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Abstract. We investigate the relation between the theory of the itera-
tions in the sense of Shelah-Stupp and of Muchnik, resp., and the theory
of the base structure for several logics. These logics are obtained from
the restriction of set quantification in monadic second order logic to cer-
tain subsets like, e.g., finite sets, chains, and finite unions of chains. We
show that these theories of the Shelah-Stupp iteration can be reduced
to corresponding theories of the base structure. This fails for Muchnik’s
iteration.

1 Introduction

Rabin’s tree theorem states, via an automata-theoretic proof, the decidability
of the monadic second order (short: MSO) theory of the complete binary tree.
It allows to derive the decidability of seemingly very different theories (e.g.,
the MSO-theory of the real line where set quantification is restricted to closed
sets [12]). Its importance is stressed by Seese’s result that any class of graphs of
bounded degree with a decidable MSO-theory has bounded tree-width (i.e., is
“tree-like”) [14].

In [16], Shelah reports a generalization of Rabin’s tree theorem that was
proved by Shelah and Stupp. The idea is to start with a structure A and to
consider the tree whose nodes are the finite words over the universe of A together
with the prefix order on these words. Then the immediate successors of any node
in this tree can naturally be identified with the elements of the structure A –
hence they carry the relations of A. The resulting tree with additional relations is
called Shelah-Stupp-iteration. The above mentioned result of Shelah and Stupp
states that the MSO-theory of the Shelah-Stupp-iteration can be reduced to the
MSO-theory of the base structure A. If A is the two-elements set, then Rabin’s
tree theorem follows.

A further extension is attributed to Muchnik [15] who added a unary clone
predicate to Shelah and Stupp’s iteration resulting in the Muchnik-iteration.
This clone predicate states that the last two letters of a word are the same.
This allows, e.g., to define the unfolding of a rooted graph in its Muchnik-
iteration [6]. Muchnik’s theorem then gives a reduction of the MSO-theory
of the Muchnik-iteration to the MSO-theory of the base structure. The proof
was not published by Muchnik himself, but, using automata-theoretic methods,
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Walukiewicz showed that the reduction in Muchnik’s theorem is even uniform
(i.e., independent from the concrete base structure) [18]. Since, as mentioned
above, the unfolding of a rooted graph can be defined in the Muchnik-iteration,
the MSO-theory of this unfolding can be reduced to that of the graph [6]. This
result forms the basis for Caucal’s hierarchy [3] of infinite graphs with a decidable
MSO-theory. Walukiewicz’s automata-theoretic proof ideas have been shown to
work for the Muchnik-iteration and stronger logics like Courcelle’s counting MSO
and guarded second-order logic by Blumensath & Kreutzer [2].

In [11], we asked for a first-order version of Muchnik’s result – and failed.
More precisely, we constructed structures with a decidable first-order theory
whose Muchnik-iteration has an undecidable first-order theory. As it turns out,
the only culprit is Muchnik’s clone predicate since, on the positive side, we were
able to uniformly reduce the first-order theory (and even the monadic chain
theory where set variables range over chains, only) of the Shelah-Stupp-iteration
to the first-order theory of the base structure.1

The aim of this paper is to clarify the role of weak monadic second order
logic MSOw in the context of Shelah-Stupp- and Muchnik-iteration. We first
define infinitary versions of these iterations that contain, in addition to the fi-
nite words, also ω-words. On the positive side, we prove a rather satisfactory
relation between the theories of the infinitary Shelah-Stupp-iteration and the
base structure. More precisely, the Shelah-Stupp result together with some tech-
niques from [12] allows to uniformly reduce the MSOclosed-theory of the infinitary
Shelah-Stupp-iteration (where set quantification is restricted to closed sets) to
the MSO-theory of the base set. Our result from [11] ensures that Shelah-Stupp-
iteration is FO-compatible in the sense of Courcelle (i.e., the FO-theory of the
infinitary Shelah-Stupp-iteration can be reduced uniformly to the FO-theory of
the base structure). Our new positive result states that Shelah-Stupp-iteration
is also MSOw-compatible. To obtain this result, one first observes that the finite-
ness of a set in the Shelah-Stupp-iteration is definable in MSOmch (where quan-
tification is restricted to finite unions of chains), hence the MSOw-theory of the
Shelah-Stupp-iteration can be reduced to its MSOmch-theory. For this logic, we
then prove a result analogous to Rabin’s basis theorem: Any consistent MSOmch-
property in the Shelah-Stupp-iteration of a finite union of chains (i.e., of a certain
set of words over the base structure) has a witness that can be accepted by a
small automaton. But an automaton over a fixed set of states can be identified
with its transition matrix, i.e., with a fixed number of finite sets in the base struc-
ture. We then prove that MSOmch-properties of the language of an automaton
can effectively be translated into MSOw-properties of the transition matrix.

On the negative side, we show that infinitary Muchnik-iteration is not MSOw-
compatible. Namely, there is a tree Tω with decidable MSOw-theory such that for
any set M of natural numbers, there exists an MSOw-equivalent tree AM such
that M can be reduced to the MSOw-theory of the infinitary Muchnik-iteration
of AM . This proof uses the fact that the existence of an infinite branch in a

1 In the meantime, Alexis Bés [1] found a simpler proof of a stronger result based on
the ideas of automatic structures and [17].
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tree is not expressible in MSOw, but it is a first-order (and therefore a MSOw-)
property of the infinitary Muchnik-iteration.

2 Preliminaries

2.1 Logics

A (relational) signature σ consists of finitely many constant and relation symbols
(together with the arity of the latter); a purely relational signature does not
contain any constant symbols. Formulas use individual and set variables, usually
denoted by small and capital, resp., letters from the end of the alphabet. Atomic
formulas are x1 = x2, R(x1, . . . , xn), and x1 ∈ X where R is an n-ary relation
symbol from σ, x1, x2, . . . , xn are individual variables or constant symbols, and
X is a set variable. Formulas are obtained from atomic formulas by conjunction,
negation, and quantification ∃Z for Z an individual or a set variable. A sentence
is a formula without free variables. The satisfaction relation |= between a σ-
structure A and formulas is defined as usual. For two σ-structures A and B,
we write A ≡MSO

m B if, for any sentence ϕ of quantifier depth at most m,
we have A |= ϕ iff B |= ϕ. If A and B agree on all first-order formulas (i.e.,
formulas without set quantification) of quantifier depth at most m, then we write
A ≡FO

m B.
Let (V,�) be a partially ordered set. A set M ⊆ V is a chain if (M,�) is

linearly ordered, it is a multichain if M is a finite union of chains. An element
x ∈ M is a branching point if {y ∈ M | x < y} is nonempty and does not have
a least element.

We will also consider different restrictions of the satisfaction relation |= where
set variables range over certain subsets, only. In particular, we will meet the
following restrictions.

– Set quantification can be restricted to finite sets, i.e., we will discuss weak
monadic second order logic. The resulting satisfaction relation is denoted
|=w and the equivalence of structures ≡w

m.
– Set quantification can be restricted to chains (where we assume a designated

binary relation symbol � in σ) which results in |=ch and ≡ch
m , cf. Thomas [17].

– |=mch etc. refer to the restriction of set quantification to multichains.
– The superscript closed denotes that set variables range over closed sets, only

(where we associate a natural topology to any σ-structure), cf. Rabin [12].

Let t be some transformation of σ-structures into τ -structures, e.g., transitive
closure. A very strong relation between the L-theory of A and the K-theory of
t(A) is the existence of a single computable function red that reduces the K-
theory of t(A) to the L-theory of A for any σ-structure A. As shorthand for
this fact, we say “The transformation t is (K,L)-compatible” or, slightly less
precise “The K-theory of t(A) is uniformly reducible to the L-theory of A.”
(K,K)-compatible transformations are simply called K-compatible.
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Example 1. Any MSO-transduction is MSO-compatible [5] and finite set inter-
pretations are (MSOw,FO)-compatible [4]. Feferman & Vaught showed that any
generalized product is FO-compatible [8]. Finally, any generalized sum is MSO-
compatible by Shelah [16].

2.2 Shelah and Stupp’s and Muchnik’s iteration

Let A be a (not necessarily finite) alphabet. With A∗ we denote the set of all
finite words over A, Aω is the set of infinite words, and A∞ = A∗ ∪ Aω. The
prefix relation on finite and infinite words is �. The set of finite prefixes of a word
u ∈ A∞ is denoted ↓u = {v ∈ A∗ | v � u}, if C ⊆ A∞, then ↓C =

⋃
u∈C ↓u. For

L ⊆ A∞ and u ∈ A∗ let u−1L = {v ∈ A∞ | uv ∈ L} denote the left-quotient of
L with respect to u.

Let σ be a relational signature and let A = (A, (RA)R∈σ) be a structure over
the signature σ. The infinitary Shelah-Stupp-iteration A∞ of A is the structure

A∞ = (A∞,�, (R̂)R∈σ, ε)

where, for R ∈ σ,

R̂ = {(ua1, . . . , uan) | u ∈ A∗, (a1, . . . , an) ∈ RA} .

The (finitary) Shelah-Stupp-iteration A∗ is the restriction of A∞ to the set of
finite words A∗.

Example 2. Suppose the structure A has two elements a and b and two unary
relations R1 = {a} and R2 = {b}. Then R̂1 = {a, b}∗a and R̂2 = {a, b}∗b. Hence
the finitary Shelah-Stupp-iteration A∗ can be visualized as a complete binary
tree with unary predicates telling whether the current node is the first or the
second son of its father. In addition, the root ε is a constant of the Shelah-Stupp-
iteration A∗. Furthermore, the infinitary Shelah-Stupp-iteration A∞ adds leaves
to this tree at the end of any branch. Since this allows to define (R,≤) in A∞,
the unrestricted MSO-theory of A∞ is undecidable.

Example 3. (cf. [10]) The Shelah-Stupp iteration allows to reduce the Cay-
ley graph of a free product to the Cayley graphs of the factors. Let Mi =
(Mi, ◦i, 1i) be monoids finitely generated by Γi for 1 ≤ i ≤ n and let Gi =
(Mi, (Ea

i )a∈Γi
, {1i}) denote the rooted Cayley graph of Mi. Then the Cayley

graph G = (P, (Ea)a∈
S

Γi
) of the free product P = (P, ◦, 1) of these monoids

can be defined in the Shelah-Stupp iteration of the disjoint union of the Cayley
graphs Gi. For this to work, let M =

⋃
1≤i≤nMi be the disjoint union of the

monoids Mi and consider the structure

A = (M, (Mi)1≤i≤n, (Ea
i )1≤i≤n

a∈Γi

, U)

where U = {1i | 1 ≤ i ≤ n} is the set of units.
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Then a word w ∈M∗ belongs to the direct product P iff the following holds
in the Shelah-Stupp iteration of A:∧

1≤i≤n

∀xl y � w : x ∈ M̂i → y /∈ M̂i ∧ y /∈ Û

where l denotes the immediate successor relation of the partial order �. For
a ∈ Γi and v, w ∈ P , we have v ◦ a = w (i.e., (v, w) ∈ Ea) iff the Shelah-Stupp
iteration satisfies(

∃v′ ∈ Û : v l v′ ∧ (v′, w) ∈ Êa
i

)
∨ (v, w) ∈ Êa

i

∨
(
∃w′ ∈ Û : w l w′ ∧ (v, w′) ∈ Êa

i

)
.

Muchnik introduced the additional unary clone predicate cl = {uaa | u ∈ A∗, a ∈
A}. The extension of the Shelah-Stupp-iterations by this clone predicate will
be called finitary and infinitary Muchnik-iteration (A∗, cl) and (A∞, cl), resp.
Courcelle and Walukiewicz [6] showed that the unfolding of a directed rooted
graph G can be defined in the Muchnik iteration (G∗, cl) of G.

To simplify notation, we will occasionally omit the word “finitary” and just
speak of the Shelah-Stupp- and Muchnik-iteration.

3 A basis theorem for MSOmch

Rabin’s tree theorem [12] states the decidability of the monadic second order
theory of the complete binary tree. As a corollary of his proof technique by
tree automata, one obtains Rabin’s basis theorem [13, Theorem 26]: Let ϕ be
a formula with free variables X1, . . . , X` and let L1, . . . , L` ⊆ {a, b}∗ be regu-
lar languages such that the binary tree satisfies ϕ(L1, . . . , L`). Then it satisfies
ψ(L1, . . . , L`) where ψ is obtained from ϕ by restricting all quantifications to
regular sets. To obtain this basis theorem, it suffices to show that validity of
∃X` : ϕ(L1, . . . , L`−1, X`) implies the existence of a regular set R` such that
ϕ(L1, . . . , L`−1, R`) holds true in the binary tree.

This is precisely what this section shows in our context of MSOmch and the
Shelah-Stupp-iteration A∗. Even more, we will not only show that the set R` can
be chosen regular, but we will also bound the size of the automaton accepting
it.

Throughout this section, σ denotes some purely relational signature.

3.1 Preliminaries

For k, ` ∈ N, let τk,` be the extension of the signature (σ,�) by k constants
and ` unary relations. Using Hintikka-formulas (see [7] for the definition and
properties of these formulas) one can show that for any of the signatures τk,`

and m ∈ N, there are only finitely many equivalence classes of ≡mch
m . An upper
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bound T (`,m) for the number of equivalence classes of ≡mch
m on formulas over

the signature τ2,` can be computed effectively.
Now let A = (A, (R)R∈σ) be some σ-structure. For u ∈ A∗, let A∗u denote the

τ1,0-structure (uA∗,v, (R)R∈σ, u) where

– the relation v is the restriction of � to uA∗ and
– R is the restriction of R̂ to uA+.

For any u, v ∈ A∗, the mapping f : A∗u → A∗v with f(ux) = vx is an isomorphism
– this is the reason to consider R and not the restriction of R̂ to uA∗. Similarly,
the τ2,0-structure A∗u,v = (uA∗ \ vA+,v, (R)R∈σ, u, v) is defined for u, v ∈ A∗

with u � v. Here, again, R is the restriction of R̂ to uA+ \ vA+.
Frequently, we will consider the structure A∗ together with some additional

unary predicates L1, . . . , L`. As for the plain structure A∗, we will also meet
the restriction of (A∗, L1, . . . , L`) to the set uA∗, i.e., the structure (A∗u, L1 ∩
uA∗, . . . , L` ∩ uA∗). To simplify notation, this will be denoted (A∗u, L1, . . . , L`);
the structure (A∗u,v, L1, . . . , L`) is to be understood similarly.

Example 2 (continued). In the case of Example 2, A∗u is just the subtree
rooted at the node u. On the other hand, A∗u,v is obtained from A∗u by deleting
all descendants of v and marking the node v as a constant. Thus, we can think
of A∗u,v as a tree with a marked leaf. These special trees are fundamental in the
work of Gurevich & Shelah [9] and of Thomas [17].

In the following, fix some ` ∈ N. We then define the operations of product and
infinite product of τk,`-structures: If A = (A,�A, (RA)R∈σ, a1, a2, L

A
1 , . . . , L

A
` ) is

a τ2,`-structure and B = (B,�B, (RB)R∈σ, b1, . . . , bk, L
B
1 , . . . , L

B
` ) a disjoint

τk,`-structure with k ≥ 1, then their product A · B is a τk,`-structure. It is
obtained from the structure

(A ∪B,�A ∪ �B, (RA ∪RB)R∈σ, L
A
1 ∪ LB

2 , . . . , L
A
` ∪ LB

` )

by identifying a2 and b1, taking the transitive closure of the partial orders, and
extending the resulting structure by the list of constants a1, b2, b3, . . . , bk. Now
let An be disjoint τ2,`-structures with constants un and vn for n ∈ N. Then
the infinite product

∏
n∈N An is a τ1,`-structure. It is obtained from the disjoint

union of the structures An by identifying vn and un+1 for any n ∈ N. The only
constant of this infinite product is u0. If A ∼= An for all n ∈ N, then we write
simply Aω for the infinite product of the structures An.

Standard applications of Ehrenfeucht-Fräıssé-games (see [7]) yield:

Proposition 1. Let j, `,m ∈ N, An,A
′
n be τ2,`-structures for n ∈ N and let

B,B′ be some τj+1,`-structures such that An ≡mch
m A′n for n ∈ N and B ≡mch

m B′.
Then

A0 ·B ≡mch
m A′0 ·B′ and

∏
n∈N

An ≡mch
m

∏
n∈N

A′n .
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Remark 1. We sketch a typical use of the above proposition in this section.
Let x ∈ A∗ be some sufficiently long word. Since ≡mch

m has only finitely many
equivalence classes, there exist words u, v, w with x = uvw and v 6= ε such that
(A∗u, {x}) ≡mch

m (A∗uv, {x}). Hence we obtain

(A∗, {x}) = (A∗ε,u, ∅) · (A∗u, {uvw}) ≡mch
m (A∗ε,u, ∅) · (A∗uv, {uvw}) ∼= (A∗, {uw}) .

(This proves that every consistent property of a single element of A∗ is witnessed
by some “short” word.)

The last isomorphism does not hold for the Muchnik-iteration since the clone
predicate allows to express that the last letter of u and the first letter of v are
connected by some edge in the graph A.

Convention We speak of automata when we actually mean complete deter-
ministic finite automata M = (Q,B, ι, δ, F ). Its language is denoted L(M).
We will also write p.w for δ(p, w). The transition matrix of M is the tuple
T = (Tp,q)p,q∈Q with Tp,q = {b ∈ B | δ(p, b) = q}.

As explained above, we will use automata to describe subsets of the Shelah-
Stupp iteration A∗, i.e., the alphabet B will always be a finite subset of the
universe of A. These regular subsets have the following nice property whose
proof is obvious.

Lemma 1. Let A be a σ-structure with universe A and let M = (Q,B, ι, δ, F )
be an automaton with alphabet B ⊆ A. Then, for any u, v ∈ B∗ with δ(ι, u) =
δ(ι, v), the mapping fu,v : uA∗ → vA∗ : ux 7→ vx is an isomorphism from
(A∗u, L(M)) onto (A∗v, L(M)).

Consequently, the number of isomorphism classes of structures (A∗v, L(M))
is finite. This fails in the Muchnik-iteration even for L(M) = ∅: With A =
(N, succ) and m,n ∈ N, we have (A∗m, cl) ∼= (A∗n, cl) iff m = n since the structure
(N, succ,m) can be defined in (A∗m, cl).

3.2 Quantification

While multichains in the Shelah-Stupp-iteration can be rather complicated, this
section shows that, up to logical equivalence, we can restrict attention to “sim-
ple” multichains. Here, “simple” means that they are regular and, even more,
can be accepted by a “small” automaton.

For the rest of this section, let A = (A, (R)R∈σ) be some fixed σ-structure
and `,m ∈ N. For 1 ≤ i ≤ `, let Mi = (Qi, Bi, ιi, Fi) be automata with Bi ⊆ A
such that L(Mi) ⊆ A∗ is a multichain in the Shelah-Stupp iteration A∗. Write
L for the tuple of multichains (L(M1), . . . , L(M`)).

Proposition 2. Let C ⊆ A∗ be a chain. Then there exist u, v ∈ A∗, E ⊆
↓u \ {u}, and F ⊆ ↓v \ {v} such that ιi.u = ιi.uv for all 1 ≤ i ≤ ` and
(A∗, L, C) ≡mch

m (A∗, L,D) with D = E ∪ uv∗F .
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Proof. One shows the existence of u1 ≺ u2 ∈ A∗ such that C ∪ {u1, u2} is a
chain, ιi.u1 = ιi.u2 for all 1 ≤ i ≤ `, (A∗, L) ∼= (A∗ε,u1

, L) · (A∗u1,u2
, L)ω, and

(A∗, L, C) ≡mch
m (A∗ε,u1

, L, C) · (A∗u1,u2
, L, C)ω. This uses arguments similar to

those in Remark 1 and Ramsey’s theorem. The result follows with u = u1,
uv = u2, E = C ∩ ↓u \ {u}, and F = u−1(C ∩ ↓u2 \ {u2}).

The above proposition shows that every consistent property of a chain is wit-
nessed by some regular chain D. Using the pigeonhole principle and arguments
as in Remark 1, one can bound the lengths of u and v to obtain

Proposition 3. Let C ⊆ A∗ be a chain. Then there exists an automaton N
with at most 2

∏
1≤i≤` |Qi| · T (` + 1,m) states such that L(N ) is a chain and

(A∗, L, C) ≡mch
m (A∗, L, L(N )).

It is our aim to prove a similar result for arbitrary multichains in place of the
chain C in the proposition above. Certainly, in order to get a small automaton
for a multichain, the branching points of this set have to be short words. Again
using arguments as in Remark 1, one obtains

Lemma 2. Let M ⊆ A∗ be a multichain. Then there exists a multichain N ⊆ A∗

such that

– (A∗, L,M) ≡mch
m (A∗, L,N) and

– any branching point of N has length at most k =
∏

1≤i≤`(|Qi|+1)·T (`+1,m).

Lemma 3. Let M be a multichain such that all branching points of M have
length ≤ s− 1. Then there exists an automaton N with at most (2

∏
1≤i≤` |Qi| ·

T (`+1,m))s+1 many states such that L(N ) is a multichain and (A∗, L,M) ≡mch
m

(A∗, L, L(N )).

Proof. Let n =
∏

1≤i≤` |Qi| and L = (L(M1), . . . , L(M`)).
The lemma is shown by induction on s. If s = 0, then M is a chain, i.e., the

result follows from Prop. 3.
Now let M be a multichain such that any branching point has length at

most s > 0. By the induction hypothesis, for every a ∈ A, there exists an
automaton Na with at most (2nT (`+ 1,m))s+1 many states such that L(Na) is
a multichain and

(A∗a, L,M) ≡mch
m (A∗, a−1L(M1), . . . , a−1L(Ma

` ), L(Na)) .

Let θ be the equivalence relation on A with (a, b) ∈ θ if and only if

1. δi(ιi, a) = δi(ιi, b) for all 1 ≤ i ≤ ` and
2. (A∗a, L,M) ≡mch

m (A∗b , L,M).

Let H ⊆ A contain precisely one element h from any θ-equivalence class. Then
the set

⋃
{aL(Nh) | a θ h ∈ H and a−1M 6= ∅} ∪ ({ε} ∩M) is a multichain and

can be accepted by some automaton N with the right number of states.
Then (A∗, L, L(N )) is obtained from (A∗, L,M) by replacing any subtree

(A∗a, L,M) with the equivalent structure (A∗, a−1L(M1), . . . , a−1L(Ma
` ), L(Nh))

for a θh ∈ H. Hence, by Prop. 1, (A∗, L,M) ≡mch
m (A∗, L, L(N )).
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Putting these two lemmas together, we obtain that, indeed, every consistent
property of a multichainM is witnessed by some multichain that can be accepted
by some “small” automaton:

Proposition 4. Let M ⊆ A∗ be some multichain. Then there exists an automa-
ton N with at most (2nT (`+1,m))s+1 many states (where s = n·T (`+1,m), n =∏

1≤i≤` |Qi|) such that L(N ) is a multichain and (A∗, L,M) ≡mch
m (A∗, L, L(N )).

Now a result analogous to Rabin’s basis theorem follows immediately

Theorem 1. Let A be a σ-structure, let ϕ be an MSOmch-formula in the lan-
guage of the Shelah-Stupp-iteration A∗ with free variables X1, . . . , X` and let
L1, . . . , L` ⊆ A∗ be regular languages such that (A∗, L1, . . . , L`) |=mch ϕ. Then
(A∗, L1, . . . , L`) |=reg−mch ϕ where |=reg−mch denotes that set quantification is
restricted to regular multichains.

Recall that Rabin’s basis theorem follows from his tree theorem whose proof,
in turn, uses the effective complementation of Rabin tree automata. While the
above theorem is an analogue of Rabin’s basis theorem, the proof is more direct
and does in particular not rest on any complementation of automata.

4 Shelah-Stupp-iteration is (MSOmch, MSOw)-compatible

The results of the previous section, as explained at the beginning, imply that
quantification in an MSOmch-sentence can be restricted to regular sets that are
accepted by “small” automata. In this section, we will use this insight to reduce
the MSOmch-theory of the Shelah-Stupp-iteration to the MSOw-theory of the
base structure.

Fix some σ-structure A with universe A, some finite set of states Q, some
initial state ι, and some set of final states F ⊆ Q. Then, for any automaton
M = (Q,B, ι, δ, F ) with B ⊆ A, the language L(M) is a set in the Shelah-
Stupp-iteration A∗ while its transition matrix is a tuple of finite sets in the
base structure A. The idea of our reduction is that MSOmch-properties of the
set L(M) in the Shelah-Stupp-iteration A∗ can (effectively) be translated into
MSOw-properties of the transition matrix T in the base structure A.

In precisely this spirit, the following lemma expresses simple properties of the
automaton M and of the language L(M) in terms of FO-properties of (A, T ) =
(A, (Tp,q)p,q∈Q).

Lemma 4. Let F ⊆ Q be finite sets and ι ∈ Q. There exist formulas reach(Q,p,q)

for p, q ∈ Q and mchain(Q,ι,F ) of FO with free variables Tp,q for p, q ∈ Q such
that for any σ-structure A and any automaton M = (Q,B, ι, δ, F ) with transition
matrix T :

(1) (A, T ) |=w reach(Q,p,q) iff there exists a word w ∈ A∗ with δ(p, w) = q.
(2) (A, T ) |=w mchain(Q,ι,F ) iff L(M) is a multichain.
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Proof. The proof is based on the observation that (1) one only needs to search for
a path of length at most |Q| and (2) that L(M) is a multichain iff no branching
point belongs to some cycle.

So far, we showed that simple properties of L(M) are actually FO- (and
therefore MSOw-) properties of the transition matrix of M. We now push this
idea further and consider arbitrary MSOmch-properties of a tuple of languages
L(M1), . . . , L(M`).

Theorem 2. There is an algorithm with the following specification
input: – ` ∈ N,

– finite sets Fi ⊆ Qi and states ιi ∈ Qi for 1 ≤ i ≤ `,
– and a formula α with free variables among L1, . . . , L` in the language

of the Shelah-Stupp-iteration A∗.
output: A formula α(Q,ι,F ) in the language of A with free variables among T i

p,q

for p, q ∈ Qi and 1 ≤ i ≤ ` with the following property:
If A is a σ-structure and Mi = (Qi, Bi, ιi, T

i, Fi) are automata with
Bi ⊆ A for 1 ≤ i ≤ `, then

(A∗, L(M1), L(M2), . . . , L(M`)) |=mch α

⇐⇒ (A, T 1, T 2, . . . , T `) |=w α(Q,ι,F ) .

Proof. The proof proceeds by induction on the construction of the formula α,
we only sketch the most interesting part α = ∃X β. Set n =

∏
1≤i≤` |Qi|, s =

nT (`+ 1,m), and k = (2nT (`+ 1,m))s+1. Let A be a σ-structure and let Mi =
(Qi, Bi, ιi, δi, Fi) be automata with Bi ⊆ A and transition matrix T i. Then,
by Prop. 4, (A∗, L(M1), . . . , L(M`)) |=mch α iff there exists an automaton N
with k states such that

(A∗, L(M1), L(M2), . . . , L(M`), L(N )) |=mch β .

Using the induction hypothesis on β and β(Q,ι,F ), this is the case if and only if
there exist finite sets T `+1

i,j , B ⊆ A for i, j ∈ [k] = {1, 2, . . . , k} such that

– T `+1 forms the transition matrix of some automaton with alphabet B
– for some F ⊆ [k], the automaton M`+1 = ([k], B, 1, T `+1, F )

• accepts a multichain M (i.e., (A, T `+1) |=w mchain([k],1,F )) and
• this multichain satisfies β (i.e., A, T 1, . . . , T `+1 |=w β((Q,[k]),(ι,1),(F,F ))).

Since all these properties can be expressed in MSOw, the construction of α(Q,ι,F )

is complete.

As an immediate consequence, we get a uniform version of Shelah and Stupp’s
theorem for the logics MSOw and MSOmch:

Theorem 3. Finitary Shelah-Stupp-iteration is (MSOmch,MSOw)-compatible.

Remark 2. (MSOch,FO)-compatibility of Shelah-Stupp-iteration [11] can alter-
natively be shown along the same lines: One allows incomplete automata and
proves an analogue of Prop. 3 for the logic MSOch. Then Theorem 3 can be
shown for the pair of logics (MSOch,FO).
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5 Infinitary Muchnik-iteration is not (FO, MSOw)-
compatible

Our argument goes as follows: From a set M ⊆ N, we construct a tree AM .
The MSOw-theory of this tree will be independent from M and M will be FO-
definable in the infinitary Muchnik-iteration (A∞M , cl). Assuming (FO,MSOw)-
compatibility of the infinitary Muchnik-iteration, the set M will be reduced
uniformly to the MSOw-theory of AM . For M 6= N , this yields a contradiction.

A tree is a structure (V,�, r) where � is a partial order on V such that, for
any v ∈ V , (↓v,�) is a finite linear order and r � v for all v ∈ V .

We will consider the set Tω = {(a1,m1)(a2,m2) . . . (ak,mk) ∈ (N × N)∗ |
m1 > m2 > m3 · · · > mk} of sequences in N2 whose second components decrease.
This set, together with the prefix relation �, forms a tree (Tω,�, ε) with root ε
that we also denote Tω. Nodes of the form w(a, 0) are leaves of Tω. Any inner
node of Tω has infinitely many children (among them, there are infinitely many
leaves). Furthermore, all the branches of Tω are finite. Even more, if x is a
node different from the root, then the branches passing through x have bounded
length.

We will also consider the set T∞ = a∗Tω where a is an arbitrary symbol.
Together with the prefix relation, this yields another tree (T∞,�, ε) that we
denote T∞. Differently from Tω, it has an infinite branch, namely the set of all
nodes an for n ∈ N.

For two trees S and T and a node v of S, let S ·v T denote the tree obtained
from the disjoint union of S and T by identifying v with the root of T (i.e., the
node v gets additional children, namely the children of the root in T ).

It is important for our later arguments that this operation transforms trees
equivalent wrt. ≡w

m into equivalent structures. More precisely

Proposition 5. Let S, T , and T ′ be trees and k ∈ N such that T ≡w
k T ′. Then

S ·v T ≡w
k S ·v T ′ for any node v of S.

With a≤n = {ε, a, a2, . . . , an}, the set a≤nTω together with the prefix relation
and the root, is considered as a tree that we denote a≤nTω.

Proposition 6. For any k ∈ N, we have Tω ≡w
k T∞.

Proof. The statement is shown by induction on k where the base case k = 0
is trivial. To show Tω ≡w

k+1 T∞, it suffices to prove for any formula ϕ(X) of
quantifier-depth at most k

Tω |=w ∃X ϕ(X) ⇐⇒ T∞ |=w ∃X ϕ(X) .

Assuming T∞ |=w ∃X ϕ, there exist n ∈ N andM ⊆ a≤nTω finite with (T∞,M) |=w

ϕ. Hence we have

(T∞,M) ∼= (a≤nTω,M) ·an (T∞, ∅)
≡w

k (a≤nTω,M) ·an (Tω, ∅) by Prop. 5 and the induction hypothesis
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∼= (a≤nTω,M) .

Hence (a≤nTω,M) |=w ϕ and therefore a≤nTω |=w ∃X ϕ. Using Tω ≡w
k+1 a

≤nTω

(see complete paper for the proof), we obtain Tω |=w ∃X ϕ.
Conversely, one can argue similarly again using Tω ≡w

k+1 a
≤nTω.

Remark 3. This proves that the existence of an infinite path cannot be expressed
in weak monadic second order logic since T∞ has such a path and Tω does not.

Using an idea from [6], the existence of an infinite path is a first-order prop-
erty of the infinitary Muchnik-iteration. The following lemma pushes this idea a
bit further:

Lemma 5. Let T = (T,≤, r) be a tree and let U ⊆ T be the union of all infinite
branches of T . Then the MSOw-theory of (T,≤, r, U) is uniformly reducible to
the MSOw-theory of the infinitary Muchnik-iteration (T∞, cl) of the tree (T,≤, r)
without the extra predicate.

For M ⊆ N, let AM = {bm | m ∈ M}T∞ ∪ {bm | m /∈ M}Tω and AM =
(AM ,�, ε). Then AM is obtained from the linear order (N,≤) ∼= (b∗,�) by
attaching the tree T∞ to elements from M and the tree Tω to the remaining
numbers.

Theorem 4. For M ⊆ N, we have AM ≡w
k Tω for all k ∈ N, and M can be

reduced to the FO-theory of the infinitary Muchnik-iteration (A∞M , cl).

Proof. Using Ehrenfeucht-Fräıssé-games and Prop. 6, one obtains

AM ≡w
k (b∗Tω,�, ε) ∼= T∞ ≡w

k Tω .

For the second statement, it suffices, by Lemma 5, to reduce M to the first-
order theory of (AM ,�, ε, U) where U = b∗∪{bm | m ∈M}a∗ is the set of nodes
of the tree AM that belong to some infinite branch.

If a transformation t is (FO,MSOw)-compatible, then for any structure A,
the FO-theory of t(A) can be reduced to the the MSOw-theory of A. Contrary
to this, the above theorem states that the FO-theory of the infinitary Muchnik-
iteration can be arbitrarily more complicated than the MSOw-theory of the base
structure. Hence we obtain

Corollary 1. Infinitary Muchnik-iteration is not (FO,MSOw)-compatible.

6 Summary

Table 1 summarizes our knowledge about the compatibility of Muchnik’s and
Shelah & Stupp’s iteration. It consists of four subtables dealing with finitary
and infinitary Muchnik-iteration and with finitary and infinitary Shelah-Stupp-
iteration. The sign + in cell (K,L) of a subtable denotes that the respective
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iteration is (K,L)-compatible, – denotes the opposite. Minus-signs without fur-
ther marking hold since the base structure can be defined in any of its iterations.
Capital letters denote references: (A) is [16], (B) [18], (C) [11, Prop. 3.4], (D) [11,
Thm. 4.10], (E) Theorem 3, (F) Theorem 4, and (G) since the base structure is
definable in its iteration and finiteness of a set is no MSO-property. Small letters
denote that the result follows from Theorem 5 below and some further “simple”
arguments from the result marked by the corresponding capital letter.

Theorem 5. Let (K,L) be any of the pairs (MSOclosed,MSO), (MSOch,MSOch),
or (MSOmch,MSOmch). There exists a computable function red such that, for any
σ-structure A, red reduces the K-theory of (A∞, cl) to the L-theory of (A∗, cl).

The same holds for the Shelah-Stupp-iterations.

The two questions marks in Table 1 express that it is not clear whether
finitary Muchnik-iteration is MSOw-compatible or not.

Note the main difference between Muchnik- and Shelah-Stupp-iteration: the
latter is K-compatible for all relevant logics while only MSO behaves that nicely
with respect to (infinitary) Muchnik-iteration

A referee proposed to also consider the variant of MSO where set quantifica-
tion is restricted to countable sets. As to whether Muchnik iteration is compatible
with this logic is not clear at the moment.

Muchnik inf. Muchnik
MSO MSOw FO MSO MSOw FO

MSO + (B) – – MSOclosed + (b) – –
MSOw – (g) ? – MSOw – (g) – (f) –
FO + (b) ? – (C) FO + (b) – (F) – (c)

Shelah-Stupp inf. Shelah-Stupp
MSO MSOw FO MSO MSOw FO

MSO + (A) – – MSOclosed + (a) – –

MSOmch – (g) + (E) – MSOmch – (g) + (e) –
MSOw – (G) + (e) – MSOw – (g) + (e) –

MSOch + (a) + (e) + (D) MSOch + (a) + (e) + (d)
FO + (a) + (e) + (d) FO + (a) + (e) + (d)

Table 1. summary
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