PDL with Intersection and Converse is
2EXP-complete

Stefan Goller * **

Institut flir Informatik, Universitét Leipzig, Germany
goeller@informatik.uni-leipzig.de

Abstract. The logic ICPDL is the expressive extension of Proposi-
tional Dynamic Logic (PDL), which admits intersection and converse
as program operators. The result of this paper is containment of ICPDL-
satisfiability in 2EXP, which improves the previously known non-elementary
upper bound and implies 2EXP-completeness due to an existing lower
bound for PDL with intersection (IPDL). The proof proceeds showing
that every satisfiable ICPDL formula has model of tree width at most
two. Next, we reduce satisfiability in ICPDL to w-regular tree satisfiabil-
ity in ICPDL. In the latter problem the set of possible models is restricted
to trees of an w-regular tree language. In the final step, w-regular tree
satisfiability is reduced the emptiness problem for alternating two-way
automata on infinite trees. In this way, a more elegant proof is obtained
for Danecki’s difficult result that satisfiability in IPDL is in 2EXP.

1 Introduction

Propositional Dynamic Logic (PDL) was introduced by Fischer and Ladner in
1979 as a modal logic for reasoning about the input/output behaviour of pro-
grams [7]. In PDL, there are two syntactic entities: formulas, built from boolean
and modal operators and interpreted as sets of worlds of a Kripke structure;
and programs, built from the operators test, union, composition, and Kleene
star (reflexive transitive closure) and interpreted as binary relations in a Kripke
structure. Since its invention, many different extensions of PDL have been pro-
posed, many of them allow additional operators on programs. Three prominent
such extensions are PDL with the converse operator (CPDL), PDL with the
intersection operator (IPDL), and PDL with the negation operator on programs
(NPDL), see the monograph [11] and references therein. While some of these
extensions such as CPDL are well-suited for reasoning about programs, many
of them aim at the numerous other applications that PDL has found since its
invention. Notable examples of such applications include agent-based systems
[14], regular path constraints [2], and XML-querying [1,17,18]. In artifical intel-
ligence, PDL received attention due to its close relationship to description logics
[9] and epistemic logic [20, 19].

* This article is joint work with Markus Lohrey and Carsten Lutz and based on the
paper [10] which appeared at FoSSaCS 2007.
** The author is supported by the DFG project GELO.

Dagstuhl Seminar Proceedings 07441
Algorithmic-Logical Theory of Infinite Structures
http://drops.dagstuhl.de/opus/volltexte/2008,/1409

The most important decision problem for PDL is satisfiability: is there a
Kripke structure which satisfies a given formula at some node? A classical result
of Fischer and Ladner states that satisfiability for PDL is EXP-complete [7, 16].
The EXP upper bound can be extended to CPDL and can even be established for
several extensions thereof [21]. In contrast, the precise complexity of satisfiability
for IPDL was a long standing open problem. In [4], Danecki proved a 2EXP upper
bound. Alas, Danecki’s proof is rather difficult and many details are omitted in
the published version. One of the reasons for the difficulty of IPDL is that,
unlike PDL, it lacks the tree model property, i.e., a satisfiable IPDL formula
does not necessarily have a tree model. Danecki proved that every satisfiable
IPDL formula has a special model which can be encoded by a tree. This paves
the way to using automata theoretic techniques in decision procedures for IPDL.
Only recently, a matching 2EXP lower bound for IPDL was shown by Lange and
Lutz [12]. Regarding NPDL, it is long known that satisfiability is undecidable
[11]. As recently shown in [11], the fragment of NPDL in which program negation
is restricted to atomic programs is decidable and EXP-complete.

In this paper, we prove that the complexity of satisfiability in ICPDL, the
extension of PDL with both converse and intersection, is complete for determin-
istic doubly exponential time. Decidability was shown by Lutz in [13] using a
reduction to monadic second order logic over the infinite binary tree. However,
this only yields a nonelementary algorithm which does not match the 2EXP lower
bound that ICPDL inherits from IPDL. We prove that satisfiability in ICPDL
can be decided in 2EXP, and thus settle the complexity of ICPDL as 2EXP-
complete. There are some additional virtues of our result. First, we provide a
shorter and (hopefully) more comprehensible proof of the 2EXP upper bound for
IPDL. Second, the information logic DAL (Data Analysis Logic) [6] is a fragment
of ICPDL (but not of IPDL) and thus inherits the 2EXP upper bound; so far
only decidability of satisfiability of DAL was known. And third, our result has
applications in description logic and epistemic logic, see [13] for more details.

Our main result is proved in three clearly separated parts. In part one (Sec-
tion 3), we establish a model property for ICPDL based on the notion of tree
width. Tree width measures how close a graph is to a tree, and is one of the most
important concepts in modern graph theory with many applications in computer
science. As mentioned earlier, IPDL (and hence also ICPDL) does not have the
tree model property. We prove that ICPDL enjoys an ”almost tree model prop-
erty”: every satisfiable ICPDL formula has a model of tree width at most two
(recall that trees have tree width one). This part of the proof of our main re-
sult is comparable to Danecki’s result that every satisfiable IPDL formula has a
special model which can be encoded by a tree.

In part two of our proof (Section 4), we use the established model property
to give a polytime reduction of satisfiability in ICPDL to what we call w-regular
tree satisfiability in ICPDL. The latter problem is defined in terms of two-way
alternating parity tree automata (TWAPTAs). A TWAPTA is an alternating
automaton with a parity acceptance condition that runs on infinite node-labeled
trees and can move upwards and downwards in the tree. Infinite node-labeled

trees can be viewed in a natural way as Kripke structures and thus we can
interpret ICPDL formulas in such trees. Now, w-regular tree satisfiability in
ICPDL is the following problem: given an ICPDL formula ¢ and a TWAPTA 7T,
is there a tree accepted by 7 which is a model of 7 Our reduction of satisfiability
in ICPDL to this problem is based on a suitable encoding of all countable Kripke
structures of tree width at most two. The TWAPTA constructed in the reduction
accepts precisely such encodings.

Finally, in part three (Section 5) we reduce w-regular tree satisfiability in
ICPDL to the non-emptiness problem for TWAPTAs. The latter problem was
shown to be EXP-complete in [22]. Since our reduction of w-regular tree satisfi-
ability in ICPDL to TWAPTA-non-emptiness involves an exponential blow-up
in automata size, we obtain a 2EXP upper bound for w-regular tree satisfiability
in ICPDL and also for standard satisfiability in ICPDL.

As a corollary of our proof, we obtain that satisfiability in the extension
of PDL with converse and the loop-construct (briefly, loop-CPDL) belongs to
EXP. The loop-construct allows to express that execution of program 7 allows
to return to the initial world. Membership of satisfiability in PDL with loop in
EXP was shown by Danecki [5].

2 ICPDL basics

Let P and A be countably infinite sets of atomic propositions and atomic pro-
grams, respectively. Formulas ¢ and programs 7 of the logic ICPDL are defined
by the following grammar, where p ranges over PP and a over A:

o u= p| | (m)e

i a | @] mUm | mNme | momg | ©° | ¢?

The size of ICPDL formulas and programs (denoted | - |) is defined by mutual
induction: |p| = |a| = [a| =1 for all p € P and a € A, || = |97 = |¢| + 1,
(M| = ||+ || + 1, |m op ma| = |mi| + |m2| + 1 for op € {U,N, 0}, and
|7*| = |7| + 1. The semantics of ICPDL is defined in terms of Kripke structures.
A Kripke structure is a tuple K = (X, {—4| a € A}, {X, | p € P}), where

— X is a set of worlds,
— —4 € X x X is a transition relation for each a € A, and

— X, € X is a unary relation for each p € P.

Given a Kripke structure K = (X,{—,| a € A},{X, | p € P}), we define for
each ICPDL program = a binary relation [1]x € X x X and for each ICPDL

formula ¢ a subset [¢]x C X, using mutual induction as follows: !

[plk = X,forpelP
[l = X\[vlx
(Ml = {z|3y:(z,y) €]l ANy € [plx}

—, fora e A
{(y,z) |z —q y} fora € A

lalx

[alx

[miopm]x = [m]k op [m]k for op € {U,N, o}
[~*lx = Irlk
[l = {(z,2)|z€[olx}

Note that applying the converse operator ~ to atomic programs is not a restric-
tion since it commutes with all other operators. Also note that @1 A @2 can be
written as (¢17)p2 and true = —=(p A —p) for some p € P. If z € [¢]x for some
x € X, then the Kripke structure K is a model of ¢. The formula ¢ is satisfiable
if there exists a model of p. The satisfiability problem in ICPDL is to decide,
given an ICPDL formula ¢, whether ¢ is satisfiable.

3 Models of tree width two suffice

The goal of this section is to introduce an operator & that accomplishes the
following: Applying @ to a Kripke structure K together with an initial world z¢
of K yields a Kripke structure K@ of tree width (to be defined below) at most
two together with an initial world :1089 of K® such that for every ICPDL formula
¢ we have zg € [p]x if and only if zf € [¢]xe.

We start with defining tree decompositions and the tree width of Kripke
structures. Let

K = (X.{~a|acA},{X,|peP})

be a Kripke structure. A tree decomposition of K is a tuple (T, (By)vev), where
T = (V, E) is an undirected tree, B, is a subset of X (called a bag) for all v € V,
and the following conditions are satisfied:

1. Uypey By = X,
2. For every transition x —, y of K, there exists v € V with z,y € B,, and
3. For every x € X, the set {v € V |z € B, } is a connected subset in 7.

The tree decomposition (T, (By)yev) is countable, if V' is countable. The width
of the tree decomposition is the supremum of {|B,| — 1 | v € V'}. The tree width
of a Kripke structure K is the minimal k such that K has a tree decomposition
of width k. We have the following result.

! We overload notation and use e.g. o both as a program operator of ICPDL and
to denote the composition operator for binary relations, i.e., Ro S = {(a,b) | Jc :
(a,c) € R,(c,b) € S}.

Theorem 1. Let K be a Kripke structure and let o be a world of K. Then
there ezists a Kripke structure K® of tree width at most two and a world :cg9 of
K% such that for every ICPDL formula ¢ we have xg € [¢]k if and only if J?(G)B €
[el ke . Moreover, if K is countable then K€ has a countable tree decomposition
of width at most two.

Let us outline the construction the proof of Theorem 1. Fix a Kripke structure
K = (X,{—4] a € A},{X, | p € P}) and a world zp € X of K. Firstly, we
inductively define an undirected tree T' = (V, E) together with a node labeling
t, € X UX2U X3 for each v € V given by the following rules:

1. Start the construction with a root vg € V' and put ¢,, = .
2. fveVandt, =x¢€ X, then for every y € X add a child w of v and set
tw = (2,y).
3. If v eV and ¢, = (x,y), then add
— for every z € X a child w of v with ¢, = (, z,y) and
— a child w’ with t,, = y.
4. f v € V and t, = (x, 2,y), then add children w; and wy with t,, = (z,2)
and ty, = (z,y).

We assume that successors are added at most once to each node and that
the rules are applied in a breadth first manner. A place is a pair (v,z) € V x X
such that ¢, contains x. We denote by Pr the set of places of T" and define
~ to be the smallest equivalence relation on Pr that contains all pairs of the
form ((v,z), (u,z)) such that {v,u} € E. Whenever (v,z) € Pr we denote by
[v,z] the equivalence class of (v,z) with respect to . Finally, let us define
K® = (X', {—,|a e A}, {X] | p € P}) as follows,

- X' ={[v,2] | (v,x) € Pr},
— [v,2] =, [v',y] whenever there exists some u € V such that (v,z) =
(u,2),(v, y) ~ (u,y) and x —, y, and

- X, ={[v,z] € X' |z € Xp}.

/

We put z§ = [vg, 70]. Theorem 1 follows from Point (3) of the following lemma.

Lemma 1. For all (v,z), (u,y) € Pr, all programs 7 and all formulas ¢:

(1) ifto = (z,y) and (z,y) € [r]k, then ([v,z],[v,y]) € [7]Ke;
(2) z'f([v,x], [uay]) € [[W]]K@? then (xvy) € [[W]]K;
(8) x €[]k if and only if [v,x] € [¢] ko -

4 Reduction from satisfiability to w-regular tree
satisfiability

Informally, the w-regular tree satisfiability problem in ICPDL is to decide, given
an ICPDL formula ¢ and a two-way alternating parity tree automaton (TWAPTA
— the definition will be given below) 7', whether there is an infinite tree in L(7)
that, when viewed as a Kripke structure, is a model of .

Let Xy be a finite node alphabet and Xg a finite edge alphabet. A Xy -labeled
XY p-tree is a partial function T : X}, — X'y such that the set of nodes dom(T) is
prefix-closed. If dom(T") = X}, then T is called complete. In the rest of the paper
we mostly work with complete trees. For a node va € dom(T) with a € Xg, we
say that the node va is the (a-)successor of v and v is the (a-)predecessor of va.
We use tree(Xy, X'g) to denote the set of all complete X'y-labeled Y'g-trees. If
Xp is not important, we simply talk of X' y-labeled trees.

The trees accepted by TWAPTAs are complete 2P-labeled A-trees, where
A C A and P C P are finite sets of atomic propositions and atomic programs,
respectively. Such a tree T can be identified with the Kripke structure (A*, {—,|
a € AL {T, | p € P}), where —, = {(u,ua) | u € A*} for all a € A and
T, ={ue€ A" | pe T(u)} for p € P. Observe that Kripke structures derived in
this way are total w.r.t. A and deterministic, i.e., the transition relation —, is
a total function for all a € A.

For a finite set X, we denote by B (X) the set of all positive boolean formulas
where the elements of X are used as variables. The constants true and false
are admitted, i.e. we have true, false € BT (X) for any set X. A subset Y C X
can be seen as a valuation in the obvious way, i.e., all elements of Y are assigned
true and all elements of X \ Y are assigned false. For an edge alphabet X'g, let
Yp =1{a|a€ Yg} be adisjoint copy of Y. For u € X% and d € YgUXgU{e}
define

ud ifde Xg
wed— U ifd=c¢
) if there exists a € X'g with d =@ and v = va

undefined if d =@ for a € X but u does not end with a

A two-way alternating parity tree automaton (TWAPTA) over complete Xn-
labeled Y g-trees is a tuple 7 = (S, 6, sg, Acc), where

— S is a finite non-empty set of states,

—§: 8 x XYy — Bt (ext(Xg)) is the transition function, where ext(Yg) =
S x (X¥pUXEgU{e}) is the set of moves,

— so € S is the initial state, and

— Acc: S — N is the priority function.

For s € S and d € ¥ U X U {e} we write the corresponding move as (s, d).
Intuitively, a move (s, a), with @ € X', means that the automaton sends a copy
of itself in state s to the a-successor of the current tree node. Similarly, (s,a)
means to send a copy to the a-predecessor (if existing), and (s,) means to stay
in the current node. Formally, the behaviour of TWAPTASs is defined in terms
of runs. Let 7 be a TWAPTA as above, T € tree(Xy, Xg), u € X} a node,
and s € S a state of 7. An (s,u)-run of T on T is a (not necessarily complete)
(S x X%)-labeled tree Tr such that

— Tr(e) = (s,u), and

— for all @ € dom(TR), if Tr(a) = (p,v) and §(p, T'(v)) = 0, then there is a
subset Y C ext(Xg) that satisfies # and such that for all (p',d) € Y, v-d is
defined and there exists a successor 8 of o in T with Tr(8) = (p,v - d).

We say that an (s,u)-run Tg is successful if for every infinite path ajas--- in
Tr (which is assumed to start at the root), the number

min{Acc(s) | s € S with Tr(e;) € {s} x X for infinitely many ¢}

is even. For s € S define

[7,s] ={(T,u) | T € tree(Xn, XE), u € X}, and
there exists a successful (s,u)-run of 7 on T} and

7] =17, so].

Now the language L(7) accepted by 7T is defined as the set of all T' € tree(X'n, X'g)
such that (T,¢) € [T]. We remark that our model of TWAPTAs differs slightly

from other definitions that can be found in the literature. First, we run TWAP-

TAs only on complete trees, which will facilitate some technical constructions

later on. Second, standard TWAPTAs have moves of the form (s, —1) for moving

to the parent node. In our model, we use moves of the form (s,a), which can

only be executed if the current node is an a-successor of its parent node. It is

not hard to see that these two models are equivalent. In particular, it is easy to

see that the following result of Vardi also applies to our version of TWAPTAs.

For a TWAPTA T = (S, 0, s9, Acc), we define its size |T| := |S]| as its number

of states and we define its index i(7) as max{Acc(s) | s € S}. The size |§| of
the transition function ¢ is the sum of the sizes of all positive Boolean functions

that appear in the range of 9.

Theorem 2 ([22]). For a given TWAPTA T with transition function §, it can
be checked in time 2(TI+HTDD . 16|90 whether L(T) # 0.

We can now formally define w-regular tree satisfiability. Let ¢ be an ICPDL
formula, let A = {a € A | a occursin ¢} and P = {p € P | p occurs in ¢}.
The formula ¢ is satisfiable with respect to a TWAPTA T = (S, 4, so, Acc) over
2P-labeled A-trees, if there is a T € L(7) such that € € [¢]r. Thus, w-reqular
tree satisfiability is the problem to decide, given such ¢ and 7, whether ¢ is
satisfiable with respect to 7.

4.1 The reduction

Before we reduce satisfiability in ICPDL to w-regular tree satisfiability, we use
a result of Flum.

Theorem 3 ([8]). FEvery satisfiable formula of least fized point logic has a
countable model.

Since ICPDL is a fragment of least fixed point logic, we obtain the following
corollary.

Corollary 1. Every satisfiable ICPDL has a countable model.

Next, we use good tree decompositions. A tree decomposition (U, (B,)yev) is
good it U = (V = {a,b}*, E = {{v,vc} | v € {a,b}*,c € {a,b}}) is the complete
binary tree and {u,v} € E imples B, C B, or B, C B,. Clearly, every good
tree decomposition is countable. The following lemma is not hard to show.

Lemma 2. FEvery Kripke structure that has a countable tree decomposition of
width k also has a good tree decomposition of width k.

Thus, by Theorem 1, Corollary 1 and Lemma 2 every satisfiable ICPDL
formula has a model that has a good tree decomposition of width at most two.

To reduce satisfiability in ICPDL to w-regular tree satisfiability, we show how
to translate an ICPDL formula ¢ into an ICPDL formula ¢’ and a TWAPTA 7
such that ¢ is satisfiable if and only if ¢’ is satisfiable with respect to 7. The
formula ¢’ uses atomic propositions and atomic programs

P = {t} wprop(y) W ({0,1,2} x prog(y) x {0,1,2}) and A= {a,b,0,1,2},

where prop(y) = {p € P | p occurs in ¢} and prog(¢) = {a € A | a occurs in p}.
The TWAPTA 7 works on 2P-labeled A-trees. Intuitively, each tree T accepted
by 7 encodes a Kripke structure K together with a good tree decomposition of
K of width at most two, and T is a model of ¢’ if and only if K is a model of ¢.
We first describe the mentioned encoding on an intuitive level. Let K be a
Kripke structure and (U, (B,)yev) a good tree decomposition of K of width at
most two, with U = (V, E), i.e. V = {a, b}*, with ¢ the root of the tree U and for
each v € V| va and vb the children of v. The tree T" has roughly the structure of U.
In particular, each node v € U is described by the same node v in T, together
with additional children v0, v1, and v2 that v has in T'. Intuitively, we think of
each node v in U as providing three slots which can be empty or filled with a
world of the Kripke structure K, i.e. the three slots correspond to an ordered
representation of B,. The additional successors v0, v1,v2 of v in T describe these
three slots. This explains our choice of A. When slot vi (i € {0, 1,2}) is occupied
by a world of K, then vi receives the special label ¢ € P in T'. Additionally, each
node vi is labeled with the same atomic propositions as the world in K that it
represents (if any). Information about the transitions of K are stored in 7" using
nodes from {a,b}*. For example, if there is a vy-transition in K from the world
represented by vi to the world represented by vj, then the labeling of v contains
the tuple (7,7, 7). We now formally define the described encoding. A complete
2P-labeled A-tree T is called walid if the following holds for all v € A*:

— ifv € {a,b}* and i € {0, 1,2}, then either T'(vi) = 0 or {t} C T'(vi) C {t}UP;
set B, :={i |t € T(vi)};

— if v € {a,b}*, then T'(v) C B, X prog(y) X By;

— if v € {a,b}* and ¢ € {a, b}, then B, C B, or By C By;

— ifv ¢ {a,b}*U{a,b}*{0,1,2}, then T(v) = 0.

Let T be a valid 2P-labeled A-tree. We now make precise the Kripke structure
K(T) over prop(¢) and prog(y) that is described by T'. Define a set of places

Pr = {ue {a,b}*{0,1,2} | t € T(u)}

and let ~ be the smallest equivalence relation on Ppr which contains all pairs
(vi,vei) € Pr x Pp, where v € {a,b}*, ¢ € {a,b}, and 0 < i < 2. For u € Pp, we
use [u] to denote the equivalence class of u with respect to ~. Now set

K(T) = (X,{—,| v € prog(p)}, {X, | p € prop(p)}),

where
X = AlullvePr},
7y = {([UZ], [U]]) | CAS {a7b}*7 (i777j) € T(U)}7 and
X, = {uleX|peT).

The structure K (T") should not be confused with T' viewed as a Kripke structure
over P and A as discussed at the beginning of Section 4: the original formula ¢
whose satisfiability is to be decided is interpreted in K (T') whereas the reduction
formula ¢’, to be defined below, is interpreted in T viewed as a Kripke structure
over P and A. The following lemma, which is easy to prove, establishes the
correctness of our encoding.

Lemma 3. If K is a Kripke structure that has a good tree decomposition of
width two, then there exists a valid T € tree(2¥,A) such that K is isomorphic
to K(T). Conversely, K(T') has tree width at most two for every valid T €
tree(2P, A).

Recall that our aim is to convert the ICPDL formula ¢ whose satisfiability is
to be decided into an ICPDL formula ¢’ over P and A and a TWAPTA 7. The
TWAPTA 7 is defined such that it accepts the set of all valid 2P-labeled A-trees.
Such a TWAPTA is easily designed, and details are left to the reader. To define
the formula ¢, we first introduce the auxiliary program

L= |J t?oio(aUbUaUDB)oiot?
i€{0,1,2}

and set 7., := t?0 (w1)*. It is easy to see that for each valid tree T’ € tree(2F, A),
we have[r.]r equals ~. For an ICPDL program or formula «, let @ be obtained
from a by replacing

— every atomic program v € A(p) N A by

y = U o o0io(i,y,j)?0jom. and
4,7€{0,1,2}

— every atomic proposition p € P(¢) NP by p = (7)p.

Observe that the definitions of 4 and p directly reflect the definition of K (T"). The
proof of the following lemma is straightforward by induction on the structure of
¥ and w. The base case is easy by definition of ~ and 7. and K(T'), and the
inductive step is simple. Details are left to the reader.

Lemma 4. For all subformulas 1 of ¢, subprograms m of ¢, and valid trees
T € tree(2P,A), and places u,v € Pr, we have:

1. ue [[1]1\]]T if and only if [u] € [Y]k(1);
2. (u,v) € [7]r if and only if ([u], [v]) € [7] k(1)

Now define ¢’ := ((aUb)* o (0U1U2) o t?).
Lemma 5. ¢ is satisfiable if and only if ¢’ is satisfiable with respect to T .
Thus, we obtain the following Theorem.

Theorem 4. There is a polynomial time computable reduction from the satisfi-
ability problem in ICPDL to w-reqular tree satisfiability in ICPDL.

5 w-regular tree satisfiability is in 2EXP

The rest of this section is devoted to showing that w-regular tree satisfiability in
ICPDL is in 2EXP. A matching 2EXP lower bound of w-regular tree satisfiability
in ICPDL follows easily from a result in [12], where it is shown that satisfiability
in IPDL over trees is already 2EXP-hard. Therefore, we concentrate on the upper
bound for w-regular tree satisfiability in ICPDL.

We prove containment in 2EXP by an exponential time reduction to the non-
emptiness problem for TWAPTAs. The main ingredient of the reduction is a
mutual inductive translation of (i) ICPDL formulas into TWAPTAs and (ii) of
ICPDL programs into a certain kind of non-deterministic automata (NFAs).
The latter resemble standard NFAs on words, but navigate in a complete Y-
tree reading symbols from {a,@ | a € Yg}. They can also make conditional
e-transitions, which are executable only if the current tree node is accepted by
a given TWAPTA.

Formally, a non-deterministic finite automaton (NFA) A over a TWAPTA
T = (85,6, s0,Acc) is a tuple (Q, po, go, —.4), where Q is a finite set of states,
po and qo are two selected states, and — 4 is a set of labeled-transitions of the
following form, where ¢,¢’ € Q and a € Yg:

q>ad, q E’A ¢, or q 2>A q withs € S.

Transitions of the third kind are called test transitions. NFAs define binary
relations on the set of nodes of a complete X' y-labeled Y g-tree. To make this

10

explicit, let T' € tree(Xn, Xg) and define = 47 C (X5 x Q) x (X}, x Q) as the
smallest relation such that for all u € X5, a € X'g, p,q € @, and s € S, we have

(uap) j./4,T (ua, Q) if p i’.A q, (1)
(ua,p) j./4,T (U, Q) if p i).A q, (2)
(u,p) =ar (u,q) if p 4 qand (T,u) € [T,5]. (3)

Define
[A] = {(T,u,v) | T € tree(Xn, X), u,v € Xy, and (u, po) =% 7 (v,q0)}-

When considering an NFA over a certain TWAPTA 7, the initial state of 7 is
obviously useless. Thus, in any TWAPTA over an NFA will formally be 3-tuple.

5.1 From ICPDL to automata

We show how to convert ICPDL formulas into TWAPTAs and ICPDL pro-
grams into NFAs. To this end, fix a finite set of atomic propositions P C P and
atomic programs A C A over which ICPDL formulas and programs are built.
As expected, the corresponding TWAPTAs and NFAs will work on 2P-labeled
A-trees. For ICPDL formulas v and programs 7, let

[v] = {(T,u) | T € tree(2”,A), u € A*, and u € [¢]r}
[7] = {(T,u,v) | T € tree(2P,A), u,v € A*, and (u,v) € [r]r}.

The aim of this subsection is to convert

— each formula v into a TWAPTA T (¢) such that [7 ()] = [¢] and
— each program 7 into a TWAPTA 7 (7) and an NFA A(w) over 7 (m) such
that [A(7)] = [].

All automata constructed in this section work over 2P-labeled A-trees. The con-
struction is by induction on the structure of ¢y and 7. We start with defining the
TWAPTA T (¢) for each formula .

If ¢ =peP,weput T() = ({so},9,s0,50 — 1), where for all v C P we have
0(s0,7v) = true if p € v and d(so,y) = false otherwise. Then clearly we have

[T ()] = [¥]-

If » = =0, then 7 (¢) is obtained from 7 (#) by applying the standard comple-
mentation procedure where all positive Boolean formulas on the right-hand side
of the transition function are dualized and the acceptance condition is comple-
mented by increasing the priority of every state by one, see e.g. [15].

If ¢ = (m)0, then we have inductively constructed an NFA

A(m) = (Q, po, qo, —.4) over a TWAPTA 7 (7) = (51,1, Accy)

11

such that [r] = [A(7)]. We have also constructed a TWAPTA
7(9) = (SQ, 627 52, ACCQ)

such that [0] = [7 (6)]. We may assume that @, S, and Ss are pairwise disjoint.
We construct the TWAPTA 7T (¢) = (S, 6, po, Acc) with S = Q U S; U Sy. For
states in S1 and Ss, the transitions of 7 (¢) are as in 7 (7) and 7 (6), respectively.

To simulate A(7), we first note that handling transitions ¢ i>A(7T) r and ¢q i>A(7T)
r is easy: 7 (¢) simply navigates up and down the tree as required. To handle a

transition ¢ EAGILN A(m) T, we branch universally to simulate 7 (7) in state s and
to simulate A(7) in state r. To ensure that the simulation of A(7) terminates,
the priority function of 7 () assigns 1 to all states of Q). To start the simulation
of T() after termination, we admit an e-transition from g¢g to s2. Formally, for
q € @ and v C P, we define

8(q,v) = \/{{ra) | ¢ Sam Vv \{a) | ¢ Sam) v
T(m),s
\/{<575> A <T= 5> | q —A(x) T}
with an additional disjunct (s,) if ¢ = go. The priority function Acc is defined
by setting Acc(s) = 1 if s € @ and Acc(s) = Acc;(s) whenever s € S; with
i € {1,2}. It is straightforward to check that [7 (¢)] = [¢].

We now describe the inductive construction of A(w) and 7 (7) for an ICPDL
program .

Ifr=aorm=a,ac€ A, the NFA A = A(n) has its only transition between
its two special states py and qo, namely py — .4 go or po L A qo, respectively.
Clearly, [r] = [A(n)]. Since A(w) has no test transitions, the TWAPTA 7 (7) is

not important. For estimating the size of the constructed automata, we assume
that 7 () has a single state and its index is |Acc| = 1.

If 7 = ¢?, we can assume that there exists a TWAPTA 7 (¢) = (5,9, so, Acc)
such that [¢)] = [7 (¢)]. The TWAPTA 7 (7) is 7 (1) (without the initial state).

The NFA A(r) has only the two special states py and ¢o with the transition

po 2020, o Hence, we have [1] = [A(m)] = {(T,u,) | (T, u) € [T ()]}

If # =7 Umg, ™ = m 0mg, or ™ = X*, we construct A(m) by using the standard
automata constructions for union, concatenation, or Kleene-star, respectively. In
case m = m Umg or m = mp o w2, we define 7 (7) as the disjoint union of 7 ()
and 7 (m2), whereas for m = x*, we set 7 (7) = 7 ().

It remains to construct A(m Nm2) and 7 (mp N m2), which is the most difficult
step of the construction. Assume that the NFA

./4(7@) = (thh qi, _>.A(7ri)) over the TWAPTA T(ﬂ'i) (4)
has already been constructed, for ¢ € {1,2}. Thus, [A(m;)] = [m]. A natural
idea for defining an NFA for m Ny is to apply a product construction to A(m)

12

and A(mz). However, a naive attempt to do this fails: the product construction
forces A(m) and A(mz) to travel along the same path, whereas A(m) and A(mz)
may actually travel from a tree node u to a tree node v along different paths.
More precisely, the two automata both travel along the unique shortest path
P from u to v in the tree, but they may make different “detours” from this
path P, i.e., they may divert from P and eventually return to the node on P
where the diversion started. In order to eliminate this problem, we modify A(m)
and A(mz) by admitting additional test transitions that allow to short-cut the
described detours. These modified NFA can always travel along the shortest path
without any detours, and thus the product construction is applicable.

Before we construct A(m; Nmg), we show how to modify an NFA in order to
short-cut detours. Let

A: (Q7q07p07_>./4) (5)
be an NFA over an TWAPTA

T = (5,6, Acc) (6)

and T € tree(2”,A). We define a relation loop 4 € A* x Q x Q describing
detours. Intuitively, (u,p,q) € loop 4 7 means that in the tree T, A can do a
detour starting from u in state p and ending at u in state ¢. Formally, loop 4
is the smallest set such that:

(i) for all uw € A* and q € Q we have (u, q,q) € loop 4 7,

(ii) if (T,u) € [T,s] and p 2»,4 q for s € S, then (u,p,q) € loop 4 7,

if (ua,p’,q") € loop 4 1, p L4 p and ¢ iA q, then (u,p, q) € loop 4.,
(iv) if (u,p’,q") € loop 4 7, p 2 ap, and ¢ % 4 g, then (ua,p, q) € loop 4 r,
(v) if (u,p,7) € loop 4 7 and (u,7,q) € loop 4 1, then (u,p, q) € loop 4 1.

It can be proven that loop 4 1 is as required.

Lemma 6. We have (u,p,q) € loop 4 1 if and only if (u,p) =7 r (u,q).

Since Conditions (i)—(v) can easily be translated into a TWAPTA, we obtain
the following.

Lemma 7. For the NFA A in (5) over the TWAPTA T in (6) there is a
TWAPTA U = (5,6, Acc’) with S' = S (Q x Q) such that for all s € S
and p,q € Q:

(1) [U;s] =T, 5],

(ii) U, (p,@)] = {(T,u) | T € tree(2”,A),u € A*, and (u,p) =% r (v,q)},

and

(iii) |Acc’| = |Acc|.

Note that the TWAPTA U can be seen as an extension of the basic TWAPTA
7 in (6).

Recall that our aim is to modify the NFA A from in (5) such that detours are
short-cut. To do this, define the new NFA B = (Q, po, o, —5) over the TWAPTA

13

U as the modification of A obtained by adding for every pair (p,q) € Q X @,

U,(p, .
the test transition p ﬂqg q. For words u,v € A* let inf(u,v) be the longest

common prefix of v and v, it corresponds in the tree T' to the lowest common
ancestor of u and v. Define the relation g rC (A* x Q) x (A* x Q) (resp.
I rC (A* x @) x (A* x Q)) in the same way as =g, except that clause
(1) (resp. (2)), with A replaced by B, in the definition of the relation =5 1 is
dropped. This means that with the relation {13 7 (resp. {g,r) the NFA B is only
allowed to walk up (resp. down) in the tree or stay in the same node by executing
a test transition.

Lemma 8. Let u,v € A*. Then the following three statements are equivalent:

(i) (u,v) € [A]
(i) (u,v) € [B]

(i) there exists r € Q with (u,po) g r (inf(u,v),7) V5 7 (v,q0)-

We now return to the construction of A(m N72) and 7 (71 N7e) from the NFA
A; = A(m;) over the TWAPTA 7; = 7(m;) in (4) (¢ € {1,2}). For i € {1,2},
we convert 7; into a new TWAPTA U; as in Lemma 7 and A; into a new NFA
B; = (Qi,pi, ¢i, — 8B,) over U; as described above. Define 7 (71 N72) as the disjoint
union of Uy and Us. The NFA A(m N) is the product automaton of B; and
Bs, where test transitions can be carried out asynchronously:

A(ﬂ-l N 7T2) = (Ql X QQ} (plap2)a (qla q2)7 —>.A(Trlﬁ7r2))a

where — g(x,nr,) 18 the smallest relation such that

a a . . a
— 11 —p, 71 and 1o —p, 5 implies (11, 72) = A(x,Amy) (71, 7%), and analogously
for a-transitions,

U(mr),s ;- .
— rp ——>p, r} implies (r1,73)

U(m2),s

T (wiNm2),s
————"= A(mnm) (r1,72) for all 7o € Qo,
T (m1Nm2),s
—

B, T4 implies (ri,72) A(minm) (r1,75) for all rp € Q.

Lemma 9. [[A(Tl'l ﬂﬂ'z)]] = [[71’1 ﬂﬂg]].

This finishes the inductive translation of ICPDL formulas and programs into
automata.
5.2 Automata size
We analyze the size of the automata constructed in the previous subsection.
It will turn out that our translation of formulas and programs into automata
has an exponential blow-up. Next, we introduce a syntactic parameter which

the size of the constructed TWAPTASs is exponential in, namely intersection
width. Formally, the intersection width iw(m) of an ICPDL program 7 is defined

14

inductively:

iw(a) =iw(@) = 1forall a €A
iw(6?) = 1
iw(m Ume) = iw(my o ma) = max{iw(m;),iw(m2)}
iw(r*) = iw(m)
iw(my Nme) = iw(my) + iw(ms)

Note that iw is non-montonic: iw(f?) = 1 but #? may contain subprograms of
intersection width stictly larger than 1.

For an NFA A = (Q, po, g0, —.4) (over some TWPATA) we define the size of
A as |@Q]. Note that for the size of A, the size of the TWPATA over which it is
defined, is not taken into account.

Lemma 10. For every ICPDL program =, |A(r)| < 2|x["(™).

Recall that intersection width is non-monotonic. In order to estimate the size
of TWAPTA, we need a monotonic variant: If « is either an ICPDL program or
an ICPDL formula then

1 if no subprogram occurs in «

IW(a) = {

max{iw(7) | m occurs in o} else.

Recall that for a TWAPTA 7 we denote by i(7) the index of 7.
Lemma 11. For every ICPDL program w and ICPDL formula 1:

= |T(m)| < |m +8|x| - [7*™ " and i(T (m)) < |].

—T@) < 9l +8- o] - [¥) and i(T (v)) < |¢].
By applying Lemma 11 and Theorem 2, we obtain the following upper bound
on w-regular tree satisfiability in ICPDL.
Theorem 5. For a TWAPTA T and an ICPDL formula ¢, we can decide in

. O(1

time 20TIHEDIHL)™Y O cther there exists some T € L(T) such that € €
[elr. Hence, w-regular tree satisfiability belongs to 2EXP.

Note that Theorem 5 yields a single exponential upper complexity bound if the
intersection width of input formulas ¢ is bounded by a constant.
Thus, by Theorem 4 and Theorem 5, we obtain our main result.

Theorem 6. Satisfiability in ICPDL is 2EXP-complete. For every constant c €
N, satisfiability in {¢ | ¢ is an ICPDL formula with TW(¢) < ¢} is EXP-complete.

Consider the following extension of PDL with converse that we call loop-
CPDL: the loop-operator gives for a program 7 a formula loop(w) with the
following semantics: [loop(m)]x = {z | (z,z) € [n]x}. Note that loop can be
defined using N: [loop(m)]x = [(w N true?)true]x.

Corollary 2. Satisfiability of loop-CPDL is EXP-complete.

15

6

Open problems

An interesting open problem is the finite satisfiability problem for I(C)PDL.
Here, for a given I(C)PDL formula ¢ it is asked whether ¢ has a finite model.
It is currently even open, whether the finite satisfiability problem for IPDL
is decidable. Bojariczyk proved in [3] that finite satisfiability for the modal u-
calculus with backwards modalities (another logic, which does not have the finite
model property) is EXP-complete. Maybe one can use techniques from that paper
in order to attack the finite satisfiability problem for I(C)PDL.

References

1.

10.

11.

12.

L. Afanasiev, P. Blackburn, I. Dimitriou, E. G. Bertrabd Gaiffe, M. Marx, and
M. de Rijke. PDL for ordered trees. Journal of Applied Non-Classical Logics,
15(2):115-135, 2005.

N. Alechina, S. Demri, and M. de Rijke. A modal perspective on path constraints.
Journal of Logic and Computation, 13(6):939-956, 2003.

M. Bojanczyk. Two-way alternating automata and finite models. In 29th Inter-
national Colloquium on Automata, Languages and Programming (ICALP 2002),
Malaga (Spain), number 2380 in Lecture Notes in Computer Science, pages 833—
844. Springer, 2002.

R. Danecki. Nondeterministic propositional dynamic logic with intersection is
decidable. In Proceedings of the 5th Symposium on Computation Theory (Zaborw,
Poland), number 208 in Lecture Notes in Computer Science, pages 34-53, 1984.

. R. Danecki. Propositional Dynamic Logic with Strong Loop Predicate. In Pro-

ceedings of Mathematical Foundations of Computer Science 1984 (MFCS 1984),
number 176 in Lecture Notes in Computer Science, pages 573-581, 1984.

L. Farinas Del Cerro and E. Orlowska. DAL-a logic for data analysis. Theoretical
Computer Science, 36(2-3):251-264, 1985.

M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of Regular Programs.
Journal of Computer and System Sciences, 18(2):194-211, 1979.

. J. Flum. On the (infinite) model theory of fixed point logics. In X. Caicedo and

C. H. Montenegro, editors, Models, Algebras, and Proofs: selected papers of the X
Latin American symposium on mathematical logic held in Bogota, volume 203 of
Lecture Notes in Pure and Applied Mathematics, pages 67—75. Marcel Dekker, Inc.,
1999.

G. D. Giacomo and M. Lenzerini. Boosting the Correspondence between Descrip-
tion Logics and Propositional Dynamic logics. In Proceedings of the 12th National
Conference on Artifical Intelligence (AAAI’94), pages 205-212, 1994.

S. Goller, M. Lohrey, and C. Lutz. PDL with Intersection and Converse Is 2 EXP-
Complete. In Proceedings of the 10th International Conference on Foundations of
Software Science and Computational Structures (FoSSaCS 2007), Braga (Portu-
gal), number 4423 in Lecture Notes in Computer Science, pages 198-212. Springer,
2007.

D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of computing.
The MIT Press, 2000.

M. Lange and C. Lutz. 2-ExpTime Lower Bounds for Propositional Dynamic
Logics with Intersection. Journal of Symbolic Logic, 70(4):1072-1086, 2005.

16

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

C. Lutz. PDL with Intersection and Converse Is Decidable. In C.-H. L. Ong, editor,
Proceedings of the 19th International Workshop on Computer Science Logic (CSL
2005), Ozxford (UK), number 3634 in Lecture Notes in Computer Science, pages
413-427. Springer, 2005.

J. Meyer. Dynamic logic for reasoning about actions and agents. In J. Minker,
editor, Logic-Based Artificial Intelligence, pages 281-311. Kluwer Academic Pub-
lishers, 2000.

D. Muller and P. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54(2-3):267-276, 1987.

V. Pratt. A near-optimal method for reasoning about action. Journal of Computer
and System Sciences, 20:231-254, 1980.

B. ten Cate. The expressivity of XPath with transitive closure. In Proceedings of
the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS 2006), pages 328-337. ACM Press, 2006.

B. ten Cate and C. Lutz. The Complexity of Query Containment in Expressive
Fragments of XPath 2.0. In Proceedings of the 26th ACM Symposium on Principles
of Database Systems (PODS’98). ACM Press, 2007.

W. van der Hoek and J. Meyer. A complete epistemic logic for multiple agents -
combining distributed and common knowledge, 1997.

H. P. van Ditmarsch, W. van der Hoek, and B. P. Kooi. Concurrent dynamic
epistemic logic for MAS. In Proceedings of the 2nd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2003), pages 201-208.
ACM Press, 2003.

M. Y. Vardi. The taming of converse: Reasoning about two-way computations.
In Proceedings of Logics of Programs, number 193 in Lecture Notes in Computer
Science, pages 413-423. Springer, 1985.

M. Y. Vardi. Reasoning about The Past with Two-Way Automata. In K. G.
Larsen, S. Skyum, and G. Winskel, editors, Proceedings of the 25th International
Colloquium on Automata, Languages and Programming (ICALP ’98), Aalborg
(Denmark), number 1443 in Lecture Notes in Computer Science, pages 628—641.
Springer, 1998.

17

