
Approximating min-maxk-clustering

Asaf Levin∗

July 24, 2007

Abstract

We consider the problems of set partitioning intok clusters with minimum total cost and minimum
of the maximum cost of a cluster. The cost function is given by an oracle, and we assume that it satisfies
some natural structural constraints. That is, we assume that the cost function is monotone, the cost of a
singleton is zero, and we assume that for allS ∩ S′ 6= ∅ the following holdsc(S) + c(S′) ≥ c(S ∪ S′).
For this problem we present a(2k−1)-approximation algorithm fork ≥ 3, a 2-approximation algorithm
for k = 2, and we also show a lower bound ofk on the performance guarantee of any polynomial-time
algorithm.

We then consider special cases of this problem arising in vehicle routing problems, and present
improved results.

1 Introduction

We are given a ground setE with a cost function,c, defined over all subsets ofE. Assume thatc satisfies
the following properties:

1. c({i}) = 0 for all i ∈ E.

2. c(S) ≥ c(S′) for all S′ ⊆ S. That is,c is a monotone cost function.

3. If S ∩ S′ 6= ∅, thenc(S) + c(S′) ≥ c(S ∪ S′).

Thek MIN -MAX problem is to find a partition ofE into k (disjoint) subsetsS1, S2, . . . Sk so thatmaxi c(Si)
is minimized. Thek MIN -SUM problem is to find a partition ofE into k (disjoint) subsetsS1, S2, . . . Sk so
that

∑k
i=1 c(Si) is minimized.

We assume thatc is given as an oracle that evaluates the value ofc for a given subset ofE in O(1) time,
and we are interested in polynomial-time (in size ofE) algorithms.

The setsS1, S2, . . . , Sk (of a feasible solution) are called theblocks of the partitionor clusters. For
a partitionP we denote its cost byc(P) (where the definition of the cost of the solution depends on the
problem we consider). For a partition ofE into E1, E2, . . . , Ek a refinementis a partition ofE into k′

subsetsE′
1, E

′
2, . . . , E

′
k′ such that for all1 ≤ i ≤ k′ there existsj(i) such thatE′

i ⊆ Ej(i).
In recent years the study of clustering problems has increased dramatically. In most problems that were

investigated in the literature the goal is either to minimize the maximum cost of a cluster or to minimize the
sum of costs of the clusters. This leaves the definition of acost of a clusterdifferent for different problems.
To obtain a polynomial representation of the problem, the cost function is usually given in a compact form.
In this paper we assume that the cost function satisfies Properties 1, 2 and 3, and we investigate the opti-
mization problems that result from such cost structure. The assumption that the cost function is given by an

∗Department of Statistics, The Hebrew University, Jerusalem 91905, Israel.E-mail: levinas@mscc.huji.ac.il

1Dagstuhl Seminar Proceedings 07261
Fair Division
http://drops.dagstuhl.de/opus/volltexte/2007/1228

oracle replaces the compact form of the cost function (that is usually assumed) and is particularly interesting
in cases in which the cost of a cluster is evaluated by solving an NP-hard problem or performing a simulation
study of some engineering problem (so in these cases it is unclear how to obtain a compact representation
of the cost function). For example, in the well-known vehicle routing problem a cluster is a subset of the
vertex set to be served by a common vehicle, and the cost of a cluster is the optimal solution of the traveling
salesperson problem over this vertex set. Given such a heavy computational procedure to evaluate the cost
of a cluster, it is clear that we are interested in trying to minimize the number of such procedure calls.

The k CLUSTERING PROBLEM(kCluster) is defined as follows: Given a complete undirected graph
G = (V, A) where the edges are endowed with a metric length function` : A → R+, the goal is
to partition the vertex set intok setsV1, V2, . . . , Vk so as to minimize the following objective function
maxi maxu,v∈Vi `(u, v). We next note that thekCluster is a special case of thek min-max problem. To see
this last claim note that we can define a cost functionc(S), whereS ⊆ V , to bemaxu,v∈S `(v, u). To see
that the resulting problem is an instance of thek min-max problem, we need to show thatc satisfies the re-
quested properties. Properties 1 and 2 are trivially satisfied. To see that Property 3 is also satisfied, consider
a pair of non-disjoint setsS1, S2, and assume thatv ∈ S1 ∩ S2. Fix arbitrary verticesu,w ∈ S1 ∪ S2. If
u,w ∈ S1 or u,w ∈ S2, then clearlỳ (u,w) ≤ c(S1) + c(S2). If u ∈ S1 andw ∈ S2, then by the triangle
inequality`(u,w) ≤ `(u, v)+`(v, w) ≤ c(S1)+c(S2). Therefore, for all pairsu, w ∈ S1∪S2 we conclude
that`(u, w) ≤ c(S1) + c(S2). Property 3 follows by taking the maximum over all pairsu andw. Gonzales
[2] and Hochbaum and Shmoys [5] showed that thekCluster problem has a 2-approximation algorithm. Hsu
and Nemhauser [6] and Hochbaum [4] showed thatkCluster cannot be approximated within a factor better
than 2 (assumingP 6= NP). Gonzales [2] showed that the same lower bound on the approximability of the
kCluster applies also to the special case where the input is restricted to points in 3-dimensional Euclidean
space. Feder and Greene [1] showed that thekCluster problem where the input is restricted to be a set
of points in 2-dimensional Euclidean space is not approximable within 1.969. As we noted above thek
min-max problem generalizes thekCluster, and therefore it is NP-hard for allk ≥ 3.

We then consider special cases of this problem arising in vehicle routing problems, and present improved
results. In particular we consider the following problem. TheM IN-MAX RURAL POSTMEN COVER PROB-
LEM is defined as follows. The input is a complete graphG = (N,E), a length functionl : E → R+, a
subsetE′ ⊆ E, and an integer numberk > 0. The output is a set ofk pathsP1, . . . , Pk, such thatE′ ⊆ ∪Pi.
The goal is to minimize the maximum length of a path in the solution, that is, to minimizemaxi l(Pi).
We note that this problem is a special case of the min-maxk-clustering problem. However, using the spe-
cial structure of this problem, we are able to present a 7-approximation algorithm for this problem (so the
approximation ratio is independent ofk).
Paper outline. In Section 2 we provide an approximation algorithm for thek min-max problem whose
approximation ratio is 2 fork = 2 and((k − 1) · α + 1) for all k ≥ 3 whereα = 2 denotes the approxima-
tion ratio of an approximation algorithm for thekCluster problem, and we conclude this section by showing
that any polynomial-time algorithm cannot guarantee an approximation ratio that is better thank for thek
min-max problem.

2 Thek min-max problem

In this section, we first provide an approximation algorithm and analyze its performance guarantee. Our
approximation algorithm is a2-approximation ifk = 2, and a((k − 1)α + 1)-approximation algorithm
whereα is the approximation ratio of any approximation algorithm for thekCluster problem. Afterwards,
we will show a lower bound ofk on the performance guarantee of any polynomial-time algorithm for thek
min-max problem.

Recall that fork = 2 there is a polynomial-time algorithm that solves (optimally) thekCluster problem.

2

This algorithm is based on guessing the optimal cost (that is one out ofO(|A|) values that are known in
advance), and then defining an expensive edge to be an edge whose cost is greater than the current guess.
The current guess is not smaller than the optimal cost if and only if the graph of the expensive edges is
bipartite. This results anO(|A| log |A|) time algorithm for the 2Cluster problem (by using a binary search
on the optimal cost guess value). In this case wherek = 2 we denoteα = 1. For higher values ofk, one
can show [6, 4] a similar reduction fromk-coloring of a simple graph that shows that approximating the
kCluster within a factor2− ε is NP-hard (for allε > 0). That is, given an input graphGc = (Vc, Ec) for the
k-coloring problem we letG = (Vc, E) to be a complete graph with edge costc({i, j}) = 1 if and only if
(i, j) ∈ Ec and otherwisec({i, j}) = 2. Then thekCluster instance has a solution with cost one if and only
if Gc is k-colorable, and otherwise the optimal solution to thekCluster instance costs two. For thekCluster
problem Gonzales [2] and Hochbaum and Shmoys [5] provided 2-approximation algorithms (for all values
of k). Using the results of [2, 5], whenk ≥ 3 we denoteα = 2. Soα is either 1 or 2 depending on the value
of k.

Algorithm 1

1. Compute a cost functionc′ defined asc′(S) = maxi,j∈S{c({i, j})}.
2. Using anα-approximation algorithm for thekCluster problem, find a partition ofE into k subsets

such that its cost with respect toc′ is minimized.

Theorem 2 Algorithm 1 is a((k − 1) · α + 1)-approximation algorithm.

Proof. Note that by monotonicity of the cost function, we conclude that for everyS ⊆ E, c′(S) ≤ c(S).
Moreover, fori, j and k we note thatc′({i, j}) + c′({j, k}) = c({i, j}) + c({j, k}) ≥ c({i, j, k}) ≥
c({i, k}) = c′({i, k}) where the first inequality holds by property 3 and the second inequality holds by
property 2, and therefore there is anα-approximation algorithm for thekCluster instance that we create in
step 2 (i.e., the metric assumption holds forc′). Denote byOPT the optimal solution with respect toc, and
by APX the solution of Algorithm 1. Assume thatAPX 6= OPT.

Let G′ be a graph defined as follow: For every cluster inOPT there is a vertex inG′ and for every pairI
andJ of clusters ofOPT, there is an edge inG′ between their vertices if and only if there is a clusterC in
APX such that bothI ∩ C 6= ∅ andJ ∩ C 6= ∅.

For every edge(i, j) in G′ representing the clustersI andJ in OPT let vi ∈ I ∩C andvj ∈ J ∩C where
C is a cluster inAPX that causes this edge to exist. Then by Property 3 ofc, the following is satisfied:

c(I) + c(J) + c({vi, vj}) ≥ c(I) + c(J ∪ {vi, vj}) ≥ c(I ∪ J)

Note thatc({vi, vj}) ≤ c′(APX), but APX is anα-approximation algorithm with respect toc′, and therefore
c′(APX) ≤ α · c′(OPT) ≤ α · c(OPT). For each connected componentC of G′, we union all the clusters that
correspond to vertices inC. Denote byp the number of connected components ofG. Finally, we receive a
partition ofE intop sets that costs at mostc(OPT)+(k−p)·α·c(OPT) ≤ ((k − 1) · α + 1)·c(OPT). But APX

is a refinement of the resulting one, and therefore costs less. Therefore,c(APX) ≤ ((k − 1) · α + 1)·c(OPT).

We next show that our algorithm is best possible up to a constant factor.

Theorem 3 No polynomial-time algorithm for thek min-max problem has an approximation ratio better
thank.

3

Proof. Consider a ground setE of sizen wheren = pk2 andp is an arbitrary large integer to be selected
afterwards. Consider a partition ofE into k equal size setsE1, E2, . . . , Ek. For a setS ⊆ E denote by
n(S) = |{i : Ei ∩ S 6= ∅}|. We define a cost functionc as follows:

c(S) =

{
0 if |S| = 1
min

{
n(S),

⌈ |S|
p

⌉}
otherwise.

We next show thatc satisfies properties 1, 2 and 3. Fori ∈ E, c({i}) = 0 because|{i}| = 1, and therefore
property 1 holds. LetS′ ⊆ S, thenn(S′) ≤ n(S) asEi ∩ S′ 6= ∅ implies thatEi ∩ S 6= ∅. Moreover,
|S′|
p ≤ |S|

p , and therefore
⌈ |S′|

p

⌉
≤

⌈ |S|
p

⌉
. Therefore, forS′ ⊆ S, c(S′) ≤ c(S), and hence property 2 holds.

It remains to consider property 3. LetS, S′ ⊆ E such thatS ∩S′ 6= ∅. If |S| = 1 (and similarly if|S′| = 1),
then the property clearly holds as both sides of the inequality equal toc(S′). It remains to consider the case
where|S| ≥ 2 and|S′| ≥ 2. Note thatn(S ∪ S′) ≤ n(S) + n(S′) as if (S ∪ S′) ∩ Ei 6= ∅, then either

S∩Ei 6= ∅ or S′∩Ei 6= ∅ (or both). Moreover,|S∪S′|
p ≤ |S|

p + |S′|
p , and therefore

⌈ |S∪S′|
p

⌉
≤

⌈ |S|
p

⌉
+

⌈ |S′|
p

⌉
.

Therefore,c(S ∪ S′) ≤ c(S) + c(S′), and property 3 also holds.
The optimal solution is the partition ofE into E1, E2, . . . , Ek. By definitionn(Ei) = 1 for all i, and

therefore the optimal solution has a unit cost. In order to prove the theorem it suffices to show that any
polynomial-time algorithm cannot guarantee a solution whose cost is at mostk − 1. Assume otherwise;
then the algorithm must identify (in polynomial time) a setS such thatc(S) ≤ k − 1 and|S| ≥ pk (this
is so as the set with the largest cardinality in the returned solution has at leastpk elements). Consider this
setS; then since|S| ≥ pk, we conclude thatc(S) = n(S). Since the algorithm is not aware of the optimal
partition, it must identify a set whose size is at leastp + 1 and that intersects at mostk − 1 blocks of the
optimal partition.

Now assume that the optimal partition is selected randomly. Then the probability that a given setS will
intersect at mostk−1 blocks of the partition is at mostk ·(1− 1

k

)p
. When an algorithm queries a setS′ and

finds out thatn(S′) = k, it learns only that any set that containsS′ has a value ofn that equalsk. However,
for all remaining sets the algorithm does not gain new information. Therefore, the expected number of steps
until suchS will be found is at least 1

k·(1− 1
k)p . Note that this last bound is also a lower bound on the number

of steps that the assumed algorithm performs. However,1
k·(1− 1

k)p ≥ ep/k

k where the last inequality holds

because 1

(1− 1
k)k ≥ e for all k ≥ 2. Sincep can be arbitrary large (significantly larger thank), the last

lower bound on the number of steps that the algorithm performs is exponential in the size ofE, and this is a
contradiction to the assumption that the algorithm performs only a polynomial number of steps.

References

[1] T. Feder and D.H. Greene, “Optimal algorithms for approximate clustering,”Proceedings of the
20th Annual ACM Symposyum on Theory of Computing (STOC 1988), 434-444, 1988.

[2] T.F. Gonzalez, “Clustering to minimize the maximum intercluster distance”,Theoretical Com-
puter Science, 38, 293-306, 1985.

[3] P. Hansen and B. Jaumard, “Cluster analysis and mathematical programming,”Mathematical Pro-
gramming, 79, 191-215, 1997.

[4] D.S. Hochbaum, “When are NP-hard location problems easy?”,Annalls of Operations Research,
1, 201-214, 1984.

4

[5] D.S. Hochbaum and D.B. Shmoys, “A unified approach to approximation algorithms for bottle-
neck problems,”Journal of the ACM, 33, 533-550, 1986.

[6] W.L. Hsu, and G.L. Nemhauser, “Easy and hard bottleneck location problems,”Discrete Applied
Mathematics, 1, 209-216, 1979.

[7] C. L. Monma and S. Suri, “Partitioning points and graphs to minimize the maximum or the sum
of diameters,” inGraph Theory, Combinatorics and Applications, 880-912, Alavi et al. (editors),
Wiley, 1991.

5

