stored on a distinct automaton a(n1),  ..,  
a(nk), and all the comparisons between a given  ni and the different 
pivots encountered during execution are folded , i.e. executed on the 
same automaton a(ni). This is made possible because the pivots are 
communicated  along  a  dynamically  evolving  network  structure. 
Programming with SDMs present several advantages:

•Matching  structure  to  function:  The  development  does  not 
restrict  the  shape  of  the  developed  circuits  to  the  crystalline 
structure of the task graphs associated to affine nested loops. The 
structure  is  directly  programmed  and  therefore  adapted  to  the 
specific targeted functionality. The adequation between structure 
and  function  characterize  brain  circuits  [27],  and  is  obviously 
needed to build efficient dedicated VLSI circuits. 

•Reuse:  The parallel semantic of SDM embodies the difficulties 
and  can  then  be  reused  for  different  hardware  platform of  the 
computing medium type. For example, the granularity can range 
from FPGA, to distributed memory. Only the dimensionality of 
the  computing  medium  should  be  known  by  the  programmer, 
since  it  restricts  the  set  of  feasible  self  developing  graph.  For 
example, it is not possible to efficiently map a 3D grid to a 2D 

computing medium, so one  the programmer should manage to 
“collapse” one of the dimension into memory. Nevertheless, there 
does  exists  algorithms  which  are  optimal  both  in  2D  or  3D 
computing  media,  such  as  the  bitonic  merge  sort  of  program 
4.Worthwhile  dimensions of the medium are either 2D or 3D, 
since 1D is not efficient, and 4D is not feasible. 

•Semantic  with  local  communication. The  parallel  semantic 
includes more than just exposing parallelism: communications are 
always  local;  an  automaton  communicates  only  with  its  direct 
neighbors.  There  is  no shared memory,  or  even a  global  name 
space.  Who  communicates  with  who,  this  is  thus  clearly 
represented at any time by the network itself,. This enables the run 
time system to automatically map the network.

6 Automatizing the architecture-dependent 
folding 

We  consider  architectures  which  are  computing  media:  they  are 
embeded in a 2D or 3D space. That space is partitioned and each PE 
is  responsible  for  one  piece  of  it.  Each  vertex  of  the  SDM  has 
coordinates which determines the PE responsible for updating it. In 
order to be able to dynamically map the SDM, the run time system 
should implement two things:

•Firstly, it has to provide an hardware free (see page 3) distributed 
representation  of  the  vertices  and  edges  representing  the  self 
developing graph: vertices must be able to freely move between 
neigbor PEs without interference with the underlying computation 
going on. 

•Secondly,  the run time system must  determine the  appropriate 
direction where to move the vertices. For this purpose, it simulates 
physical forces of attraction between adjacent vertices, to optimize 
communication latency, and repulsion between nearby vertices, to 
homogenize density and thus optimize load balancing.

 In the  initial  situation,  development starts  with a  single ancestor 
vertex placed in equilibrium with respect to the fixed vertices used 
as  ports;  Whenever self  development occurs,  vertices or  edge are 
added, or suppressed, and the equilibrium is perturbed. Each vertex 
locally computes the force applied to it from its neighbor, and moves 
according to these forces, possibly migrating to a neighbor PE, if its 
coordinates are no longer in the area managed by its current owner 
PE.  After  some  iterations,  the  situation  stabilize  again,  and 
computation can carry on. 

Such techniques based on force simulation already exist, but here, 
the combination with a step by step development intuitively prevents 
the plague of local convergence. Indeed, the adjustment needed at 
each step is  hopefully  sufficiently  simple,  that  vertices  should be 
directly attracted towards their new optimal position. There are less 
chance  to  be  trapped  by  local  sub-optimal  basins  of  attraction. 
Assuming  a  set  of  reasonable  hypothesis  (already  tested  in  some 
classic cases such as sort, or matrix multiply),  the theory predicts 
optimal  asymptotic  performance  results  (up  to  a  constant  factor), 
under the VLSI complexity model [2].

II The blob machine

A The formal model
The blob machine is a specific self developing machine that tries to 
answer to the question of what should be a minimal set of building 
blocks (types of vertex and edges) and self developing instructions 
working on them, to fill the following antagonist requirements: 

•Provide scalability:  building blocks should  behave like  simple 
physical 2D/3D objects to parallelize efficiently on an arbitrary 
large 2D/3D computing medium.

5



•Without compromising genericity: they should allow to represent 
arbitrary  graph,  while  structuring  it  in  a  hierarchical  way,  to 
compile high level programming language.

We propose to use only two types of vertices: blobs and channels 
behaving  like  elastic  membranes  and  springs,  and  two  types  of 
edges: horizontal and vertical. 

1 Configuration of the blob machine

Figure 2: Representation of blobs (a) network representation 
of  a  blob  containing  three  atomic  blob.  (b)  topological  
representation on a 2D grid of PEs. The blob behaves as a mulit  
set, which is represented by a membrane that divides the grid in  
two  connected  components:  the  inside  and  the  outside.  The 
representation  is  hardware  free,  because  elements  can  move  
freely  inside  as  long  as  they  do  not  cross  the  membrane.  The  
membrane itself can move, while remaining connected. One of the  
membrane  PEs  must  contain  the  automaton  associated  to  the  
blob.  Automata are  represented by the character  @. Here,  the 
representation is very fine grain, since 22 PEs are wasted only to  
represent  the  membrane.  On  can  choose  a  coarser  grain  
representation, where a PE can support multiple membranes and  
automata.

Blobs and vertical edges: The vertical edges connect all the blobs 
together in a tree which defines a partial ordering on blobs. The root 
is called the “skin”, it is a maximum blob, and the leaves are empty 
blobs  also  called  “atomic  blobs” or  “atoms”,  they  are  minimal 
blobs. Blobs behave like elastic membranes regrouping and pulling 
together  sub  blobs  called  its  elements.  There  are  two  reasons 
motivating to encode explicitely a tree structure:

•1-  Encapsulated  blobs  provides  a  hierarchical  representation 
enabling structured programming, such as the use of function or 
procedures, hierarchical data structures, hierarchy of objects.

•2- We do not distinguish between the different sub blobs of a 
blob, in other word, blobs are multi sets, and the tree represents a 
hierarchy  of  encapsulated  multi  sets.  Such  muti  sets  have  a 
natural, hardware free representation, using membranes,  as shown 
in figure 2. The edge of the tree are not needed to be represented, 
which can be a great economy of space and time. 

In the topological representation,  a blob can be represented using 
simply connected set of PEs; In [28] we demonstrate that hardware 
free  blobs  can  be  implemented  on  arbitrary  network  such  as 
amorphous network. We prove that to maintain global connectedness 
while moving it is sufficient to maintain local connectedness.

Channels and horizontal  edges: In practice, communicating along 
the edges of a tree is not sufficiently expressive. If for example, one 
wants to install a 2D grid, it is always possible to encode it in a tree, 
and label leaves with a pair (x,y) of coordinates, but that is not very 
practical  nor  efficient.  One  would  have  to  implement  a  routing 
strategy so that vertices which are neighbor in the grid, communicate 
along the  tree,  with  probably congestion near the root.  This  goes 
against one of the main design principles of SDM which is to always 
explicitely install a communication edge between vertices that need 
to  communicate,  so  that  the  communication  needs  are  constantly 
reflected in the machine configuration and the run time system can 
use  this  information  to  optimize  placement  of  vertices.  This 
motivates  the  use  of  channels  that  install  a  communication  link 
between an arbitrary pair of blobs. A channel is connected to two 

blobs, called its extremities, using a left and a right horizontal edge. 
A channel behave like a spring, pulling together both its extremities 
to  reduce  communication  latency.  Furthermore,  a  channel  may 
contain  blobs  being  transferred  from one  extremitie  to  the  other. 
These traveling blobs are connected to  the  channel  using vertical 
edges, to distinguish them from the extremities. 

Edges  labeling: Because  they  are  used  as  bidirectional  link  to 
communicate data between vertices, edges have two buffers for each 
directions. When an edge is duplicated, we need to distinguish the 
two copies. For this purpose, the edges have a polarization: positive 
or negative. One copy is polarized plus, and the other, minus. 

Ports: Ports are specific atomic blobs connected to a host using a 
vertical  edge  downward,  to  which  they can input  or  output  data. 
Ports are present in the initial configuration, and remain fixed during 
the execution. Their number noted p is a feature of the machine.

Initial  configuration: It is  made of a single ready blob called the 
ancestor blob,  containing  the  p  ports.  All  edges  are  polarized 
positively,  all  the buffers are empty, all  the automata are in their 
initial state. The ancestor also plays the role of the skin:  it remains 
the root of the tree hierarchy, encapsulating all the other blobs at any 
time.

2 Instructions of the blob machine:
The blob instructions are not  high level language constructs. They 
are comparable to elementary machine instructions, to facilitate their 
efficient  implementation  on  an  arbitrary  computing  medium.  For 
example, they do not add or suppress more than one vertex or one 
edge at a time. The instruction set is in fact the output alphabet of the 
mealy machine  [29] (FSA with output) executed by each vertex of 
the SDM. This mealy machine is the program executed by the SDM 
which  is  loaded  in  the  ancestor  and  the  ports.  All  the  vertices 
executes the same mealy machine, but with a distinct state stored 
locally. 

Static  edge  orientation  for  addressing: The  edges  are  statically 
oriented:  we  distinguish  outgoing  and  incoming  edges  using  the 
addresses  up/down for  vertical  edges,  and  left/right for  horizontal 
edges. These addresses are used by instruction  send, rec, polarize,  
polarity,  flip,  move  to  specify  on  which  edges  to  apply  the 
instruction. 

Dynamic edge orientation for mutual exclusion. There exists also a 
dynamic  orientation  independent  of  the  static  orientation  which 
determines ownership of edges: An edge is owned by a vertex, if it 
leaves the vertex. This orientation is called dynamic, because it can 
be  change  during  execution,  by  the  instruction  flip.  In  order  to 
execute a given instruction  i, a vertex  must own the edges  used(i) 
used by instruction  i.  The third column of Table  1 shows what is 
used(i)  for each instruction  i.  If the vertex does not owns all the 
necessary edges, then it is said to be not ready, and has to wait that 
the  neighbors  of  those  edges  flip  them back.  This  implements  a 
mutual  exclusion  between  instructions  needing  to  use  the  same 
edges, and ensures the important property of  confluence [30]. For 
example in figure 3, the port cannot do polarize up -, because it does 
not own its  up edge. If it could do it, then the division happening 
after that would move the port to the negative child instead of the 
positive. So depending on wether polarization or division is executed 
first,  one would obtain distinct systems, and confluence would be 
contradicted.

Asynchronous  Parallel  execution. At  a  given  time  step,  all  the 
vertices  which  are  ready,  can  execute  their  instruction 
simultaneously, but they do not have to. If a ready vertex waits a few 
time  steps,  confluence  ensures  that  the  execution  order  does  not 
matter,  and  the  system  will  always  converge  to  the  same 
configuration. Asynchronous execution implies that a global clock is 
not needed, which is important for scalability. 

Communications: During a communication on a given edge, both the 
sender and the receiver modify that edge: the first stores the data in 
the buffer, and the other pops a data out of the buffer. Therefore, 

6

@

@

@
@@ @

@

@

(a) (b)



they both need to own the edge, and the sender has to flip the edge 
before the receiver can receive the data. The use of buffers on edges 
is not compulsory, it  serves to avoid this constant back and forth 
flipping between sender and receiver, when many data have to be 
sent.  One  can  implement  a  parallel  buffer,  where  the  send  and 
receive may happen simultaneously ( if the buffer is not empty). But, 
then, to duplicate or delete that parallel buffer, both the sender and 
receiver will have to synchronize. 

Codop Semantic Used

Classic
Blob and channel

 Adr
 Adr

Sets reduction operator
Adr
Adr
Adr

Move adr Adr,down

Self Developping
Blob 

New blob Includes a new blob
New chan Includes  a new channel
Divide Divides blob All
Wrap Encapsulates a new blob Up
Merge Merges blob Up  Channel

Duplicate Duplicates channel All
Delete Deletes channel All

Send  val adr Sends value val to edges adr
Rec adr Receives value from edge adr
Reduce op
Polarize adr +/- Polarizes edges adr
Polarity adr Returns polarity of edges adr
Flip adr Changes orientation of edges adr

Moves sub blobs through edge adr

Table  1:  Deterministic  instruction  set  with  7  instructions  for  
communications and synchronization, and 7 instructions for self  
development; The operand “ adr” can take the values up, down, 
left, right, to address a given type and orientation of edges. The 
operand “val” is a scalar: integer or float.

Figure 3: The division instruction. Blobs are represented by small  
gray disks and the channel by a square. There is a single port,  
represented by a blob with an edge to the ground of an electric  
system.  The  dynamic  orientation  of  edges  is  represented  by 
arrows whose extremity is a tiny black disk. The static orientation 
is implicit: up is upward, down is downward, left is leftward and  
right is rightward. In order to divide, the central blob needs to  
own all its edges, which are therefore all outgoing. 

Parallel  reduction  Consider a vertex having several  edges with the 
same address. For example, a blob with more than one sub blob, has 
several  edges addressed by  down.  The execution of  instruction  rec 
down  will return not one, but many values. All those values will be 
combined into a single one using a reduction. The reduction operator 
is  selected prior to the receice, using the instruction  reduce op.  To 
preserve  determinism,  the  operator  mustbe  associative  and 
commutative such as  sum or  product.  We sometimes needs th  non 
deterministic  operator  one_of  which  randomly  returns  one  of  the 
values. To avoid dead lock, if one of the buffer is  empty, then the 
neutral element is returned. For one_of the special value undefined is 
returned  if  no  values  are  present.  In  some  situation,  the  non 
deterministic  instruction  prefix  is  practical.  It  assumes  an  arbitrary 
order of the elements:  e1, .., en and sends back to each element i  the 
partial reduction done on values sent by e1, .., ei. Reduction and prefix 
are  part  of  the  blob  machine,  because  they  can  be  directly 
implemented efficiently in parallel, and are adapted to the multi set 
structure implied by blobs. 

Self developing instructions. Whenever a vertex creates another child 

vertex, negative polarization is used to differenciate the created from 
the  creator,  which  gets  positive.  Here,  polarization  of  a  blob  is 
defined as its unique  up  edge, and polarization of a channel is the 
same on both it unique  left and  right edge. Creation is said to be 
symmetric, if creator and created are brothers. Blobs and channels 
have each their own way of symmetric creation called blob division, 
and channel duplication. 

• Blob division is illustrated in figure 3. The creator moves all the 
negatives element to the newly created vertex. The elements  must 
be polarized prior to the division. If it want to directly connect to 
the  created,  the  creator  just  creates  a  new channel  prior  to  the 
division (figure  4 (c) ). Because the left and right edges of this 
new channel  are  of  opposite  polarity,  creator  and created  will 
each receive one edge, as illustrated in figure 3. 

• Channel  duplication operates on empty channel,  (without sub 
blobs being transferred) as in figure 4 (e). The created channels is 
connected to the same extremities as the creator; it also get a copy 
of the buffers with all the pending messages. 

Blobs  can  also  create  a  new  blob  in  an  asymmetric  way:  by 
wrapping around a new blob (figure 4 (a) ) or adding a new atomic 
blob (figure  4 (b));  The creator  owns the downward edge to the 
created.  Note  that  the  new blob instruction  can  be  considered  as 
syntactic  sugar  since  it  can  be  defined  by  combining  divide  and 
wrap.  Nevertheless,  defining it  as a separate instruction is useful, 
because it does need to own any edges to be executed, as opposed to 
divide.

Figure 4: Example of self development: the smiley! Note that this  
example is only illustrative of the primitives, it is not the purpose  
of blob computing to generate shapes such as smiley's We use the  
topological  representation  omitting  the  edge  orientation  and  
polarity.  The step (d)  to  (e)  are the  topological  counterpart  of  
figure 3

Removing instruction. The instruction merge  merges the blob with 
its outer blob, giving it all its sub blobs and channels. This amounts 
to just suppress the membranes. The instruction delete for a channel 
removes the channel, if it is empty.  The ancestor blob implementing 
the skin, and the port blob cannot divide nor merge to preserve the 
port number, and a unique root to the blob hierarchy.

Moving  blobs. The  instruction  merge  (resp.  delete)  is  the  exact 
reverse of wrap (resp duplicate). If a vertex does a wrap followed by 
a merge, then the system is back to where it was. We introduce the 
move  instruction to be able to also reverse the effect of a  divide.  
Reversion is possible, if the two blobs produced by the division, are 
connected by a channel.  It is done by having one of the child move 
its  element  through  that  channel,  back  to  the  other  child. The 
instruction   move  adr  moves  negative  sub  blobs  to  the  neighbor 
connected by an edge with adress adr and positive. It works only if 
there is exactly one such neighbor.

3 The complexity model
Define by induction  the size  of an atomic blob or of a channel as 
one, and the size of a non atomic blob as one plus the sum of sizes of 
all its element . Call the hardware support of a blob, the connected 
set of PEs, on which the blob is distributed. The support must have 
an area in 2D (or a volume in 3D) at least proportional to its size. A 

7

  duplicate

w rap new  blob new  link

divide
(e)(d)

(c)(b)(a)

(f)

+-
+ +

-
-

+

+
--

divide



blob  instruction  has  to  be  broadcasted  throughout  its  hardware 
support, this takes a time proportional to the diameter. In order to 
obtain good performance, the run time system must ensure that this 
lower bound is also an upper bound: a blob instruction should take a 
time proportional to the diameter to complete, and furthermore, the 
blob shape should be maintained round, so that the diameter remain 
proportional the square(resp cubic) root of its size,on a 2D (resp. 3D) 
grid. 

4 Implementation results
We have not yet implemented a complete run time system, but we do 
have  studied  the  above  complexity  requirement  for  the  divide 
instruction.  We choose to  focus on  divide  because it  seemed the 
most difficult to implement. It  needs a mechanism to regroup the 
positive and the negative element and install a separating wall. In the 
case of squared blob having only atomic sub-blobs simulated on 2D 
grids, we have presented with Tromp [31] a simple cellular automata 
block  rules  with  one  atom  per  PE,  and  only  two  bits  of  state 
representing  atom  occupation  on  a  PE,  and  polarity.  We  give  a 
complete  three  pages  mathematical  proof  that  the  rule  can  do  a 
horizontal division by separating the plus and the minus element in a 
time less than three times the height. The rules simply piles up atoms 
into  a  heap,  with  a  45  degrees  slope.  The  obvious  solution  of 
pushing  the  positive  (resp.  negative)  atoms  downwards  (resp. 
upwards) does not work, because it  creates arbitrarily big vertical 
atom piles. The trick is to push preferably along the diagonals. In the 
case where the blob is allowed to have a round shape, we have done 
a simulation with Moskowski [32]of the complete division of a blob, 
and measured  experimentally  that  the  time for  division is  indeed 
proportional to the diameter. 

With  Lhuillier,  Reitz  and  Temam  [33],  we  have  implemented  a 
simulator of blobs using a decomposition of the FSA controlling the 
blob  into  elementary  operators  called  particles,  which  are  in  fact 
atomic  blobs.  At  the  time,  we  considered  a  synchronous  SDM , 
where every vertices had to execute at each instant. The simulator 
makes  some  performance  prediction,  assuming  the  specification 
above:  an  instruction  time  proportional  to  the  diameter.  The 
simulator  confirms  the  time  complexity  of O n for  the 
quicksort of n values, which we will present in the examples. It does 
not however evaluates the time necessary for moving the blob, nor 
does it consider a distributed implementation of the blob system.

B Different  incarnations  of  a  blob 
machine
Consider  a  distributed  memory  parallel  machine  with  many 
processing elements called PEs. The implementation of a runtime 
system on such a machine can be fine grain or coarse grain

1 Fine grain
On a fine grain machine, each PE will host one or zero automata. A 
typical fine grain implementation is a 2D cellular automaton, but it 
can also be an amorphous machine. The finite memory of the PEs 
will  force  to  use  a  technique  where  a  blob  automaton  itself  is 
partitioned  and  distributed  among  several  elementary  automata 
stored into a set of atomic sub blobs. Such a technique is described 
in  [33].  At  the  finest  grain,  one  elementary  automaton  can  be 
associated  to  each  transition.  Programming  can  be  adapted  to 
whatever processing resource is offered which can be as elementary 
as a couple of CLBs on an FPGA. The operators used will then be 
lookup  tables  operating  on  bits,  rather  than  traditional  arithmetic 
operations operating on bytes.

 Finer grain augments the parallelism of the communications caused 
by dynamic migration of code and data, because blobs have a larger 
diameter  counted in  number  of  PEs.  The increased parallelism is 
double: pipelined in the direction of the blob movement, and data 
parallel, in the direction perpendicular to the blob movement. 

The problem of the finest possible grain model poses a fascinating 
scientific challenge: what is the most elementary hardware building 
block that can be combined in arbitrary number to build a computing 
medium implementing a blob machine?

2 Coarse grain
In coarse grain machines, each PE hosts a number of automata, and 
the resources needed to implement hardware freedom and dynamic 
migration can be reused for a couple of different automata instead of 
only zero or one automaton. One obtains a slower machine, but one 
that can run a bigger number of automata,  big enough to do real 
algorithms.  A  simple  implementation  would  be  to  simulate  a 
connected set of PEs of the fine grain machine on a single PE of the 
coarse  grain  machine.  This  obvious  method  can  be  optimized  to 
avoid calculating  a distinct position for every single automata. We 
regroup the atomic blobs which are direct brother, and update only 
the position of the center of mass of this group, assuming a regular 
distribution within the group, around this center. 

 In a coarse grain machine, a blob or a channel hosted on a given PE 
is like a thread, and the runtime system is a kind of multi threaded 
operating system scheduled in a cooperative way. Each time a thread 
makes a call to a blob primitive, it temporarily stops so that another 
thread can start. Each thread computes a FSA. Since looping within 
a  fixed  FSA  is  not  relevant  to  generate  useful  computation, 
cooperation  is  bound  to  happen  at  small  finite  intervals  of  time. 
Threads are given control in a round robin way. Not ready blobs are 
quiescent  threads  waiting  to  be  waked  up.  For  the  sake  of 
optimization, one can use an extra blob primitive instruction called 
“pause”  that  just  let  a thread pass it  turn. It  does not change the 
semantic, but modifies the order of execution. 

III The blob ml language
Motivation: We define  the  bob  ml  language  in  order  to   program 
parallel algorithms into blob systems, in a concise and high level way. 
Programming directly the FSA of a self  developing graph with the 
blob instruction set is difficult: firstly, FSA are even at a lower level 
of abstraction than a machine language, secondly, a blob cannot send a 
message selectively to one of its sub blob, all will receive it. The first 
advantage  of  a  higher  level  language,  is  to  manipulate  sub  blobs 
through identifiers. In essence, blobs are simply sets of sub blobs, so 
to compile a given host language into a blob sytem, one just need to 
add the “set” type, and language constructs to manipulate sets. We 
choose  Ocaml  as  host  language,  extending  it  into  blob  ml.  Ocaml 
brings  in  higher  order  functions,  objects,  and static  type inference: 
Ocaml infers the type of each definition, and shows it, after it has been 
declared.  We  will   write  the  inferred  types,  because  it  helps  the 
understanding. Ocaml is also the target language towards which blob 
ml is planned to be compiled. The idea is to exploit the native Ocaml 
compiler,  by preserving the part of the blob ml code which is pure 
Ocaml.

Notation: Our syntax follows the ocaml syntax, except for some slight 
addition: the “set” type is added, parenthesis with vertical bars '{| .. |}' 
are used to denote sets, and the @ is used for remote method calls on 
object hosted on distant blobs. The reader not familiar with Ocaml is 
strongly  advised  to  glance  at  the  excellent  on  line  manual  at 
caml.inria.fr/pub/docs/oreilly-book/ .  In   the  figures  illustrating 
development,  we often  prefer  to  use  the  network representation of 
figure 3, because it is more compact. To understand how the network 
is  laid  out,  one must  bear  in  mind the  real  machine configuration, 
which is the toplogical representation of figure  4 , that uses a set of 
encapsulated membranes. 

The finite memory constraint  An Ocaml program is compiled into a 
blob system from  where  each blob is  controlled by a Finite  State 
Automaton  (FSA).  The  ancestor  blob  starts  to  evaluate  the  Ocaml 
program and allocates all the global variables. If it is a scalar, it can 
directly store it in its local memory. If it is an aggregate data structures 
such as arrays or lists,  it  should create sub blobs, to store it.  More 

8

http://caml.inria.fr/pub/docs/oreilly-book/


precisely, as soon as a variable size depends on the problem size, then 
it must be distributed on a set of sub blobs. For example, an array, 
should  have  each  element  stored  on  a  separate  blob.  While  it 
complicates  the  processing,  it  opens  up  the  possibility  of  parallel 
processing,  since  each  of  those  blob  can  process  concurrently  its 
hosted array element. With parallel  languages, it is normal that the 
programming style  follow some constraints to produce efficient code. 
For example, when using imperative languages to describe hardware 
object for FPGAs, the use of variables generates possibly expensive 
communications.  Usually,  the  constraints  are  hidden  to  the 
programmer. In our case, the constraint  of finite memory is simple 
enough to easily fit in the programmer's mental representation. 

Parallel  data  structures.  While  blob  computing  is  designed  for 
decentralized computation such as neural network development,  we 
believe  it  is  important  to  first  demonstrate  its  expressiveness  and 
performance  on  classic  parallel  algorithm.  We  consider  the  most 
frequently used data structures: arrays and linked lists, and show how 
they  can  be  distributed  on  a  blob  system,  to  be  used  in  parallel 
algorithm. One must think in advance how will the data flow within 
the data structure, and choose a blob representation accordingly. For 
example, a linked list can be implemented horizontally or vertically, 
depending wether the elements of the list are updated synchronously 
or hierarchically. Since sub blobs have no particular order within their 
outer blob, they naturally implement sets. So the set is the only basic 
data structure that can be directly distributed on sub blobs, all other 
data structures such as arrays or linked list will be encoded using sets. 

A  Sets

1 Specifying computation on sets
The  Ocaml  type  system  is  completed  with  the  aggregate 
parameterized type “'a set”,  meaning “a set  of value of type  'a,” 
where 'a is a parameter of type which can be anything. It is the type 
of the set element, which will be automatically inferred by usage. A 
set  is represented using one sub blob per element. To generate a set 
by  listing  its  elements,  we  use  the  following  notation:  let  S=  {|
2,8,2,5|},  creates  four  sub  blobs  each  storing  one  of  the  four 
integers. Note that  elements  can be repeated,  so blobs implement 
more precisely multi sets rather than sets. One can also program a set 
expression with the operator “set of <exp>” which creates an initial 
sub blob b0 evaluating <exp>. If <exp> contains loops and division, 
b0 can generate many elements. For example, the program:  let S = 
set of let e = ref 0 in for i = 1 to k do divide in e := !e *2 and in e := !e*2  
+  1  done;  !e generates  the  set  0{0,  1,  ...,  2k  -1  }.  The  blob b0 

repetitively divides and loops, thus doubling the number of elements 
at each of the  k iterations of the loop. Here, following the Ocaml 
notation, e is a reference to an integer and !e is the value pointed by 
e.

Master  and  slave  The  automaton  associated  to  a  set  element 
implements a mater/slave relationship with respect to its outer blob. 
Theresulting parallelism is like the “actor model”. Upon creation, a 
blob is in a quiescent state called  slave.  It is waiting to receive a 
command from its  outer  blob  that  will  wake  him  up.  Command 
include basic blob primitives, such as send, divide, polarize; or the 
evaluation  of  an  Ocaml  expression.  Commands  are  sent  down 
together with an id to identify which sub blobs are targeted. The id 
of a sub blob is simply the name of the associated set. It is given to 
the sub blob when the set is created. 

Computing a scalar  value from a set. One use directly  reduction 
operators; if  S is a set of integers,  sum of S / card S computes the 
average, one of S returns a randomly chosen element. The reduction 
operators are directly available in the blob machine, so reducing  n 
values can be donedirectly within the outer blobs and its n sub blobs. 
Allocating  n memory  cells  would  have  contradicted  the  finite 
memory constraint. Here the command sent by the master is simply 
to send up the elements. To reduce those elements, the master sets 
the reduction operator, and makes a receive. 

Compute several sets from a set. The construction forall e in S <exp> 
trigers a distinct computation on each elements  e of a set  S.  The 
master  sends  the  whole  expression  <exp> to  its elements  which 
evaluate  <exp> and  returns  new elements  forming  new sets.  For 
example, the expression forall e in S e when e< 10 denotes the subset 
of the element of S which are smaller than 10; the function fun card 
S = sum of forall e in S 1;; fun card 'a set -> int  computes the size of a 
set: each element  creates a value “1”, the  master makes the sum 
reduction of this set of “1s”. Several sets can be computed in a single 
forall loop. It is more concise, and  more efficient. For example, the 
forall loop of the quicksort (resp. bitonic_merge) computes the two 
sets L and R (resp. A and B). 

Blob polarization, cloning, and removal Those are system command 
which  are  automatically  generated  using  an  analysis  of  live  set 
variables. 

•Removal: A sub blob with id S will be automatically removed by 
its master, as soon as its associated set S is no longer a live variable 
of its master. If one uses reference to sets, such as in quicksort, this 
liveliness  analysis  may be  done  dynamically,  similar  to  garbage 
collection.

•Polarization  and  cloning:  When  a  blob  divides,  the  liveliness 
analysis shows which sub blob is used in each child. If a given sub 
blob is  used in  both,  it  will  be  cloned,  else  it  will  be  polarized 
according  to  which  child  is  using  it.  For  example,  before  the 
division occurring in the while loop of  quicksort,  L is polarized 
negatively, and R positively, because L is used in the first child, and 
R in the second child. 

 If a sub blob is atomic, deep cloning and removal is done simply by 
using the blob primitive divide and merge. If we use sets of sets, then 
sub  blob  contains  themselves  sub  sub  blobs.  Deep  cloning  (resp. 
removing) a blob is done by recursively deep cloning (resp removing) 
all the sub blob hierarchy.

Compiler optimization Forall loops can be optimized in two ways: 

1- Avoiding cloning of sets Cloning implies making a copy of all the 
sub blobs and that is expensive in time and space. Consider a forall 
loop applied on a set  that  is  live  after the  loop.  Instead of being 
cloned before the loop, the set should be preserved by the loop. For 
example, the function card, already mentioned, is best implemented 
by having sub blobs send up the value 1, and remain, rather than 
cloning the set, having all the elements compute a 1, and delete the 
newly created set right after that.

2-  Partitioning  the  automaton. Compiling  forall  loops  involves 
having the element perform some code, where is that code located? 
A first idea is to store the code in the master, and have the master 
send that code to the sub blobs. This is not very satisfactory, because 
it can generate expensive communications and big automata, since 
the  master  blob  has  to  contains  all  the  code.  A better  idea is  to 
predict at compile time which code is executed by the elements, and 
directly compile it into their automaton. We will show how this can 
be done in a systematic way by storing objects in elements: the code 
is  the  object  methods,  and  the  automata  associated  to  an  object 
regroup all the object methods, and fields.

2 Iterative set division with quicksort
Motivation: The  quicksort  is  a  representant  of  the  divide  and 
conquer family of algorithm, simple and yet very efficient. Its task 
graph is dynamic, it depends on the data, which makes it difficult to 
handle  using  static  compile-time  method.  It  illustrates  horizontal 
parallelism, as well as interleaving of computation and development. 
Last, quicksort is based on iterative division of sets, which is a basic 
technique that we are going to be using all the time. 

Synopsis. In the following program 1, the function quicksort takes a 
set of integers, and returns an array represented as a set of records 
{i:int  ;v:int  }associating an integer index to a value. We will  see 
later how such an array can be outputted in parallel. We here assume 
that all the values to sort are distinct. We see later how to handle the 

9



general case using arrays. 

Fun quicksort S = set of
  let pS= ref S and inf=ref 0 and sup = ref card of !ps in
  while !inf < !sup do
  let pivot = sum of !pS / card of !pS in
  let L,R = forall e in !pS (e when e<pivot, e when e >= pivot) in
  divide in pS:=L ;sup :=!inf + card !pS -1;
   and in pS:=R; inf:=!sup - card !pS + 1; 
  done; 
  {i= !inf ; v= one of !pS };;
fun quicksort int set -> (int *int) set
let T= quicksort {|3,9,5,7|} ;;

Program  1:  The  development  illustrates  the  evaluation  of  the  
expression let T= quicksort {|3,9,5,7|} ;; the notation follows figure  
3,  except  that  atomic  blobs  are  omitted  (a)  the  initial  
configuration.  the  root  of  the  tree  is  the  master  evaluating the  
expression. (b) Because of the operator  set of, a sub blob b0 is  
created, and is given all the set elements 5,9,7,3 that are used in  
its  computation.  It  is  labeled  by  the  two  integers  inf  and  sup 
storing the first index: 0 and the last index: 3 to be associated to  
the elements of the current set ; It also uses a variable pS which is  
a reference to the name of the current set. pS is initialized with S 
and is later updated to either L or R. (c) and (d) :the quicksort is  
not implemented as a recursive function but with a while loop,  
execute by b0 .The loop body computes a pivot as the average of  
the  elements,  and  partition  the  current  set  in  two  sets  L,R  of  
elements smaller, and greater than the pivot; It then divides , one 
child gets L, and the other R. They updates inf and sup, and loop 
again. After two iterations shown in (c) and (d), the loop exits,  
because only one element remains in the current set. The element  
is returned, in (e) with the computed index which is simply !inf = !
sup.

Synchronization:   The  dynamic  edge  orientation  used  for 
synchronisation is represented by arrows whose extremity is a little 
black disk as in figure 3. As soon as the sub blob b0  executing the 
forall  loop  body  is  created,  the  master  blob  can  continue  its 
execution.  All  the  further  computation  will  be  done  by  b0 's 
descendant. Since those descendant owns the link to their master, the 
master  cannot  control  its  sub  blobs.  It  must  wait  until  all  b0  's 
descendant.have flipped back the edge to him.

Complexity of iterative division When designing data structures, one 
must bear in mind the blob complexity model described page 7. We 
will  consider  only  2D  grid  of  processor,  for  which,  the  time 
complexity  of  a  blob  operation  is  the  square  root  of  its  size. 
Assuming that the pivot split the set in two subsets of equal size, the 
iterative  division of  a  set  of  n elements  has  the  complexity 

O n . In other word, doing an iterative set division takes the 
same  time  complexity  than  doing  a  single  blob  operation  in  the 
master  blob.This  is  because  the  size  is  divided  by  two  at  each 
division step, so the total time is proportional to the initial diameter 
multiplied by the sum of 1 + q + q2 + ... + qk , where q is 1 /2 . 
This sum converge to 12 . If the pivot split the list in two sub 
lists which two sizes satisfy that the quotient of  them falls between 
some  fixed  bound,  sorting  still  preserves  the time  complexity  of 
iterative  set  division: O n and  a  space  complexity  of  O(n).  
This is the optimal VLSI complexity as demonstrated in [2]. We will 
also give the bitonic sort  code which has this optimal complexity 
without having to make any hypothesis on the data. 
Horizontal  and  Vertical  parallelism.  The  blob  framework 
distinguishes  clearly  between  two  kinds  of  parallelism:  Vertical 
parallelism happens between  a  blob  and  its  sub  blobs,  horizontal 

parallelism happen between brothers, sub blob of a given blobs. The 
quicksort example clearly illustrates how the forall construct enables 
horizontal  parallelism:  each  element  of  the  set  computes 
simultaneously  the  comparison  with  the  pivot.  We  will  see  an 
example of vertical parallelism with the queue example of program 
5.

B Array

1 Basic function manipulating arrays
The program 2 summarizes the basic functions to manipulate arrays 
defined as sets.  The type of an array is  type 'a array =  {mutable i: 
integer;  mutable  v:'a} set  .  As for sets,  'a   is a parameter of type, 
which is the type of the array element. The parenthesis are used on 
Ocaml to specify a record. Array are sets of records using two fields 
named  i  and  v. The keyword  mutable  indicates that the value of a 
record field can be modified, therefore the record stores a state. An 
array is thus a set of “state full” elements which can be updated in 
place in a for all loop as illustrated by the function 1D_write. This 
function return the type unit , because it works by a side effect on the 
array. The value of an element can also be “consumed”, as illustrated 
in  in  the  function  1D_divide.  The  upper  half  of  the  array  are 
consumed elements, which are withdrawn from the array. The array 
retains only the lower half of its elements. 

Complexity Concatenating or dividing an array of size  n is done in 
time  O n which is  all  right;  On the  other hand,  reading or 
writing  a  single  cell  takes  also  a  time O n which  is  very 
expensive, compared to O(1) which is usually assumed. It forces the 
programmer  to  design  algorithms  where  array  elements  are   not 
accessed sequentially,  but  processed collectively.  This  is  done by 
aligning arrays, as shown in the next paragraph. 

type 'a array = {mutable i: integer; mutable v:'a} set 
fun 1D_read A i = one of forall a in A a.v when a.i = i ;;
fun 1D_read: ('a array -> int )-> 'a 
fun 1D_write A i v = forall a in A if a.i=i then a.v <- v ;;
fun 1D_write: ( 'a array -> int -> 'a ) -> unit
fun 1D_min A = min of forall a in A a.i ;;
fun 1D_min: 'a array -> int
fun 1D_middle = ( 1D_min A + 1D_max A) /2 i
fun 1D_moy 'a array -> int
fun 1D_divide A = let m=1D_middle A in 
           forall a in A consume a when a.i > m
fun 1D_divide 'a array -> 'a array
fun 1D_translat B d = forall b in B b.i<-b.i + d ; 
fun 1D_translat: ( 'a array -> int)-> unit 
fun 1D_concat A B = 1D_translat B 1D_max A – 1D_min B; A union 
B
fun 1D_concat: ( 'a array -> 'a array) -> a array
fun 1D_invert A= forall a in A a.i <- -i
fun 1D_invert 'a array -> 'a array 

Program  2:  Basic  functions  implementing  the  1D_array  data 
structure. If the elements are modified in the forall loop, the result  
is memorized in the same set. In this way, we can do update in  
place,  for  example,  the  write  function  directly  modifies  its  
argument using a side effect. The function 1D_divide returns the  
upper half, but has also a side effect on its argument, reducing it  
to the lower half, because it explicitly consumes the upper half.  
1D_concat is written in a functional form for convenience in latter  
use, it uses the operator union which makes a set union. 

2 Aligning arrays with extended forall loops

Iterative set division on arrays. Consider a computation on a set, that 
cannot be directly implemented with a forall loop on its elements. As 
we have seen with the quicksort example, we can also process sets 
by  iteratively  dividing  the  set  in  two  subsets  until  the  set  is 
partitioned  into  singletons.  In  the  case  of  arrays,  the  function 

10

0,1     2,3

S{5,9,3,7}

L{3}  R{5}  L{7}  R{9}

L{5,3}   R{9,7}

0,3

T{(0,3),(1,5),(2,7),(3,9)} 

0,0    1,1    2,2    3,3

(b)

(e)
(d)

(c)
S{5,9,3,7}

(a)



1D_divide of program 2 can  divide the arrays in exactly two halves, 
using  the  array  indexes.  Ierative  division  can  be  applied 
simultaneously on two arrays A and B having the same size  n. One 
will end up generating n sub blobs b0, .., bn-1, where  blob bi contains 
elements  A[i]  and  B[i] and can compute  in  parallel  an operation 
needing both A[i] and B[i] such as the scalar product, or the sum of 
vectors, illustrated in program 3. We call this process “aligning” A 
and B.

In  order  to  easily  align  several  arrays,  we  implement  arrays  as 
system  data  structure  and  exetend  the  semantic  to  forall  loops 
applied  on  array  borrowing  the  “dot”  notation  from  the  SISAL 
language:  forall a1 in A1 dot ..  dot ak in Ak exp; allowing to align 
multiple arrays A1 ,... , Ak .  The variable  ai binds to  Ai's element; it 
can be omitted in which case  Ai will be accessed as an array.  We 
have to omit it, when aligning to arrays of different size, as in the 
function 1D_output  of program 8. To build an array within a forall 
loops, the returned element is preceded by the keyword “array of” 
as in the function 1D_sum. One can align arrays with other types of 
data structure that support division: a range can be:

•An interval 1,n as in function 2D_multiply of program 9.

•A 2X record, as will be explained in program 8

•A set, as in function set2array. 

To iteratively divide a set, we need to divide it in two halves non-
deterministically. We us a prefix computation with the xor operator. 
Every element send  true, and with the prefix,  n div 2  out of the  n 
elements get true, and the other n – n div 2 get false. This boolean is 
then used to polarize the elements. The corresponding code is:  fun 
set_divide S = forall e in S consume e when prefix xor TRUE.

Implementation and complexity. The extended forall uses an iterative 
set division as in the quicksort execution. It is illustrated in the figure 
of program 3 : a sub blob b0 is created. It does the iterative division 
of all the ranges and divide itself, until the first range is reduced to a 
singleton. Finally all  the descendant of  b0 evaluate in parallel  the 
body expression of the forall.  The iterative division of a set  of  n 
elements has the complexity  O n and a space complexity of 
O(n),  as we have already seen with the quicksort example.  Scalar 
product, sum of vector and concerting a set to an array, all use a 
forall loop, and have the same complexity. For synchronisation, the 
situation  is  similar  to  quicksort.  The  master  calling  the  function 
1D_sum can resume execution as soon as the sub blob executing the 
iterative division has been created. 

fun scalarprod A B = sum of forall a in A dot b in B a*b ;;
fun scalar ( int array * int array )-> 'int 
fun 1D_sum A B = forall a in A dot b in B array of (a+b) ;;
fun 1D_ sum ( int array * int array )-> int array
fun set2array S:set = forall e in E array of e
fun 'a set -> 'a array

Program 3: The figure illustrate the execution of the code let C = 
1D_sum  [|0,2,4,6|]  [|1,1,1,1|];; The  arrays  are  divided  in  two,  
iteratively, until they have only one element. By default, the forall  
returns a set. It can be preceded by a reduction operator as in the  
function scalar prod. To re-build an array, one use the keyword  
“array of ” as in 1D_sum. The last function set2array use a set as 
range.

3 Parallel divide and conquer
The program  4  present two algorithms using the divide and conquer 
strategy,  where  an  array  is  splited  in  two,  and  the  results  are 
concatenated. The parallelism is specified using the Ocaml construct 
let A= exp1 and B =exp2 where the expression exp1 and exp2 can be 
evaluated in parallel. On order to obtain a parallel execution, two sub 
bobs  are  created,  one  evaluates  exp1  and  the  other  exp2.  The 
expressions exp1 and exp2   contain recursive call which are done on 
the virgin stack of the two created sub blobs. Incidentally, it avoids 
to do the recursive calls on the stack of a single blob, which would 
have contradicted the finite memory hypothesis. 

fun quicksort S =
let pivot = sum of S / card of S in 
if pivot = min of S then set2array S
else let L,R= forall e in S (e when e < pivot , e when e > pivot ) in
 let A = quicksort L and B = quicksort R in 1D_concat A B ;;

fun bitonic_sort S = 
 if card S < 2 then set2array S else let T = set_divide S in 
 let A = bitonic_sort S and B = bitonic_sort T in 
 1D_invert B; bitonic_merge 1D_concat A B ;;
fun bitonic_sort: int set -> int array

fun bitonic_merge A = 
 if card A < 2 then A else let B = 1D_divide A in
 let A,B = for all a in A dot b in B (array of min a b,array of max a b)
 in let A =bitonic_merge A and B = bitonic_merge B
 in 1D_concat A B ;;
fun bitonic_merge: int array -> int array

Program 4: Divide and conquer parallelism. The figure illustrates  
the call to quicksort {|3,9,5,7|}. While the program presented here 
is easier to write,  its  execution produces encapsulated blobs of 
depth log(n)  sorting n number. Bitonic _sort is here programmed 
for list of arbitrary size. Bitonic_ merge divides an array A of size  
n in two sub arrays A and B which size may differ by one, if n is  
odd,  which will  happen when we sort  sequence that  are  not  a  
power of two in length. If n is odd, one of the blob generated by  
the  forall  loop  will  have  one  A  element  but  no  B  elements  to  
compare  with.  The  program  still  works  if  min  and  max  are 
programmed so that, if  y is undefined: min x y returns x , and max  
x y returns “undefined”, and “undefined” does not generate new  
elements. 

First the program  4 apply this technic to implements quicksort. We 
obtain a more compact algorithm, and  also  more general, since it can 
sort  sets  including  repeated  elements.  Secondly,  we  program  the 
bitonic sort, which as we will show, has an optimal VLSI complexity 
when run as a blob system on a 2D grid.  How does the bitonic sort 
works? A  sorted  sequence  is  a  monotonically  ascending  (or 
descending)  sequence.  A  bitonic  sequence  is  composed  of  two 
subsequences,  one  ascending  and  the  other  descending.  Bitonic 
sequences have the  following property  that  is  used in  bitonic  sort: 
suppose you have a bitonic sequence of length 2n, that is, elements in 
positions [0,2n). You can easily divide it into two halves,  [0,n)  and 
[n,2n),  such  that  1-  each  half  is  a  bitonic  sequence,  and  -2  every 
element in half [0,n) is less than or equal to each element in [n,2n). 
What  is  this  easy  method?  Simply  compare  elements  in  the 
corresponding positions in the two halves and exchange them if they 
are  out  of  order:  for  (i=0;i<n;i++)  {  if  (get(i)>get(i+n)) 
exchange(i,i+n); }. So here's how we do a bitonic sort: 1- We sort the 
lower half  into ascending order and the upper half  into descending 
order.  This  gives  us  a  bitonic  sequence.  2-  We perform a  bitonic 

11

A[0,2,4,6]   B[1,1,1,1] A[0,2] B[1,1]  A[4,6] B[1,1] 

A[0] B[1]  A[4] B[1] A[4] B[1]  A[6] B[1]

C[1,3,5,7] 

0,1     2,30,3

0,0    1,1    2,2    3,3

(b)(a)

(c) (d)

S{5,9,3,7}

S{3}  S{5}  S{7}  S{9}
S{5,3}   S{9,7}

(b)(a) (c)

A[3]  B[5] A[7] B[9] A[3,5] B[7,9]

(d)
(e)

T[3,5,7,9] 
(f)



merge on the sequence, which gives us a bitonic sequence in each half 
and  all  the  larger  elements  in  the  upper  half.  3-  We  recursively 
bitonically merge each half until all the elements are sorted.

Complexity The bitonic merge, and the bitonic sort of  n elements 
have a 2D time complexity of O n  and a space complexity of 
O(n) .  Demonstration  can  be  done  by  recurrence  on  n.  The  non 
recursive part of bitonic merge takes a time t1 < K1* n and the 
recursive part, by recurrence, t1 < K2* n /2 . It suffice to choose 
K2 big  enough  such  that  the  inequality  K1+  K2* 1/2 <K2 
holds. The same reasoning can be repeated on bitonic sort. This is an 
optimal VLSI complexity as  proved in  [34] .  We do not  need to 
make any hypothesis on data distribution, because unlike quicksort, 
the array size is always divided by two. There does already exist a 
sorting algorithm on a 2D grid reaching the optimal complexity [35], 
but  it  is  much  more  complex  than  the  one  presented  here:  for 
example,  it  needs  to  tile  a  2D  grid  of  PEs,  with  tile  length  of 

4n .

type 'a queue = { mutable next:'a queue set ;mutable v:'a; 
        mutable empty: boolean} ;;
fun push v q = if not q.empty and v< q.v 
   then forall q1 in q.next push q1 v
   else begin q.next= {| q |} ; q.v<-v; q.empty=FALSE; end
push ('a -> 'a queue) -> unit, 
method pop q= if q.empty then Raise Empty_Stack
     else let v1= q.v and q1= one of q.next in
     q.next=q1.next;q.empty=q1.empty;q.v=q1.v; v1
 pop: 'a queue -> 'a 
let q0 = {v=undefined;empty = TRUE; next = NOBLOB} ;;

Program5:  Using  vertical  linked  list  to  implement  a  parallel  
priority queue. The figure illustrate the execution of push 1 (push 3 
( push 5 (push 7 q0)));;  We do not represent the empty  field. A 
queue is a reference to  a  record with  three mutable fields.  The 
symbol  φ  represents the initial record  q0. When push is executed 
on a queue q hosted by a blob b it possibly generates a recursive  
call in the sub blob q.next of b, which can run concurrently once it  
is launched, so that another push command can be executed by b.  
The insertion of a new element q.next= {| q |} takes two steps: 1- a  
new sub blob b0 is created, using the “new blob” instruction,  2-  
all the fields of the record, including the sub blob q.next are moved 
to  b0,  using the “move down” instruction.  Both instructions are  
ready, as table 1 makes precise. 

C Linked list
To distribute a linked list of arbitrary length, one links together a 1D 
sequence  of  blobs  b1,  ...,bn.  The  linked  list  is  vertical  (resp. 
horizontal)  if  the  edges  between  the  blobs  are  vertical  (resp. 
horizontal,  using  channels).  Vertical  list  are  used  when  the 
processing is done in a top down hierarchical way,  bi,  contains  bi+1 

and  is the master of bi+1.  Horizontal lists are used when blobs  b1,  
...,bn play a symmetric role, and are updated in a synchronized way.

1 Vertical list
A vertical queue of  n  elements is coded by an encapsulation of  n 

blobs, as shown by the figure of program 5. The figure illustrates a 
vertical parallelism (see page  10 for definition). It is a “pipelined” 
type of parallelism, where at each new time step, a new element can 
be inserted to the queue. 

Synchronization  Consider  the  moment  when  push  is  recursivelly 
called using a forall loop, on the sub blob q1 in q.next, that sub blob 
does not need to keep the ownership of the edge to its outer blob, 
because the push function does an update in place. Each blob can 
keep ownership of  its sub blobs.

Complexity. Each blob contains only one sub blob. To obtain a space 
complexity of O(n) for representing a queue of n elements, the queue 
should  not  be  internally  represented  using  the  topological 
representation  of  encapsulated  membranes.  One  must  instead 
represent  the  linear  network  structure  shown  in  program  5.  In 
general,  it  is  not  worth  representing  membranes,  as  soon  as  the 
number of sub membranes in known to be bounded at compile time; 
binary trees used in program 3 are another example of this rule.

2 Vertical list using Set of objects
The use of set of objects can simplify the preceding program. Sets of 
objects  are  enough  important  to  motivate  a  specific  syntax.  An 
object that is systematically used as a set element is declared using a 
specific syntax “blob class”, and is called a “blob object” such as the 
queue of program 6 . The instantiation of a blob object such as O:= 
new queue will first create a sub blob b, and instantiate an object of 
class queue within b. As a result, a set (singleton) of objects named 
O is created. Because objects have state, we can do update in place 
within set of objects. Instead of writing  forall o in O o#m exp, we 
use the shorter notation  @O#m exp.  This notation is read: “launch 
method  m in  all  sub  blobs  named  O  with  parameter exp;”  it  is 
comparable to a remote method call. Remote calls can be done at 
arbitrary depth by chaining “@”:  @a@b#m exp launches m in sub 
blobs  b  of sub blobs  a... It is also possible to do a remote call in 
parent blobs, or through channels although we do not cover this in 
the present article.

Using self There cannot be any pointer to a blob object, it can only 
be accessed through remote method call. As a result, a blob object 
can consistently replace itself using the instruction self<- exp, where 
exp  must be of the same type as itself. It can also pass a copy of 
itself, see for example, the instruction next<-self of program 6. 

Partitioning the code on automata Using blob objects as an other big 
advantage: the code associated to the method such as push or pop, 
can be compiled in the blob automaton controling to the blob hosting 
the object, since only that blob will use it. The code is partitioned 
and distributed it among the blob objects. One can compile many 
small  automata,  rather  than  a  single  big  automaton including the 
whole program.

blob class ['a] queue 
val mutable empty = TRUE 
val mutable v:'a 
val mutable next = NOBLOB
method push v0 = if not empty and v0< v then @next#push v0;
     else begin next <- self; v<- v0; empty = FALSE end
method pop = if empty then Raise Empty_Stack
      else let v1= v in self <-next; v1
<push 'a -> unit, pop: unit -> 'a>

Program6: Implementing the same queue as preceding program, 
using blob objects. In Ocaml objects, the data fields are declared  
with the keyword “val”. The instruction next <- self; has the effect  
of encapsulating the whole queue in itself, naming it as next. Next  
is not duplicated when self is passed, because it is not live after 
that instruction, being obviously redefined. 

Blob primitives  implemented as  method.  Any blob object  directly 
inherit  the  blob  primitives  as  methods,  adapted  with  a  functional 
syntax and semantic. Consider for example  merge and  divide. The 
call to “merge b” merges another blob  b  with self, it  must checks 
that  b's type is the same as self and that the sub blob of self  and b 
have the same identifier, which is true if all sub blobs are data fields 

12

(b)

(a)

(d)(c)

push 7 φ push 5 {  ,7} 

 φ

push 3 {  ,7} 

push 5 φ push 3 {  ,5} 

 φ

push 1 {  ,7} 

push 1 {  ,5} 

push 3 φ 

{  ,7} {  ,5} 

{  ,7} 

push 1 {  ,3} 

 φ

{  ,5} 

{  ,7} 

{  ,3} 

push 1 φ 

{  ,5} 

{  ,7} 

{  ,3} 

{  ,1} 

 φ

(f) (e)(g)(h)



of type set. The call to divide divides the blob, and return a pair of 
blob, if called from outside. For example, the instantiation of a  1X 
blob  object  of  program  7 returns  a  pair  of  blobs,  because  the 
initializer of 1X makes a divide.

3 Channel Implementation
Who is the master of a channel? A channel is programmed as a set 
element, except that it belongs at the same time to the two sets of 
channels controlled by the left and and the right extremity blob. It 
can obey to only one extremity, which is called the master extremity 
and is owned by that extremity.  Initially, when a master creates a 
new channel, by convention, the left edge is polarized - and the right 
+, and the master extremity is the right. Both left and right edges are 
owned by the master. This is a just a necessary transitory state. In the 
permanent regime, the channel must own the non master extremity, 
so  as  to  execute  primitives  such  as  delete  of  duplicate.  In  the 
initializer of the 1X class of program  7,  the permanent regime is 
reached  in  the  following  way:  the  master  creates  the  channel, 
divides, and the negative child flips its left edge back to the channel.

blob class 1X
 val c=new channel;
 initializer = divide in nop and in flip left;
 val mutable owner = polarity(out)
 method send m = if owner then @c#send m
 method rec= if owner then rec
 method flip= if owner then @c#flip; owner :=not owner
 method deep_clone=if owner then @c#duplicate; divide; @c#flip;
 method deep_remove= if owner then @c#delete; merge

type 2X= {in:1X; out:1X}
fun 2X_divide c=let l,r=new 1X in ({in= c.in;out=r},{in= l;out= c.out})
fun 2Xdivide: 2X-> (2X* 2X) 
fun 2X_send c val = @c.out#send val
fun 2X_rec c = @c.in#rec
fun 2X_shift c = 2X_send c (2X_rec c)

Program7:  Channel  implementation.  The  class  1X  allows  to  
independently polarize (and therefore move) both extremities of  
the channel. The initializer “divide” ensure that 1X are created by  
pair, one for each extremities. Because of this divide, a call to new 
1X returns a pair of 1X, extremities of the same channel. The flag 
“owner” stores  which of  the two extremities  is  the  owner.  The 
type 2X is a record allowing to manipulate two 1X in a coherent  
way (a) represents an horizontal list of three blob connected using  
two 2X called v, (b) is a compact notation where channels and 1X  
blobs are omitted The name of the 2X record directly label the  
connections,  represented  as  a  big  arrow  from  out  to  in.  This  
representation assume that all the node participating to the list,  
use the same name for their local 2X value. From (b) to (c), the  
central blob executes “divide with v” which is a short notation for  
let v1,v2 = 2X_divide v in divide in v=v1 and in v = v2; The result  
is to insert a new element in the 1D grid.

Channels  primitives. Channels  are implemented as  objects  with  a 
fixed repertoire of  6  methods:  duplicate,  delete,  send,  move,  flip,  
obey. A remote method call to a channel works like a remote method 
call to a blob object. Channels are used only as client object: they 
cannot be inherited from. Thus unlike blob class, there is no need to 
have channel class. Managing links is always done by triggering a 
combination  of  calls  to  the  6  primitive  method,  from the  master 
extremity, plus the possibility to directly command the non master 
extremity.  The  channel  methods implement  the  channel  primitive 

instructions:  delete (res.  duplicate)  deletes  (resp.  duplicates)  the 
channel; send m forward a message m to the other extremity which 
can then call receive to receive m; The method move, obey and flip  
are  used  for  transiting  blobs  through  channels,  and  for 
synchronization

Blob movement  through channel. The method  move b  migrates  a 
blob b to the other extremity. A master b0 can move blob b1 through a 
channel only if it is itself an object, and  b1  is an object field, and 
since  both  extremities  have  always  the  same  type,  (channels  are 
allowed to be moved only through merge that preserve the type); 
type coherence is preserved. The method obey make one extremity 
blob takes it order from the other. Remote call  of methods through 
channels also generates blob movement through channel, when blobs 
are passed as parameters. 

Synchronization  and  mutual  exclusion:  The  master  extremity  is 
changed  when  the  master  calls  the  method  flip.  Synchronization 
between  both  extremities  is  done  simply  by  a  back  and  forth 
flipping.  The  non-master  extremity  is  not  owned  by  the  blob 
connected  to  it.  Therefore,  that  blob  cannot  execute  a  blob 
instruction needing to own the horizontal edge such as division or 
polarization  of  horizontal  edges  .  Thus,  channels  implement  an 
implicit mutual exclusion between the blobs at its extremities. For 
example, the extremities cannot move simultaneously their channel 
edges, because movement is done by polarization.

The  1X  class The  mutual  exclusion  just  mentioned  is  over 
constraining.  It  is  possible  in  principle  to  polarize  and  move  a 
channel  independently  at  each extremity,  by separately  polarizing 
the edges, without compromising determinism. That could be done 
using  a  non  deterministic  blob  primitive  allowing  the  channel 
automaton to probe whether or not it owns a given extremity; and 
then get separate commands, and apply polarization independently 
for each extremity. However, there is a simpler implementation that 
does not need non determinism to be introduced: one encapsulates 
each extremity into a 1X blob object defined in program 7, that just 
propagates commands to the channel. The two 1X associated to a 
channel can then be polarized and moved independently 

Deep cloning and removal. For blobs using channels, the recursive 
application of  deep_clone and deep_remove mentioned in  page  9 
must be redefined, to make sure only the master extremity duplicates 
or  deletes  the  channel.  For  this  purpose,  deep_cloning  and 
deep_remove are implemented in blob ml, as object method that can 
possibly  be  redefined.  In  1X,  cloning  implies  also  an  implicit 
synchronization:  after  the  master  extremity  has  duplicated  the 
channel,  the non master extremity should also immediately divide 
while  the  two  channels  duplicata  are  polarized  differently.  This 
avoids that two channels have two extremity reaching the same 1X 
blob. To be able to divide, the non master extremity must temporary 
be  given  ownership  of  the  channel.  Thus,  cloning  (and  removal) 
must be issued at each extremity This allows an entire blob hierarchy 
connected  using  1X  blob  object,  to  deep_clone  or  deep_remove 
when needed.  For  example,  if  the  horizontal  list  in  the  figure  of 
program 7 , is contained in a blob that is deep_cloned, the whole list 
is deep cloned. 

The 2X type for horizontal lists It manipulates two 1X blob objects 
within a record, representing an horizontal linked list: the  in (resp. 
the out) 1X connects to the previous (resp. the next) element. A list 
of blobs linked using a 2X value called v is represented in a compact 
way, as shown in the figure of program 7. Division of 2X is defined 
so that a blob of the list can insert a new blob just after it, just by 
dividing v before it divides itself. 

4 Horizontal list for input / output
Consider the problem of outputting an array A of n values through a 
single port. Using a simple loop that reads the elements one by one 
would result in a poor time complexity of O nn because each 
read costs O n .  In order to obtain a good complexity of O(n),  
we install  an horizontal  linked list  with 2X records, and shift  the 
array value along that list. 

13

v

v

v

v

v

divide with v 

 

 

in
out

out

in

v

v

v

c

c

(c)(b)(a)



Distributing an array A in a horizontal list. The type 1X and 2X are 
implemented as system type, since 2X can divide, it is possible to 
use a 2X value as a range in a forall loop. Consider an initial 2X 
value c = { in = cin ; out =cout }, The iterative successive divisions 
generated by forall A dot c , also operating on c, will naturally insert 
a link between each value of A to be outputted, The resulting list will 
be attached at its extremity to cin and cout . 

fun 1D_send c A= forall a in A dot c dot i :integer
         send c a; for j = 1 to i do shift c ; done
fun send : int array -> 2X -> unit

fun 1D_output A = forall  p in port dot A
         let v={ in= NOBLOB; out = p} in send v A;
fun output : int array -> unit

Program8: Parallel  output of  a 1D array of integers.  The first  
function 1D_send A c sends one by one all the element of A to 
c.out.  The second function 1D_output A outputs in parallel  the  
element of A, using all the available ports. The figure illustrates  
an execution with an array of 6 elements, through 2 ports: (a)  
initial situation; (b) the forall loop defined in 1D_output aligns  
the arrays on the ports, which means making 2 sub arrays, since  
there are two ports;  (c) a 2X record v is created from the port;  
(d) the forall loop defined in 1Dsend produces an horizontal list  
of  three  nodes;  (e)  the  array  values  are  sent  through  the  2X 
record,  A2 and A5 are outputted in parallel. (f) the first of the two  
necessary shifts is performed by the lowest four blobs, A1 and A4 

are outputted in parallel. 

Using ports.  Ports are implemented as system blob objects whose 
type is compatible with 1X blob object: the methods have the same 
profile.  The  method  send  (resp.  rec)  result  in  outputting  (resp. 
inputing) a value through the port.  The method deep_remove and 
deep_clone  have  no  effect  on  ports,  because  ports  cannot  be 
duplicated or deleted. If one want to use the preceding forall loop to 
output to a port, if suffices to bind cout to a port. Ports are provided as 
an array, in a global variable called “port”. When a blob containing 
ports is removed, the ports will automatically be recovered and be 
reusable  under  the  same  global  name.  When  one  does  parallel 
computation on a machine, it is of crucial importance to be also able 
to  do  parallel  input  and  output  on  several  ports.  The  program  8 
illustrates how to do this using once more alignement of arrays and 
ports.

D Multidimensional grid and arrays
Multidimensional grid. We have seen how to generate one horizontal 
list using one 2X record. As a natural generalization, with 2 distinct 
2X records  h  and  v,  one can build a 2D grid, by encapsulating 2 
forall loops: forall i in 1,n dot v forall  j in 1,m dot h exp. Here, the 
body of the loop:  exp  can use h  and  v, to communicate in the 2D 
grid, along the  x  and the  y axis.  This can be rewritten in a single 
forall  loop  sing  the  keyword  “cross”  borrowed  from  Sisal  that 
makes a product of range: forall i in 1,n dot v cross j in 1,m dot h exp. 
First the list along the y axis is developed by iteratively dividing v , 

and then each element of that list generates another list along the x 
axis, by iteratively dividing h  while deep cloning  v. As usual, this 
deep  cloning  is  automatically  generated  from  liveliness  analysis, 
since  v  is  used in  exp .  This can be easily extended to grid of  k 
dimensions by making the product of k ranges. 

Multidimensional array. We implement an array A of k dimensions, 
and extend the semantic of forall loops, so that forall  B in  A will 
instantiate  an  array  B  of  k-1  dimensions,  by distributing  the  first 
dimension. One can also distribute along another chosen dimension 
instead of the first, as in the function transpose of program 9 which 
distribute its parameter on dimension 2. The type of nD arrays is a 
generalization of 1D arrays, the record representing an element is 
completed with a vector coord of k coordinates. In this way, all the 
functions defined on 1D arrays can be reused, we just need to select 
the dimension considered using the function select_dim. 

type 'a nD_array = {mutable i: integer; mutable v:'a;
         mutable coord: int vect} set
fun select_dim A k = for all a in A a.i <- a.coord.(k)
fun 2D_send A c = for all B in A 1D_send B c return
fun 2X_pair = 2Xdivide {in= NOBLOB; out = NOBLOB}
fun transpose A = for all B in A:2 return array of B

fun 2D_multiply (A, B) =
 let n= card A and k = card B and B = transpose B in
 let m = card B and (hA,hC) =2X_pair and (vB, vC) = 2X_pair in
 let _ = 2Dsend A hA and _= 2Dsend B vB and result =
 forall 1,n dot vC cross 1,m dot hC 
  let c=ref 0 in for i= 0 to k do /* accumulation loop */
  let a= @hC#rec and b = @vC#rec in
  c:=!c + a * b; @hC#send a; @vC#send b; done; 
 array of c in result
fun 2D_multiply:(int nD_array*int nD_array)-> int nD_Darray

Program9: Steps of the development of the Kung and Leiserson 's  
circuit  for  multiplying  two  matrices  A  and  B.(a)  Initially,  the  
parallel  let..and..  creates  three  sub  blobs  which  will  develop  
respectively the data grid containing A and B, and the computing 
grid containing the result C. (b) the development of the first forall  
loops along the  vertical  axis  is  performed.  The B grid has not  
started  to  develop  yet,  because  it  must  synchronize  with  the 
horizontal development of the C grid (c) The network is laid out,  
while A and B just  forward their value in a pipelined way, C's  
elements iteratively receive, multiply, accumulate and forward.

The program 9 uses 2D arrays, and 2D grids to implement the kung 
and leiserson algorithm for multiplying 2D matrices. It is  optimal 
with respect to VLSI complexity: to multiply two nXn  matrices,  A 
and  B, it  takes  a  space  O(n2)  and a  time O(n).  The development 
installs three grids storing A, B and the resulting matrix  C.  It takes 
place first vertically, for  A and C then horizontally for  A,B,  and C, 
and  finally,  again  vertically  for  B.  It  would  be  more  efficient  to 
interleave steps of horizontal and vertical development, then the tree 
matrices would be developing simultaneously. 

14

(e)(d)

(c)(b)(a)

A
0

A
1

v

A
2

v

v

A
3

A
4

v

A
5

v

v

A
0

A
1

v

A
2

v

v

A
3

A
4

v

A
5

v

v

A
0

A
1

v

v

v

A
3

A
4

v

v

v

A[0..2]
v

A[3..5]
v

A[0..2]
p

A[3..5]
p

A[0..5]
Port[ , ]

(f )

vv

h

h

h

v

h

h

h
vvv

B
02

B
12

v

B
22

B
01

B
11

v

B
21

B
00

B
10

v

B
20

vvv

vvv

A
02

A
12

A
22

h

h

h

A
01

A
11

A
21

h

h

h

A
00

A
10

A
20

h

h

h

v

v

B
**

v

A
0*

A
1*

A
2*

h

h

h

B
**

v

A
**

h

(b)

(a)

(c)



IV Conclusion:  paying  the  price  for 
programmability. 
One can summarize the spirit of blob computing as paying space and 
time to obtain a clean abstraction of a computing medium. At the 
root of blob computing is the hypothesis of a lower level system able 
to constantly move the blobs and channels across the hardware so 
that communicating blobs are place nearby and density of blobs is 
homogenized  This  freedom of  software  from hardware  implies  a 
significant extra price of space and time to pay: Each Processing 
Element (PE), be it a group of clbs in an FPGA, or a small processor, 
has  to  be  completed  with  an  hardware  or  a  run  time  system 
implementing  the  hardware  freedom.  This  new  functionality  has 
indeed to constantly update the position of every blob and migrate 
them if  necessary  between  adjacent  PEs.  It  will  take  some fixed 
percentage  of  the  space,  and  slows  down the  execution  by  some 
constant factor. Sure enough, if the goal is to exploit the most out of 
a  piece  of  reconfigurable  computing,  or  a  distributed  memory 
multiprocessor, then programming using specific ad hoc circuit or 
message passing libraries, is going to make the most performance 
out of it. So, why should one want to pay an extra price for hardware 
freedom? The answer is that using a simple, clean abstraction such 
as  blob  computing can facilitate  the  job  of  programming parallel 
computers,  and  especially  computing  media  used  in  the  spatial 
computing community.

In the world of sequential computing, one is already willing to pay a 
price for programmability. It is now well accepted that programming 
directly in a machine language is no longer necessary except for very 
specific  case  where  performance  is  crucial.  One  can  program in 
higher level language such as C, but,  also in yet more high level 
object  oriented  style  such  as  java,  which  while  simplifying  the 
programmer’s job, further diminishes the performance. Java run on 
any system, and this is why people use it. So there is a trade off 
between performance and programmability which is shifting towards 
programmability, as the power of our machine augments.

Likewise  for  parallelism,  when  sufficiently  enough  hardware  is 
available, we may be willing to pay the price to obtain portability 
across  different  platforms  and  free  the  user  to  worry  about  the 
specificity of the parallel architecture and how to map software to 
hardware. In our framework, the user has to “fold” a task graph into 
a  “self-developing automata  network” which is distributed by the 
machine  itself,  at  run  time.  A  program  written  using  the  blob 
primitives  does  not  make  hypothesis  on  hardware  other  than  its 
dimensionality, i.e. whether it is 2D or 3D. The same program could 
run on an FPGA, or a 2D grid coarse grain processors, as long has 
the  system  layer,  representing  blobs  and  filaments,  and 
implementing the blob primitive, is installed on top of it, and turn it 
into a virtual blob machine.

Bibliography
1 John Von Neuman  Theory of self-reproducing automata,   1966 
http://www.walenz.org/vonNeumann/page0111.html 
2  T.  Lengauer  VLSI  theory   1990   in  Handbook  of  Theoretical 
Computer Science
3 H. Abelson D.  Allen  D. Coore C. Hanson  G.  Homsy T.  Knight, 
R.  Nagpal Amorphous computing communication of the ACM  2000 
4  Flikkema,  P.G.     Leid,  J.G.  Bacterial  communities:  a 
microbiological  model  for  swarm  intelligence   2005   in  Swarm 
Intelligence Symposium
5 L. Adleman Computing with DNA scientific american  1998 
6  A.  Barabasi  Taming  Complexity  Nature  Physics  2005 
http://www.nd.edu/~networks/
7 A. Dehon et all Stream Computation Organized for Reconfigurable 
Execution Microprocessors and Microsystems  2006 
8 B. Gojman E. Rachlin J. Savage Evaluation of design strategies for 
stochastically assembled nanoarray memo ACM Journal on Emerging 
Technologies in Computing  2005 
9  Goldstein,  P.  Lee,  J.  Campbell,  &  Padmanabhan  Pillai  Scalable 

Shape Sculpting via Hole Motion  2006  in International Conference 
on Robotics
10  Tyrrell,   Sanchez,   Floreano,  Tempesti,  Mange,   Moreno, 
Rosenberg,  Villa POEtic Tissue: An Integrated Architecture for Bio-
inspired Hardware  2003  in  Evolvable  Systems:  From Biology to 
Hardware
11 Andrew Adamatzky  Reaction Diffusion Computers,   2005   
12  T.  Toffoli  Programmable  matter  methods  Future  Generation 
Computer Systems  1999 
13 D. coore   A Developmental Approach to Generating Interconnect 
Topologies,   phd  thesis  1999 
http://www.swiss.csail.mit.edu/projects/amorphous/ 
14  R.  Nagpal   Programmable  Self-Assembly,   phd  thesis  2001 
http://www.swiss.csail.mit.edu/projects/amorphous/ 
15 J.  Giavitto O. Michel   MGS: a  Programming Language for the 
Transformations of Collections,  LaMI technical report N° 61-2001 
2001  http://mgs.lami.univ-evry.fr/PUBLICATIONS/publicat 
16 J.Giavitto  Topological Collections,   Transformations and Their 
Application ... in Rewriting Technics and Applications  2003 
17  J.-P.  Banatre  and  D.  Le  Metayer.  Programming  by  multiset 
transformation. CACM  1993 
18 G. Paun  Membrane Computing. An Introduction,   2002   
19  L.  Cardelli  BioAmbients:  an  abstraction  for  biological 
compartments Theoretical Computer Science  2004 
20  T.  S.    Ray  An  evolutionary  approach  to  synthetic  biology  in 
Advances in evolutionary computing: theory and app  2003 
21 J. Dennis  First version of a data flow procedure language,   1975   
22  Definition:   , 
http://en.wikipedia.org/wiki/Graph_homomorphism 
23 Roman Bacik, Sanjeev Mahajan Semidefinite Programming and its 
Applications  to  NP  Problems  in  Electronic  Colloquium  on 
Computational  Complexity  1995  http://eccc.hpi-web.de/eccc-
reports/1995/TR95-011/
24  S.  Jafar   Programmation  des  systèmes  parallèles  distribués  : 
tolérance aux pannes, ..,  PhdThesis 2006   
25 A. Darte  De l'organisation des calculs dans les codes répétitifs, 
HDR 1999  ftp://ftp.ens-Lyon.fr/pub/LIP/Rapports/HDR/HDR1999 
26  K.  Kennedy  U.  Kremer  Automatic  data  layout  for  high 
performance  Fortran   1995   in  1995  ACM/IEEE  conference  on 
Supercomputing
27 M. Arbib, P.Érdi, J. Szentágothai  Neural Organization- structure, 
function, and dynamics,   1998   
28 F. Gruau, P Malbos The Blob: A Basic Topological Concept for 
distributed computation    in Unconventional Models of Computation 
LNCS 2509
29 Definition:  ,     http://en.wikipedia.org/wiki/Mealy_machine 
30 Definition:  ,     /wiki/Confluence_%28term_rewriting%29 
31 F. Gruau, J. Tromp Cellular Gravity  Parallel Processing Letters 
2000 
32 F.  Gruau, G. Moszkowski The Blob Division: A hardware-free, 
time efficient, self-reproduction on 2D  2004  in biologically inspired 
approaches to advanced ...Pr
33 F. Gruau, Y. Lhuillier, P. Reitz, O. Temam Blob Computing  2004 
in ACM conf. on  Computing Frontiers
34 C. D. Thomson The VLSI complexity of sorting IEEE transaction 
on Computers  1983 
35  F.T  .  Leighton   An  Introduction  to  Parallel  Algorithms  and 
Architectures,   1992   

15


	IIntroduction
	ABlob machines as a vertical approach to spatial computing
	1Spatial computing on a computing medium
	2The three directions of spatial computing research
	3A vertical approach to spatial computing
	4Hardware freedom

	BBlob machine as a new approach to parallelism
	1Motivating a unified parallel model.
	2Self Developing Machines (SDM)
	3 Parallelization is a “folding problem”. 
	4 Preliminary folding on a static automata graph.
	5Direct programing of a dynamic automata graph.
	6Automatizing the architecture-dependent folding 


	IIThe blob machine
	AThe formal model
	1Configuration of the blob machine
	2Instructions of the blob machine:
	3The complexity model
	4Implementation results

	BDifferent incarnations of a blob machine
	1Fine grain
	2Coarse grain


	IIIThe blob ml language
	A Sets
	1Specifying computation on sets
	2Iterative set division with quicksort

	BArray
	1Basic function manipulating arrays
	2Aligning arrays with extended forall loops
	3Parallel divide and conquer

	CLinked list
	1Vertical list
	2Vertical list using Set of objects
	3Channel Implementation
	4Horizontal list for input / output

	DMultidimensional grid and arrays

	IVConclusion: paying the price for programmability. 

