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Abstract

We consider the problems of set partitioning iktclusters with minimum total cost and minimum
of the maximum cost of a cluster. The cost function is given by an oracle, and we assume that it satisfies
some natural structural constraints. That is, we assume that the cost function is monotone, the cost of a
singleton is zero, and we assume that forsath S” # () the following holdsc(S) + ¢(S’) > ¢(S U S’).
For this problem we present(2k — 1)-approximation algorithm fok > 3, a 2-approximation algorithm
for k = 2, and we also show a lower bound/ebn the performance guarantee of any polynomial-time
algorithm.

We then consider special cases of this problem arising in vehicle routing problems, and present
improved results.

1 Introduction

We are given a ground sét with a cost functiong, defined over all subsets @&f. Assume that satisfies
the following properties:

1. c({i}) =0foralli € E.
2. ¢(S) > ¢(9') forall S C S. That is,c is a monotone cost function.
3. 1f SNS" #0,thenc(S) + ¢(S") > c(SUS).

Thek MIN-MAX problem is to find a partition oF into & (disjoint) subsets$', Ss, . . . Sk so thatmax; ¢(S;)
is minimized. Thek MIN-SUM problem is to find a partition oF into & (disjoint) subsets, Sy, .. .Sk SO
that>¥ | ¢(S;) is minimized.

We assume thatis given as an oracle that evaluates the valuefof a given subset aF’ in O(1) time,
and we are interested in polynomial-time (in sizek)falgorithms.

The setsSy, So, ..., Sk (of a feasible solution) are called tiocks of the partitioror clusters For
a partition’? we denote its cost by(P) (where the definition of the cost of the solution depends on the
problem we consider). For a partition &f into E1, Fo, ..., E; arefinemenis a partition of E into %’
subsetd?|, Ej, ..., E;, such that for alll < i < £’ there existg (i) such thatf; C Ej)-

In recent years the study of clustering problems has increased dramatically. In most problems that were
investigated in the literature the goal is either to minimize the maximum cost of a cluster or to minimize the
sum of costs of the clusters. This leaves the definitionadsi of a clustedifferent for different problems.

To obtain a polynomial representation of the problem, the cost function is usually given in a compact form.
In this paper we assume that the cost function satisfies Properties 1, 2 and 3, and we investigate the opti-
mization problems that result from such cost structure. The assumption that the cost function is given by an
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oracle replaces the compact form of the cost function (that is usually assumed) and is particularly interesting
in cases in which the cost of a cluster is evaluated by solving an NP-hard problem or performing a simulation
study of some engineering problem (so in these cases it is unclear how to obtain a compact representation
of the cost function). For example, in the well-known vehicle routing problem a cluster is a subset of the
vertex set to be served by a common vehicle, and the cost of a cluster is the optimal solution of the traveling
salesperson problem over this vertex set. Given such a heavy computational procedure to evaluate the cost
of a cluster, it is clear that we are interested in trying to minimize the number of such procedure calls.

The k CLUSTERING PROBLEM(kCluster) is defined as follows: Given a complete undirected graph
G = (V,A) where the edges are endowed with a metric length fundtion4A — R™, the goal is
to partition the vertex set inté setsVy, V5, ...,V so as to minimize the following objective function
max; max, yev; £(u, v). We next note that theCluster is a special case of thenin-max problem. To see
this last claim note that we can define a cost functio$), whereS C V, to bemax, ,cg5 ¢(v,u). To see
that the resulting problem is an instance of themin-max problem, we need to show thadatisfies the re-
guested properties. Properties 1 and 2 are trivially satisfied. To see that Property 3 is also satisfied, consider
a pair of non-disjoint set§1, .S;, and assume that € S; N S,. Fix arbitrary vertices:, w € S; U Ss. If
u,w € S; 0ru,w € Sy, then clearlyl(u,w) < ¢(S1) + ¢(S2). If u € S; andw € S, then by the triangle
inequalityl(u, w) < £(u,v)+£(v,w) < ¢(S1)+c(S2). Therefore, for all pairs, w € S; US> we conclude
thatl(u,w) < ¢(S1) + ¢(S2). Property 3 follows by taking the maximum over all pairandw. Gonzales
[2] and Hochbaum and Shmoys [5] showed thatit@éuster problem has a 2-approximation algorithm. Hsu
and Nemhauser [6] and Hochbaum [4] showed #@uster cannot be approximated within a factor better
than 2 (assuming # N P). Gonzales [2] showed that the same lower bound on the approximability of the
kCluster applies also to the special case where the input is restricted to points in 3-dimensional Euclidean
space. Feder and Greene [1] showed thatkiGkrister problem where the input is restricted to be a set
of points in 2-dimensional Euclidean space is not approximable within 1.969. As we noted abdve the
min-max problem generalizes tk€luster, and therefore it is NP-hard for &l> 3.

We then consider special cases of this problem arising in vehicle routing problems, and present improved
results. In particular we consider the following problem. THaN-MAX RURAL POSTMEN COVER PROB
LEM is defined as follows. The input is a complete grapk= (N, E), a length functiorl : £ — R, , a
subset’ C FE, and an integer numbér> 0. The output is a set df pathsP, . .., P, such thatt’ C UP;.
The goal is to minimize the maximum length of a path in the solution, that is, to minimizg ((F;).
We note that this problem is a special case of the min-kralustering problem. However, using the spe-
cial structure of this problem, we are able to present a 7-approximation algorithm for this problem (so the
approximation ratio is independent .
Paper outline. In Section 2 we provide an approximation algorithm for thenin-max problem whose
approximation ratio is 2 fok = 2 and((k — 1) - « + 1) for all £ > 3 wherea = 2 denotes the approxima-
tion ratio of an approximation algorithm for ti€luster problem, and we conclude this section by showing
that any polynomial-time algorithm cannot guarantee an approximation ratio that is bettérfirathe &
min-max problem.

2 Thek min-max problem

In this section, we first provide an approximation algorithm and analyze its performance guarantee. Our
approximation algorithm is @-approximation ifx = 2, and a((k — 1)a + 1)-approximation algorithm
whereq is the approximation ratio of any approximation algorithm for d@&uster problem. Afterwards,
we will show a lower bound of on the performance guarantee of any polynomial-time algorithm fok the
min-max problem.

Recall that fork = 2 there is a polynomial-time algorithm that solves (optimally) M@uster problem.



This algorithm is based on guessing the optimal cost (that is one aduf|ef|) values that are known in
advance), and then defining an expensive edge to be an edge whose cost is greater than the current guess.
The current guess is not smaller than the optimal cost if and only if the graph of the expensive edges is
bipartite. This results a®(|A|log|A|) time algorithm for the 2Cluster problem (by using a binary search

on the optimal cost guess value). In this case wliere 2 we denotex = 1. For higher values of, one

can show [6, 4] a similar reduction froktcoloring of a simple graph that shows that approximating the
kCluster within a factoR — ¢ is NP-hard (for ale > 0). That s, given an input grapfi. = (V, E.) for the
k-coloring problem we leGG = (V,, E) to be a complete graph with edge co§fi, j}) = 1 if and only if

(i,7) € E. and otherwise({:, j}) = 2. Then thekCluster instance has a solution with cost one if and only

if G. is k-colorable, and otherwise the optimal solution to i@uster instance costs two. For th€luster
problem Gonzales [2] and Hochbaum and Shmoys [5] provided 2-approximation algorithms (for all values
of k). Using the results of [2, 5], wheln> 3 we denotex = 2. Soa« is either 1 or 2 depending on the value

of k.

Algorithm 1
1. Compute a cost functiati defined as’(.S) = max; jes{c({7,7})}.

2. Using ana-approximation algorithm for thé&Cluster problem, find a partition of into & subsets
such that its cost with respect tbis minimized.

Theorem 2 Algorithm 1 is a((k — 1) - « 4 1)-approximation algorithm.

Proof. Note that by monotonicity of the cost function, we conclude that for egery E, ¢/(S) < ¢(9).
Moreover, fori, j and k we note thatt'({,j}) + </ ({j,k}) = c({i,j}) + c({j, k}) > c({i,5,k}) >
c({i,k}) = ({3, k}) where the first inequality holds by property 3 and the second inequality holds by
property 2, and therefore there is arapproximation algorithm for theCluster instance that we create in
step 2 (i.e., the metric assumption holds #&r Denote byoprT the optimal solution with respect g9 and
by APX the solution of Algorithm 1. Assume thabXx # OPT.

Let G’ be a graph defined as follow: For every clusteoir there is a vertex iz’ and for every paif
and.J of clusters ofopT, there is an edge 6" between their vertices if and only if there is a clugtein
APX such that both N C' # @ andJ N C # 0.

For every edgéi, j) in G’ representing the clustefsandJ in opTletv; € INC andv; € JNC where
C is a cluster ilmpPx that causes this edge to exist. Then by Property@ thfe following is satisfied:

c(I) +c(J) + c{vi,v;}) > c(I) + c(J U{vi,v;}) > c(TUJ)

Note thatc({v;, v;}) < ¢(APX), butAPX is ana-approximation algorithm with respect ¢ and therefore
d(APX) < ac- ¢(OPT) < - ¢(OPT). For each connected compon€nf G’, we union all the clusters that
correspond to vertices i. Denote byp the number of connected componentgiofFinally, we receive a
partition of £ into p sets that costs at magioPT)+ (k—p)-a-c(OPT) < ((k — 1) - a4+ 1)-¢(OPT). ButAPX
is a refinement of the resulting one, and therefore costs less. Thergfr®) < ((k—1) - a + 1)-¢(OPT).
[

We next show that our algorithm is best possible up to a constant factor.

Theorem 3 No polynomial-time algorithm for thé min-max problem has an approximation ratio better
thank.



Proof. Consider a ground sét of sizen wheren = pk? andp is an arbitrary large integer to be selected
afterwards. Consider a partition &f into & equal size set&,, F», ..., E;. For a setS C FE denote by
n(S) =|{i: E; NS # 0}|. We define a cost functionas follows:

0 if |S]=1
c(S) = { min {n(S), ['%H otherwise

We next show that satisfies properties 1, 2 and 3. ko E, ¢({i}) = 0 because{:}| = 1, and therefore
property 1 holds. Let’ C S, thenn(S") < n(S) asE; NS’ # 0 implies thatE; NS # (. Moreover,

'%' < ‘%‘, and therefore{'%} < P%W Therefore, forS” C S, ¢(S’) < ¢(S), and hence property 2 holds.

It remains to consider property 3. L6t.S” C E such thatSn.S’ # (. If |S| = 1 (and similarly if|S’| = 1),
then the property clearly holds as both sides of the inequality equébtd. It remains to consider the case
where|S| > 2 and|S’| > 2. Note thatn(S U S’) < n(S) + n(S") asif (SUS") N E; # 0, then either
SNE; #(orS'NE; # ( (or both). Moreover% < '%‘—k'%", and thereforﬁﬂsjfsw < ['%'1 + P%ﬂ .
Thereforec(S U S") < ¢(S) + ¢(S’), and property 3 also holds.

The optimal solution is the partition df into E1, Es, ..., E. By definitionn(E;) = 1 for all 7, and
therefore the optimal solution has a unit cost. In order to prove the theorem it suffices to show that any
polynomial-time algorithm cannot guarantee a solution whose cost is atimedt. Assume otherwise;
then the algorithm must identify (in polynomial time) a sesuch thate(S) < k£ — 1 and|S| > pk (this
is so as the set with the largest cardinality in the returned solution has apiealments). Consider this
setS; then sincdS| > pk, we conclude that(S) = n(S). Since the algorithm is not aware of the optimal
partition, it must identify a set whose size is at least 1 and that intersects at most— 1 blocks of the
optimal partition.

Now assume that the optimal partition is selected randomly. Then the probability that a gisewiet
intersect at most — 1 blocks of the partition is at mogt: (1 — %)p. When an algorithm queries a s¢tand
finds out that:(S’) = k, it learns only that any set that contaiffshas a value of. that equalg:.. However,
for all remaining sets the algorithm does not gain new information. Therefore, the expected number of steps
until suchS will be found is at Ieasilip. Note that this last bound is also a lower bound on the number

ep/k

of steps that the assumed algorithm performs. HOW% > where the last inequality holds
because— > e forall kK > 2. Sincep can be arbitrary large (S|gn|f|cantly larger tha)) the last

lower bound on the number of steps that the algorithm performs is exponential in the gizardaf this is a
contradiction to the assumption that the algorithm performs only a polynomial number of mteps.
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