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Abstract

We address the problem of finding sparse wavelet representations of high-dimensional
vectors. We present a lower-bounding technique and use it to develop an algorithm for
computing provably-approximate instance-specific representations minimizing general
`p distances under a wide variety of compactly-supported wavelet bases. More specifi-
cally, given a vector f ∈ Rn, a compactly-supported wavelet basis, a sparsity constraint
B ∈ Z, and p ∈ [1,∞], our algorithm returns a B-term representation (a linear combi-
nation of B vectors from the given basis) whose `p distance from f is a O(log n) factor
away from that of the optimal such representation of f . Our algorithm applies in the
one-pass sublinear-space data streaming model of computation, and it generalize to
weighted p-norms and multidimensional signals. Our technique also generalizes to a
version of the problem where we are given a bit-budget rather than a term-budget.
Furthermore, we use it to construct a universal representation that consists of at most
B(log n)2 terms and gives a O(log n)-approximation under all p-norms simultaneously.

1 Introduction

Consider the following problem: Given a vector in high-dimensional space, represent it as
closely as possible using a linear combination of a small number elements of a pre-defined
dictionary. These sparse representations, so-called because the number of dictionary ele-
ments we are constrained to use is much smaller than the dimension of the target vector,
have become more pertinent in light of the large amounts of data that we encounter. The
benefits we gain from the sparsity, however, are counteracted by a loss in our representa-
tion’s fidelity and its ability to model the signal accurately. A sparse representation will
be, in general, an approximation to the given vector, and the quality of this approximation
is affected by both the sparsity constraint and the choice of dictionary to utilize for the
representation.

As indicated above, we will work in the discrete setting, and accordingly, we assume
that we are given a vector f in high-dimensional space Rn. We are also given a dictionary
of m elements of Rn, {a1, a2, · · · , am}, and an integer B which we have referred to earlier as
the sparsity constraint ; hence, B is typically much smaller than n. The goal is to represent
f as a linear combination of B elements of the dictionary. That is, we wish to find a vector
f̂ with

f̂ =
∑

k∈S : |S|=B

xkak , (1)
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that is a good representation of f . We need a way to measure the success of our candidate
representation, and for that we will use its `p distance from the target vector f :

∥∥f − f̂∥∥
p
.

Recall that if y ∈ Rn, then

‖y‖p =
{

(
∑n

i=1|yi|p)
1/p 1 ≤ p <∞

maxi=1,...,n|yi| p =∞
.

As a simple example, suppose as before that we are given a set of observations fi = f(ti) of
an underlying signal f taken at times ti, i = 1, . . . , n. Suppose we wish to model the signal
f as a linear combination of simpler functions ϕk, k = 1, . . . , B where the performance
of our model is measured using the least-squares error. Then we can set ak[i] = ϕk(ti)
for i = 1, . . . , n and k = 1, . . . , B, and our task becomes that of finding f̂ =

∑B
k=1 xkak

that minimizes
∑n

i=1|fi − f̂i|2. A few things to note about this example. First, if we
set Aik = ak[i], then we are simply solving the familiar least-squares regression problem
‖f −Ax‖2. Second, we designed our dictionary {ak}Bk=1. In general, however, we will
assume that the dictionary will be given to us. Finally, we were not asked to choose a set
of B vectors for our representation. Instead, we were given the B vectors, and we were
allowed to use all of them. This is an important distinction between two approaches known
as linear and nonlinear approximation.

A B-term linear approximation of f is specified by a linear combination of a given B
elements from the dictionary. In other words, the set S of indices of dictionary elements in
expression (1) is given to us, and all we need to do is to compute the xk’s in f̂ =

∑
k∈S xkak

that minimize
∥∥f − f̂∥∥

p
for the desired p-norm. For simplicity of notation, we may assume

that we are given the first B elements of the dictionary; i.e., f̂ =
∑B

k=1 xkak. Notice
that the vector space from which we are approximating any f ∈ Rn is the linear space
F[B] = span{ak, k ∈ [B]}, which explains why this type of approximation is called linear
approximation. The error of the best representation of f in this space is given by the `p
distance of f from F[B]: E[B],p = minf̂∈F[B]

∥∥f − f̂∥∥
p
. For example, in the case of the 2-

norm, this is a least-squares regression problem whose solution is the projection of f onto
F[B]. More generally, the problem can be solved using convex programming methods (see,
e.g., [1]).

In nonlinear approximation, neither the set of indices S of dictionary elements nor their
corresponding coefficients in the representation f̂ =

∑
k∈S xkak are given to us. The choice

of the B vectors to use in the representation is instance specific, meaning it depends on
the target vector f . This type of approximation replaces the linear space F[B] with the
space of all vectors that can be represented as a linear combination of any B dictionary
elements,

FB =
{∑

k∈S
xkak : xk ∈ R,S ⊂ [n], |S| = B

}
.

This is a nonlinear space since, in general, the sum of two arbitrary vectors in FB uses
more than B elements from the dictionary, and thus does not belong to the space. We
measure the error of a candidate representation as before using its `p distance from f , and
the error of the best representation of f in FB is given by

EB,p = min
f̂∈FB

∥∥f − f̂∥∥
p
.
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We address this nonlinear approximation problem when the given dictionary is a wavelet
basis:

Problem 1.1 (B-term Representation). Given f ∈ Rn, p ∈ [1,∞], a compactly-supported
wavelet basis for Rn Ψ = [ψ1, ψ2, · · · , ψn], and an integer B, find a solution vector x ∈ Rn

with at most B non-zero components xi such that ‖Ψx− f‖p is minimized.

We will refer to this problem as the unrestricted B-term representation problem in order
to contrast it with a restricted version where the non-zero components of x can only take
on values from the set {〈f, ψi〉, i ∈ [n]}. That is, in the restricted version, each xi can only
be set to a coefficient from the wavelet expansion of f using Ψ, or zero.

Additionally, we wish to be able to compute our representation without having to store
the whole target vector f . This is important especially when n is very large, and f , for
instance, is a time-series signal (for example, f is a set of n observations fi = f(ti), i =
1, . . . , n, taken in succession). It implies, however, that our algorithms can only use sub-
linear space. More general versions of the problem that we also consider (but do not present
here) include having a bound on the number of bits rather than the number of coefficients;
and, having multiple bases in the dictionary among which to choose for the representation.

In addressing the problems mentioned above we focus on measuring the error (or good-
ness) of our representation using general `p norms. These problems have all been studied
under the `2 error measure; however, it is not clear what techniques are needed for solving
them under other `p norms. Unless a space is equipped with the `2 norm, it ceases to
be a Euclidean space; hence, we lose all the convenient properties of the associated inner-
product. For example, even the notion of projection is not entirely intuitive under non-`2
norms. Under the `2 norm, the techniques we use coincide with known `2-specific ones;
hence, they extend these existing techniques.

1.1 Background

Let us start by giving a brief idea of wavelet bases. A wavelet basis {ψk}nk=1 for Rn is a
basis where each vector is constructed by dilating and translating a single function referred
to as the mother wavelet ψ. For example the Haar mother wavelet, due to Haar [15], is
given by:

ψH(t) =


1 if 0 ≤ t < 1/2
−1 if 1/2 ≤ t < 1

0 otherwise

The Haar basis for Rn is composed of the vectors ψj,s[i] = 2−j/2ψH
(
i−2js

2j

)
where i ∈ [n],

j = 1, . . . , log n, and s = 0, . . . , n/2j − 1, plus their orthonormal complement 1√
n
1n. This

last basis vector is closely related to the Haar multiresolution scaling function φH(t) = 1 if
0 ≤ t < 1 and 0 otherwise. In fact, there is an explicit recipe for constructing the mother
wavelet function ψ from φ [18, 22] (see also Daubechies [19], and Mallat [6]). Notice that
the Haar mother wavelet is compactly supported on the interval [0, 1). This wavelet, which
was discovered in 1910, was the only known wavelet of compact support until Daubechies
constructed a family of compactly-supported wavelet bases [5] in 1988 (see also [6, Chp. 6]).
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Why wavelets? Wavelets are fundamental in the field of nonlinear approximation theory.
Nonlinear approximation has a rich history starting from the work of Schmidt [25] in 1907,
and has been studied under various contexts. More recently, in a substantial review,
DeVore [8] explores the advantages of nonlinear approximation over the simpler linear one.
The advantages are investigated in terms of the rate of decay of the approximation error
relative to the number of terms in the approximate representation. Indeed, the question
usually considered in approximation theory is: Given a basis and a parameter α > 0,
what is the class of functions whose B-term approximation error EB,p decays like O(B−α)?
The success of wavelet bases in this context was first displayed by DeVore, Jawerth, and
Popov [9]. They show that if f is sufficiently “smooth” (belongs to a Besov space), then its
B-term approximation error using certain wavelet bases decays quickly. In fact, they show
that the (properly normalized) wavelet coefficients of functions belonging to these function
spaces decay rapidly; hence, retaining the largest B of the coefficients suffices to give the
result. (See also the survey by Temlyakov [27]). This leads to wavelet-based algorithms
for noise reduction (called wavelet shrinkage) developed by Donoho and Johnstone [10]
(see also Donoho et al. [11]). The idea here is that “large” (i.e., larger than a threshold)
wavelet coefficients mostly carry signal information, while “small” wavelet coefficients are
thought to be mostly noise and can be set to zero. Under a Gaussian noise model, they
find thresholds that minimize the expected `2 error.

Wavelets have since found extensive use in image representation and signal compression
(see, e.g., Mallat [19], and Stollnitz, Derose, and Salesin [26]). The basic paradigm for using
wavelets in image compression is shown in Figure 1, and it goes as follows [8]. The problem
is viewed as a nonlinear approximation with the image as the target function. The wavelet
expansion coefficients of the image are computed and the smallest of these are pruned
using a threshold. Quantization of the remaining coefficients then takes place. These
remaining quantized coefficients are the representation of the approximate image (which
can be reconstructed using the inverse wavelet transform). Finally, the representative
coefficients are compressed using a loss-less encoder. A more direct encoding approach,
however, would optimize the number of bits stored directly. Cohen et al. [3] show decay
results for this bit-budget version of the problem that are similar to those developed be
DeVore et al. [9].

Why are the largest wavelet coefficients retained? Retaining the largest coefficients
is the optimal strategy for minimizing the `2 norm in a nonlinear approximation. In the
nonlinear compression procedure above, we are computing a representative image f̂ that
approximates the original image f and minimizes the `2 error EB,2 = minf̂∈FB

∥∥f − f̂∥∥
2
.

As in the case for linear approximation, this problem is well-understood under this error
measure. The optimal representation f̂ ∈ FB simply retains the B wavelet coefficients
〈f, ψk〉 that are largest in absolute value; i.e., if |〈f, ψk1〉| ≥ |〈f, ψk2〉| ≥ · · · ≥ |〈f, ψkn〉|,
then f̂ =

∑B
i=1〈f, ψki

〉ψki
. In fact, this is true for any orthonormal basis when the error is

measured under the `2 norm.
Recently, wavelets have been utilized in databases to facilitate selectivity estimation in

query optimization [20], for approximate query processing [2, 28, 29], and for content-based
image querying [17, 23]. For example, Chakrabarti et al. [2] show how to create synopses of
relational tables using wavelet coefficients, then perform database queries, that are fast but
approximate, over these compact sets of retained coefficients. Many researchers observe,
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Figure 1: Image compression using wavelets. The dashed box highlights the nonlinear approxima-
tion that takes place.

however, that the choice of least-squares error is not natural for the representation of data
or distributions. Matias, Vitter, and Wang [20], for example, suggest using the `1 and the
`∞ error measures. The `1 norm is a robust measure that is less sensitive to outliers than
the `2 norm, and it is well-suited for measuring distributions. Even in image compression,
Mallat [19, p. 528] and Daubechies [6, p. 286] point out that while the `2 measure does
not adequately quantify perceptual errors, it is used, nonetheless, since other norms are
difficult to optimize.

1.2 Contribution

We develop approximation algorithms for finding nonlinear approximate representations
that minimize general `p error measures (including `∞) under a large class of wavelet
bases. We present a greedy algorithm with performance guarantees when the given wavelet
is compactly supported, and we develop a dynamic programming algorithm more suited
for use in the Haar wavelet case. Given an arbitrary target vector f ∈ Rn, a sparsity
constraint B, a p-norm, and, for example, any Daubechies wavelet basis for Rn, our greedy
algorithm constructs a function f̂ ∈ FB whose representation error

∥∥f − f̂∥∥
p

is no more
than O(log n)EB,p. The algorithm runs in linear time, performs one pass over the given
function, and requires logarithmic space O(log n+ B) to compute this solution f̂ . Hence,
our algorithm lends itself well to large data streams where input arrives rapidly as a time-
series signal. The crux of the argument is a nonlinear dual program that we use to obtain
a lower bound on the optimal representation error. The dual program is easy to solve
and its optimal solution is comprised of only B wavelet coefficients; therefore, its solution
is also a solution to the restricted problem, and it establishes a O(log n) gap between the
restricted and unrestricted versions of the problem. This program can be a powerful tool for
tackling related problems in nonlinear approximation; for example, it can immediately be
applied to the bit-budget version of the problem mentioned earlier in the context of image
compression. Furthermore, we use it to show that by storing B(log n)2 coefficients, we
obtain a universal representation that O(log n)-approximates the optimal representations
for all p-norms simultaneously. That is, given f , if f̂u is this universal representation, then
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∀p ∈ [1,∞],
∥∥f − f̂u∥∥p ≤ O(log n)EB,p.

In the specific case of the Haar wavelet, we have a dynamic programming algorithm
that constructs a solution f̂ whose representation error is arbitrarily close to the optimal
error EB,p. This algorithm also performs one pass over the target function, and requires
sublinear space (i.e., it is streaming) when p > 1 (we do not present this algorithm here).

Both of our algorithms extend to multi-dimensional signals (belonging to Rnc
, for fixed

c ∈ N) and to certain dictionaries composed of multiple wavelet bases. When the dic-
tionary is not composed of a single wavelet basis, the representation problem becomes
a form of highly nonlinear approximation (in fact, the arbitrary dictionary case, which
as we said is NP-hard even to approximate [7, 12] is considered a form highly nonlinear
approximation). A notable example of such redundant dictionaries are those of Coiffman
and Wickerhauser [4], which are binary tree-structured dictionaries composed of O(n log n)
vectors and an exponential number of bases. Given such a tree-structured dictionary of
wavelet bases, our algorithms can be used (and combined) to find an approximately-best
basis for representing the target f ∈ Rn using B-terms under any given `p error measure.
We believe that our two approximation algorithms and their extensions may be used ef-
fectively in those new domains where wavelets are being utilized for summarizing large
data.

1.2.1 Future Work

One immediate application to investigate is to utilize these sparse wavelet representation
algorithms for image categorization and search. In text classification, documents are usu-
ally represented as sparse feature vectors in high-dimensional space. Images, however, do
not lend themselves easily to sparse representations since the inter-pixel relationships are
very important for correctly understanding the image. Our algorithms provide a way to
represent images sparsely in a meaningful, provably-approximate manner. These wavelet
representations may then be combined with well-known data analysis methods, such as
Regularized Least Squares Classification (RLSC) and Support Vector Machine (SVM)
classification, in order to classify the images, which is an important step for better im-
age search. Engineering decisions include the choice of wavelet, the sparsity bound, and
the `p norm used for measuring the representation error.

2 An Approximation Algorithm for Representing Data
Streams using Wavelets

In this section, we first present our greedy O(log n)-approximation algorithm and demon-
strate its use for sparsely representing images (Section 2.1). We then show an analysis of
the performance (time and space complexities as well we approximation guarantee) of our
algorithm using the dual system of constraints mentioned earlier (Section 2.2). Finally,
we show how to compute a universal representation that stores B(log n)2 coefficients and
gives a O(log n) approximation to all p-norms simultanuously (Section 2.3).
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2.1 Sparse Image Representation under non-`2 Error Measures

In this section we present our greedy algorithm and give three examples that demonstrate
uses for it in compressing images. A non-streaming version of the algorithm for Haar and
Daubechies wavelets was implemented in Matlab using the Uvi Wave.300 toolbox1 [24].
Pseudocode of the implementation is provided below in Figure 2. The algorithm takes four
parameters as input: the image X, the number of coefficients to retain B, the p-norm to
minimize, and the type of Daubechies wavelet to use. The last parameter, q, determines
the number of non-zero coefficients in the wavelet filter. Recall that the Haar wavelet is
the Daubechies wavelet with smallest support; i.e., it has q = 1.

Algorithm DaubGreedy(X,B, p, q)
1. (∗ X is a grayscale image (intensity matrix) ∗)
2. Perform a 2D wavelet transform of X using the Daubechies Dq wavelet
3. Let w be the wavelet coefficients of the transform
4. p′ ← p/(p− 1)
5. yi ← |wi|/ ‖ψi‖p′
6. Let I be the indices of the B largest yi’s
7. wi ← 0 if i 6∈ I
8. Perform a 2D inverse wavelet transform on the resulting w
9. Let X ′ be the resulting image representation
10. return X ′

Figure 2: Pseudocode of the greedy algorithm’s implementation.

The first example illustrates a use of the `∞ measure for sparse representation using
wavelets. Minimizing the maximum error at any point in the reconstructed image implies
we should retain the wavelet coefficients that correspond to sharp changes in intensity; i.e.,
the coefficients that correspond to the “details” in the image. The image we used, shown
in Figure 3(a), is composed of a gradient background and both Japanese and English
texts2. The number of non-zero wavelet coefficients in the original image is 65524. We set
B = 3840 and ran Algorithm DaubGreedy with p = 1, 2 and ∞ under the Haar wavelet
(with q = 1). When p = 2, the algorithm outputs the optimal B-term representation that
minimizes the `2 error measure. That is, the algorithm simply retains the largest B wavelet
coefficients (since p′ = 2 and ‖ψi‖p′ = 1 for all i). When p = 1, or p = ∞, the algorithm
outputs a O(log n)-approximate B-term representation as will be explained in Section 2.2.
The results are shown in Figure 3. Notice that the `∞ representation essentially ignores
the gradient in the background, and it retains the wavelet coefficients that correspond to
the text in the image. The `1 representation also does better than the `2 representation in
terms of rendering the Japanese text; however, the English translation in the former is not

1For compatibility with our version of Matlab, slight modifications on the toolbox were performed.
The toolbox can be obtained from http://www.gts.tsc.uvigo.es/∼wavelets/.

2The Japanese text is poem number 89 of the Kokinshu anthology [21]. The translation is by Helen
Craig McCullough.
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as clear. The attribution in the `2 representation, on the other hand, is completely lost.
Although the differences between the three representations are not stark, this example
shows that under such high compression ratios using the `∞ norm is more suitable for
capturing signal details than other norms.

The second example illustrates a use of the `1 error measure. Since the `1 norm is
robust in the sense that it is indifferent to outliers, the allocation of wavelet coefficients
when minimizing the `1 norm will be less sensitive to large changes in intensity than the
allocation under the `2 norm. In other words, it implies that under the `1 norm the
wavelet coefficients will be allocated more evenly across the image. The image we used,
shown in Figure 4(a), is a framed black and white matte photograph. The number of
non-zero wavelet coefficients in the original image is 65536. We set B = 4096 and ran
Algorithm DaubGreedy with p = 1, 2 and ∞ under the Daubechies D2 wavelet. The
results are shown in Figure 4. Notice that the face of the subject is rendered in the
`1 representation more “smoothly” than in the `2 representation. Further, the subject’s
mouth is not portrayed completely in the `2 representation. As explained earlier, these
differences between the two representations are due to the fact that the `1 norm is not as
affected as the `2 norm by other conspicuous details in the image; e.g., the frame. The
`∞ representation, on the other hand, focuses on the details of the image displaying parts
of the frame and the eyes well, but misses the rest of the subject entirely. This example
foregrounds some advantages of the `1 norm over the customary `2 norm for compressing
images.

The last example highlights the advantage of representing an image sparsely using a
nonlinear wavelet approximation versus using a rank-k approximation of the image. Recall
that if X is our image then the best rank-k approximation is given by UkΣkV

T
k where

X = UΣV T is the SVD decomposition of X, and Uk is comprised of the k singular vectors
corresponding to the largest k singular values of X (see, e.g., [13]). The original image is
shown in Figure 5(a)3 and the number of non-zero coefficients in its Haar wavelet expansion
is 65536. Figure 5(c) shows the best rank-12 approximation of the image; i.e., it displays
X12 = U12Σ12V

T
12. This representation stores 6144 values corresponding to the number

of elements in U12Σ12 plus V12. We set B = 3072 and ran Algorithm DaubGreedy with
p = 1, 2 under the Haar wavelet (Figures 5(d) and 5(b)). (The B-term representation
problem implicitly requires storing 2B numbers: the B values of the solution components
that we compute, and the B indices of these components.) It is clear that the nonlinear
approximations offer perceptually better representations that the approximation offered by
the SVD. Also, as in the previous example, the `1 representation is again “smoother” than
the `2 with less visible artifacts.

2.2 Analysis of the Approximation Algorithm

The results in this section appear in [16] (see also [14]).
Recall our optimization problem: Given a compactly-supported wavelet basis {ψi} and

a target vector f , we wish to find {zi} with at most B non-zero numbers to minimize
‖f −

∑
i ziψi‖p.

3The image is taken from a water painting by Shozo Matsuhashi. It is untitled.
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(a) The original image (b) Output of the optimal `2 algorithm (which re-
tains the largest B wavelet coefficients)

(c) Output of our greedy algorithm under `∞ (d) Output of our greedy algorithm under `1

Figure 3: Representing an image with embedded text using the optimal strategy that minimizes the
`2 error, and our greedy approximation algorithm under the `∞ and `1 error measures. The Haar
wavelet is used in all three representations, and the number of retained coefficients is B = 3840.
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(a) The original image (b) Output of the optimal `2 algorithm (which re-
tains the largest B wavelet coefficients)

(c) Output of our greedy algorithm under `∞ (d) Output of our greedy algorithm under `1

Figure 4: Representing an image using the optimal strategy that minimizes the `2 error, and our
greedy approximation algorithm under the `∞ and `1 error measures. The Daubechies D2 wavelet
is used in all three representations, and the number of retained coefficients is B = 4096.
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(a) The original image (b) Output of the optimal `2 algorithm (which re-
tains the largest B wavelet coefficients)

(c) Output of the best rank-12 approximation (d) Output of our greedy algorithm under `1

Figure 5: Representing an image using the optimal strategy that minimizes the `2 error and using
our greedy approximation algorithm under the `1 error measure versus its best rank-k approxima-
tion. Here k = 12, and the number of values stored in all three representations is 6144. The Haar
wavelet is used in the two nonlinear representations (the number of retained wavelet coefficients is
B = 3072).
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We present two analyses below corresponding to `∞ and `p errors when p ∈ [1,∞).
In each case we begin by analyzing the sufficient conditions that guarantee the error. A
(modified) greedy coefficient retention algorithm will naturally fall out of both analyses.
The proof shows that several of the algorithms that are used in practice have bounded
approximation guarantee. Note that the optimum solution can choose any values in the
representation f̂ .

In what follows the pair (p, p′) are the usual conjugates; i.e., 1
p+ 1

p′ = 1 when 1 < p <∞,
and when p = 1 we simply set p′ =∞. For simplicity, we start with the p =∞ case.

2.2.1 An `∞ Algorithm and Analysis

The main lemma, which gives us a lower bound on the optimal error, is:

Lemma 2.1. Let E be the minimum error under the `∞ norm and {z∗i } be the optimal
solution, then

−‖ψi‖1|E| ≤ 〈f, ψi〉 − z∗i ≤ ‖ψi‖1|E| .
Proof. For all j we have −|E| ≤ f(j)−

∑
i z

∗
i ψi(j) ≤ |E|. Since the equation is symmetric

multiplying it by ψk(j) we get,

−|E||ψk(j)| ≤ f(j)ψk(j)− ψk(j)
∑
i

z∗i ψi(j) ≤ |E||ψk(j)|

If we add the above equation for all j, since −|E|
∑

j |ψk(j)| = −|E|‖ψk‖1 we obtain (con-
sider only the left side)

−|E|‖ψk‖1 ≤
∑
j

f(j)ψk(j)−
∑
j

ψk(j)
∑
i

z∗i ψi(j)

= 〈f, ψk〉 −
∑
i

z∗i
∑
j

ψk(j)ψi(j)

= 〈f, ψk〉 −
∑
i

z∗i δik = 〈f, ψk〉 − z∗k .

The upper bound follows analogously.

A Relaxation. Consider the following program:

minimize τ
−τ‖ψ1‖1 ≤ 〈f, ψ1〉 − z1 ≤ τ‖ψ1‖1

...
...

... (2)
−τ‖ψn‖1 ≤ 〈f, ψn〉 − zn ≤ τ‖ψn‖1

At most B of the zi’s are non-zero

Observe that E is a feasible solution for the above program and E ≥ τ∗ where τ∗ is the
optimum value of the program. Also, Lemma 2.1 is not specific to wavelet bases, and
indeed we have E = τ∗ when {ψi} is the standard basis, i.e. ψi is the vector with 1 in the
ith coordinate and 0 elsewhere. The next lemma is straightforward.

Lemma 2.2. The minimum τ of program (2) is the (B + 1)th largest value |〈f,ψi〉|
‖ψi‖1 .
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The Algorithm. We choose the largest B coefficients based on |〈f, ψi〉|/‖ψi‖1. This can
be done over a one pass stream, and in O(B + log n) space for any compact wavelet basis.
Note that we need not choose zi = 〈f, ψi〉 but any zi such that |zi − 〈f, ψi〉|/‖ψi‖1 ≤ τ∗.
But in particular, we may choose to retain coefficients and set zi = 〈f, ψi〉. The alternate
choices may (and often will) be better. Also note that the above is only a necessary
condition; we still need to analyze the guarantee provided by the algorithm.

Lemma 2.3. For all basis vectors ψi of a compact system there exists a constant C s.t.
‖ψi‖p‖ψi‖p′ ≤

√
qC.

Proof. Suppose first that p < 2. Consider a basis vector ψi[] = ψj,s[] of sufficiently large
scale j that has converged to within a constant r (point-wise) of its continuous analog
ψj,s() [19, pp. 264–5]. That is, |ψj,s[k] − ψj,s(k)| ≤ r for all k such that ψj,s[k] 6= 0. The
continuous function ψj,s() is given by ψj,s(t) = 2−j/2ψ(2−jt − s), which implies ψj,s[k] =
O
(
2−j/2ψ(2−jk − s)

)
= O(2−j/2). Note that we are assuming ‖ψ‖∞ itself is some constant

since it is independent of n and B. Combining the above with the fact that ψj,s[] has at most

(2q)2j non-zero coefficients, we have ‖ψj,s‖p′ = O(2−j/2((2q)2j)1/p
′
) = O(2j(

1
p′−

1
2
)(2q)

1
p′ ).

Now by Hölder’s inequality, ‖ψj,s‖p ≤ ((2q)2j)
1
p
− 1

2 ‖ψj,s‖2 = 2j(
1
p
− 1

2
)(2q)

1
p
− 1

2 . There-

fore, for sufficiently large scales j, ‖ψj,s‖p ‖ψj,s‖p′ = O(2j(
1
p
+ 1

p′−1)(2q)
1
p
+ 1

p′−
1
2 ) = O(

√
q),

and the lemma holds. For basis vectors at smaller (constant) scales, since the number of
non-zero entries is constant, the `p norm and the `p′ norm are both constant.

Finally, for p > 2, the argument holds by symmetry.

For the proof of our theorem, we will also use the following proposition which is a
consequence of the dyadic structure of compactly-supported wavelet bases.

Proposition 2.4. A compactly-supported wavelet whose filter has 2q non-zero coefficients
generates a basis for Rn that has O(q log n) basis vectors with a non-zero value at any point
i ∈ [n].

Theorem 2.5. The `∞ error of the final approximation is at most O(q3/2 log n) times E
for any compactly supported wavelet.

Proof. Let {zi} be the solution of the system (2), and let the set of the inner products
chosen be S. Let τ∗ is the minimum solution of the system (2). The `∞ error seen at a
point j is |

∑
i6∈S〈f, ψi〉ψi(j)| ≤

∑
i6∈S |〈f, ψi〉||ψi(j)|. By Lemma 2.2, this sum is at most∑

i6∈S τ
∗‖ψi‖1|ψi(j)|, which is at most τ∗ maxi6∈S ‖ψi‖1‖ψi‖∞ times the number of vectors

that are non-zero at j. By Proposition 2.4 the number of non-zero vectors at j is O(q log n).
By Lemma 2.3, ‖ψi‖1‖ψi‖∞ ≤

√
qC for all i, and since τ∗ ≤ E we have that the `∞ error

is bounded by O(q3/2 log n)E .

2.2.2 An `p Algorithm and Analysis for p ∈ [1,∞)

Under the `p norm, a slight modification to the algorithm above also gives an O(q3/2 log n)
approximation guarantee.
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Lemma 2.6. Let E be the minimum error under the `p norm and {z∗i } be the optimal
solution, then for some constant c0,(∑

k

1
‖ψk‖pp′

|〈f, ψk〉 − z∗k|p
) 1

p

≤ (c0q log n)
1
p E .

Proof. An argument similar to that of Lemma 2.1 gives

∑
i

∣∣∣fiψk(i)−∑
j
z∗jψj(i)ψk(i)

∣∣∣ =
∑
i

ξi|ψk(i)| ≤

 ∑
i∈ support of ψk

ξpi

1/p

‖ψk‖p′

⇒ 1
‖ψk‖pp′

|〈f, ψk〉 − z∗k|p ≤
∑

i∈ support of ψk

ξpi

⇒
∑
k

1
‖ψk‖pp′

|〈f, ψk〉 − z∗k|p ≤ c0q log n
∑
i

ξpi ,

where the last inequality follows from Proposition 2.4, that each i belongs to O(q log n)
basis vectors (c0 is the constant hidden by the this O-term).

A Relaxation. Consider the following system of equations,

minimize τ(
n∑
i=1

|〈f, ψi〉 − zi|p

‖ψi‖pp′

) 1
p

≤ (c0q log n)
1
p τ (3)

At most B of the zi’s are non-zero

The Algorithm. We choose the largest B coefficients based on |〈f, ψk〉|/‖ψk‖p′ , which
minimizes the system (3). This computation can be done over a one pass stream, and in
O(B + log n) space.

Theorem 2.7. Choosing the B coefficients 〈f, ψk〉 that are largest based on the ordering
|〈f, ψk〉|/‖ψk‖p′ is a streaming O(q3/2 log n) approximation algorithm for the unrestricted
optimization problem under the `p norm.

Note this matches the `∞ bounds, but stores a (possibly) different set of coefficients.

Proof. Let the value of the minimum solution to the above system of equations (3) be τ∗.
Since {z∗i } is feasible for system (3), τ∗ ≤ E . Assume S is the set of coefficients chosen,

14



the resulting error ES is,

EpS =
∑
i

∣∣∣∣∣∣
∑
k 6∈S
〈f, ψk〉ψk(i)

∣∣∣∣∣∣
p

≤
∑
i

(c0q log n)p−1
∑
k 6∈S
|〈f, ψk〉|p|ψk(i)|p

= (c0q log n)p−1
∑
k 6∈S
|〈f, ψk〉|p ‖ψk‖pp

≤ (c0q log n)p−1
∑
k 6∈S

Cpq
p
2

‖ψk‖pp′
|〈f, ψk〉|p

= Cpq
p
2 (τ∗c0q log n)p .

Here, the first inequality is Hölder’s inequality combined with Proposition 2.4 and the fact
that p/p′ = p − 1; the second inequality follows from Lemma 2.3; and the final equality
follows from the optimality of our choice of coefficients for the system (3). Now since
τ∗ ≤ E , we have that ES ≤ c0Cq

3
2E log n.

2.2.3 Summary and Examples

In the two preceeding subsections we showed the following:

Theorem 2.8. Let 1
p + 1

p′ = 1. Choosing the largest B coefficients based on the ordering

|〈f, ψi〉|/‖ψi‖p′, which is possible by a streaming O(B+log n) algorithm, gives a O(q
3
2 log n)

approximation algorithm for the unrestricted optimization problem (Problem 1.1) under the
given `p norm. The argument naturally extends to multiple dimensions.

As is well-known, this choice of coefficients is optimal when p = 2 (since p′ = 2 and
‖ψi‖2 = 1).

Note that the above theorem bounds the gap between the restricted (where we can only
choose wavelet coefficients of the input in the representation) and unrestricted optimiza-
tions.

A tight example for the `∞ measure. Suppose we are given the Haar basis {ψi} and
the vector f with the top coefficient 〈f, ψ1〉 = 0 and with 〈f, ψi〉/ ‖ψi‖1 = 1− ε for i ≤ n/2,
and 〈f, ψi〉/ ‖ψi‖1 = 1 for i > n/2 (where ψi, i > n/2, are the basis with smallest support).
Let B = n/c − 1 where c ≥ 2 is a constant that is a power of 2. The optimal solution
can choose the B coefficients which are in the top log n− log c levels resulting in an error
bounded by log c. The `∞ error of the greedy strategy on the other hand will be at least
log n − 1 because it will store coefficients only at the bottom of the tree. Hence it’s error
is at least log n/ log c− o(1) of the optimal.

2.3 A Universal Representation

In this section, we present a strategy that stores B(log n)2 coefficients and simultaneously
approximates the optimal representations for all p-norms4. Notice that in Problem 1.1 we

4The results presented in this section have not appeared elsewhere.
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know the p-norm we are trying to approximate. Here, we do not know p and we wish
to come up with a representation such that for all p ∈ [1,∞], its error measured with∥∥f − f̂u∥∥p is O(log n) times the optimal error minx ‖f −Ψx‖p where x has at most B non-
zero components. Notice that we allow our universal representation to store a factor (log n)2

more components than any one optimal representation; however, it has to approximate all
of them concurrently.

We run our algorithm as before computing the wavelet coefficients of the target vector f ;
however, we need to determine which coefficients to store for our universal representation.
To this end, define the set:

N = {pt : pt = 1 +
t

log n
, t = 0, . . . , log n(log n− 1)} . (4)

For every pt ∈ N , we will store the B coefficients that are largest based on the ordering
|〈f, ψk〉|/‖ψk‖p′t where p′t is the dual norm to pt. Hence, the number of coefficients we store
is no more than B(log n)2 since |N | = (log n)2. Note that our dual programs show that for
a given p, storing more than B coefficients does not increase the error of the representation.
Now let f̂u be our resultant representation; i.e., if S contains the coefficients we chose, then
f̂u =

∑
i∈S〈f, ψi〉ψi; and let f∗(p) be the optimal representation under the norm `p. Consider

first the case when p ∈ (pt, pt+1) where pt, pt+1 ∈ N .∥∥f − f̂u∥∥p ≤ ∥∥f − f̂u∥∥pt
since p > pt

≤ cq
3
2 (log n)

∥∥f − f∗(pt)

∥∥
pt

by Thereom 2.8

≤ cq
3
2 (log n)

∥∥f − f∗(p)∥∥pt
by the optimality of f∗pt

for `pt

≤ cq
3
2 (log n)n

1
pt
− 1

p
∥∥f − f∗(p)∥∥p by Hölder’s inequality (5)

However 1/pt − 1/p ≤ 1/pt − 1/pt+1 since p < pt+1; and by their definition,

1
pt
− 1
pt+1

=
log n

(log n+ t)(log n+ t+ 1)
≤ 1

log n
.

Hence, n
1
pt
− 1

p ≤ n1/(logn) = 2; and from expression (5) we have that
∥∥f − f̂u

∥∥
p

=

O(q
3
2 log n)

∥∥f − f∗(p)
∥∥
p

as required. When p > pt for t = log n(log n − 1), we immedi-

ately have n
1
pt
− 1

p ≤ n1/(logn) and the result follows.
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