A policy iteration algorithm for Markov decision
processes skip-free in one direction

J. Lambert, B. Van Houdt, C. Blondia
PATS Research Group, IBBT & University of Antwerp,
Middelheimlaan 1, B-2020 Antwerp - Belgium

I. INTRODUCTION

Markov decision processes (MDP) [1] provide a mathe-
matical framework for studying a wide range of optimization
problems. Two important iterative approaches that determine
the optimal policy are the policy iteration and the value
iteration algorithm. Policy iteration has the advantage that it is
guaranteed to converge in a finite number of steps, but requires
the solution of a linear system of equations at each iteration.
The value iteration algorithm is faster per iteration as it avoids
solving linear systems, but in general requires significantly
more iterations.

In case the matrices P(a), characterizing the transition
probabilities given that action a is executed, are structured;
policy iteration can potentially also exploit this structure to
reduce the amount of computation time and memory needed
during a single iteration. Within the matrix analytic paradigm,
this was first demonstrated by White [10] in case the matrices
P(a) are skip free in both directions. The approach taken by
White is generalized in this work by developing an algorithm
for the case where the P(a) matrices are skip-free in one
direction only.

MDPs have a wide range of application areas. Our motiva-
tion lies in understanding the behavior of optical fibre delay
line (FDL) buffers [2], [4], [3] and [5]. To improve the loss rate
of the equidistant FDL buffer, we devised a new mechanism
in [5], called the preventive drop mechanism, for which the
optimal drop policy can be determined via a Markov Decision
Process. In [5] the value iteration algorithm was used for
this purpose, causing slow convergence to the optimal policy.
Using the new approach, we are now in a position to tackle
larger systems, while reducing the computation times. For
more details on the analysis of FDL buffers, we refer to [6].

II. MDP SKIP-FREE IN ONE DIRECTION

A. Skip-free in one direction Markov chains

A Markov chain skip-free in one direction is a discrete-time
Markov chain defined on a finite state space S = {k | k =
1,...K}, ie., at each time ¢t > 0, X(¢t) = k € {1,...,K}.
The state space S is partitioned into M + 1 sets .S;, for
t = 0,...,M, where |S;| = b;. Further, the transition
probability matrix P of this chain has a block skip-free (to

Dagstuhl Seminar Proceedings 07461
Numerical Methods for Structured Markov Chains
http://drops.dagstuhl.de/opus/volltexte /2008 /1403

the left) structure:

Ao Ao1 Ao2 Ao, m
Ao Aix Ao A

p— 0 Ay1 Az Aomr | (1)
0 0 Aviv—1 Amm

The matrix P is of size K x K, where the subblock A; j
of size b; x by holds the transition probabilities between the
states of the set .S; and Si. The stationary probability vector
x = (xo,...,xn), where x; has length b;, satisfies x = P
and ze = 1, where e is a column vector with all entries equal
to one. In this work we will restrict ourselves to the case where
bp=...=by =b= K/(M +1), meaning all subblocks are
square and have the same dimension.

B. Markov decision process skip-free in one direction

For each state h, there exists a set A(h) of decisions or
actions. In our case the set A(h) is the same for all h;
hence we simply denote this set as .4. Each action incurs an
immediate cost and also affects the probability law for the next
transition. A formal definition of the MDP is given by the tuple
(S, A, P,C), where S is the set of possible states, A is the set
of possible actions, P : SxAxS — [0, 1] is the state transition
function specifying the probability P{h’ | h,a} = pp(a)
of observing a transition to state h’ € S after taking action
a € Ain state h € S and, finally C : S x A — R is a function
specifying the cost ¢j, (a) of taking action a € A at state h € S
[9].

The goal of the decision model is to prescribe a policy R for
controlling the system, such that the cost is minimal. Formally,
a policy R is a mapping R : S — A and under a given policy
R, action R(h) is always executed whenever we visit state h.
For a given policy R we can define the long-run average cost
from state h as follows:

Jr(h) = E Zath(t)(R(X(t)))‘ X(0) = h] ;@
t=0

where 0 < o < 1 is the discount factor. An optimal policy Ry
is defined to be a policy which realises the minimum long-run
average cost Jr(h) over all policies R and this for all initial
states h € S. It is well-known that the optimal (minimum)
long-run average cost is a solution of

J = main(c(a) + aP(a)J), (3)

with the vector J* = (J*(1),J*(2),...,J*(K)), entry h
of the column vector c¢(a), denoted as [c(a)]n, equal to
cn(a) and P(a) the transition matrix given that action a is
executed. For further use, we write the size K vector ¢(a)
as (co(a),ci(a),...,ca(a))T, with ¢;(a) a size b vector for
1 = 0,..., M. Equation (3) is a set of non-linear equations
that in general cannot be solved directly. For a given policy
R, the associated long-run average cost satisfies the equation
(see [1]):

Jr = c(a) + aP(a)Jg, “)

where a is determined by the policy R for each component h €
S. The policy iteration algorithm for determining the optimal
long-run average cost J* is discussed in detail in [1]. The
most expensive step of the algorithm is the policy evaluation
step where we evaluate the policy R,, by solving (4) to yield
Jr, . In Section III we will study this policy evaluation step.
An MDP, characterized by the matrices P(a), for a € A
is skip-free in one direction (to the left) if all the matrices
P(a) are skip-free (to the left) and consequently, all transition
matrices corresponding to any policy R are skip-free.

III. MATRIX ANALYTIC TECHNIQUES FOR POLICY
EVALUATION

In this section we drop all explicit references to the policy
R under evaluation to make the notations easier. Let us denote
the corresponding long-run average cost row vector by J7 =
(JE,Jt, ..., JL,) where T denotes the transpose and each J,,,
is a column vector of size b. The matrix equation (4) can be
written as the set of equations:

M
co + Z(OtA07iJ¢)

Jo =
1=0
M
Jm = Cm+ Z (aAm,iJi); (5)
i=m—1

form=1,..., M.

Two different approaches to solve this system of equa-
tions efficiently are discussed next. Both may be regarded as
generalizations of the approach developed by White [10] for
the Quasi-Birth-Death case. Both approaches are also closely
related with the algorithm used to compute the stationary
vector of a Markov chain skip-free in one direction developed
by Latouche, Jacobs and Gaver [7], in the same manner as
the approach taken by White relates to the linear reduction
algorithm for the stationary vector of a finite QBD discussed in
[8]. The two approaches differ in the way the linear reduction
is performed: either from right-to-left or from left-to-right.

A. Right-to-left approach for MDPs skip-free in one direction

Analogue to the linear reduction method for solving skip-
free in one direction Markov chains [7], we start by defining
the matrices 4,,, and O};,m that turn out to be useful to evaluate
the long-run average cost J(h). Set Ay; = Ay and

Am = a(Am,m + Gm,m+1(-[- Am+1)_1Am+1,m)7

for m = M —1,...,0. Besides we define Oy py = Ay m
with k=0,...,.M —1and form=M —1,...,1 we set

ek,m = a(Ak,m + @k,m—i-l(I - Am-i—l)_lAm-f-l,m)a

where kK = 0,...,m — 1. Furthermore we also define a vector
Cm, for 0 < m < M as follows: ¢p; = c¢ps and

M
_ T \v—1=
Cm = Cm, + Z (@m,j(l — Aj) Cj) N
j=m+1
form=M-1,...,0.
Let us now use these matrices and vectors to rewrite equation
(5) as follows:

Jm = (I - Am)_l(ém + aAm,mfljmfl)v (6)
form=M,...,1 and
Jo = (I — Aog)~"eo. (7

The algorithm to perform a policy evaluation of R thus works
as follows (pseudo code for an efficient implementation of this
algorithm is given in Figure 1):

o Step 0: The algorithm proceeds by initialising A4/, O,m
(for k=0,...,M — 1) and cy,.

e Step 1: We can determine A,,, Okm and G, for
m=M-—1,...,0and k£ = 0,...,m — 1 by iterating
backwards.

o Step 2: Afterward equation (7) is used to determine Jy.

o Step 3: We iteratively derive J,,, from J,,_1 using equa-
tion (6) form=1,..., M.

We can reduce the memory complexity using two matrices:
the b x (M +1)b matrix V = [V ... V)] and the b x (M +1)
matrix W = [Wy ... Wyy] to store the intermediate and final
results, where V,,, and W,, are square matrices and column
vectors of size b, respectively. The pseudo code for this
implementation is given in Figure 1. At the end of step 3 W
holds the long-run average cost vectors [Jo, J1,...,Ja]. In
Step 2 we only require the Ay, ,, matrices one block column
at a time. As a consequence this step can be implemented in
O(b>*M) memory and O(b>M?) time.

The overall performance of the algorithm can be further
lowered by constructing P(a) block row per block row for
the computation of P(a)Jg, in the policy improvement
step, leading to an overall memory and time complexity of
O(b>*M) and O(b>M?) per iteration. For small values of M,
however, it might be possible to store the transition matrices
P(a) as a whole, avoiding the need to rebuild the transition
matrices needed at each step.

We shall refer to the algorithm with a O(b*M) memory
requirement, as the modified policy iteration algorithm.

B. Left-to-right approach for MDPs skip-free in one direction

In the previous subsection we used a right-to-left approach
to solve equation (5). It is also possible to work in the
other direction and to start with the first equation. We define

Step 0: Compute Ay, O, 0 (=0,...,

M — 1) and ¢, and set:

Ay)™]

Onm—1m(I —Ap) Yoy (I—An) ten |

« Step 1: Iteratively replace V,,, to ¥, and W,,, to Wy, by V) to Vj and W), to W{,form =M —1,...,0:

V = [Oom Onoim (-

W =] @O’M(I—AM)_léjw

V! equals (I —A,)"!

Vi equals O, B

W/, equals (I —A,;) ‘e

W/ equals Zi\im O, (I —Aj)~

fork=m—1,m —2,...,0. End of this step:

Vo= [(I-4)" (I-
W = [(I-Ay)tey (I-

. Step 2: Wy = Jy.

o Step 3:Form =1,..., M replace W,,, by J,,, =

Fig. 1.

analogue matrices Ag = adop and for m = 1,...,. M
we set A1 = a(Amm + Amm—1(I —)70)

or = ador with k = 1,..., M and for m = 1,. .,M
we set © = a(Ami + Amm1 (I — A1) 1@m L)
where k¥ = m + 1,..., M. Finally we set ¢y, = ¢ and
ey =cmtaAym 1 (I-A,_)7, _form=1,...,M.

We can now use these matrices and vectors to rewrite equation

5):

T = (I = A,) 7@, + Z o,
1=m-+1
form = 0,...,M — 1 and Jyy = (I — Ay,)"1¢),. The

left-to-right algorithm is almost identical to the right-to-left
algorithm, however, looking at the definitions of &, and €,
and the equations of .J,, in both variants, we see that J,,
now depends on J,,4+1 to Jys, while &, only depends on
Crn_1- While in the right-to-left model it was the other way
around. This seems to make a low memory implementation as
mentioned in the previous section problematic as there seems

to be no way to avoid the need to store all the ©/ , matrices.

C. MDPs skip-free in both directions

If the matrices P(a) are skip-free in both directions, the
right-to-left and the left-to-right approach both can be used to
solve the MDP after some minor modifications. For the details,
we refer to [6].

IV. COMPARISON BETWEEN THE DIFFERENT TECHNIQUES
TO SOLVE AN MDP

In [6] we made a comparative study between the classic
value iteration algorithm [9], the policy iteration algorithm
by White after reblocking the system such that it becomes
skip-free in both directions [10] and the right-to-left variant
of the new policy iteration algorithm (see Section III). The
main results of this comparison were that the policy iteration

via A, = a(Amm + Vi Vins1Ams1.m)
via Vk/ = Oé(Ak’m + Vka+1Am+17m)
via. W/ =V! (cm+ W)
via W] =W, + VW, ,
At (IfAM)j1]
Al) 15 (I—AM)715]V[}

W, + VinatApy m—1 Wi —1 as defined in (6).

An efficient implementation for the policy evaluation algorithm: the right-to-left approach

algorithms offer a significant computational reduction in com-
parison with the value iteration algorithm. For a small number
of FDLs, respectively for a low load, both policy iteration
algorithms are efficient, but as the number of FDLs, respec-
tively the load, increases, the reblocking approach becomes
inferior. We also observed in this study that the modified policy
iteration algorithm is outperformed by the policy iteration
algorithm that stores the P(a) matrices, due to the repeated
recomputation of the (block) columns of the transition matrix,
but requires significantly less memory.

REFERENCES
[1] Athena

[2]

D. Bertsekas. Dynamic Programming and Optimal Control.
Scientific, 2nd ed. edition, 2001.

F. Callegati. Optical buffers for variable length packet switching. IEEE
Communications Letters, 4:292-294, 2002.

B. Van Houdt, K. Laevens, J. Lambert, C. Blondia, and H. Bruneel.
Channel utilization and loss rate in a single-wavelength fibre delay line
(FDL) buffer. In Proceedings of IEEE Globecom 2004, paper OC05-07,
Dallas USA, November 2004.

K. Laevens and H. Bruneel. Analysis of a single wavelength optical
buffer. In Proceedings of Infocom, San Francisco, April 2003.

J. Lambert, B. Van Houdt, and C. Blondia. Single-wavelength optical
buffers: non-equidistant structures and preventive drop mechanisms. In
Proceedings of the 2005 Networking and Electronic Commerce Research
Conference (NAEC 2005), pages 545-555, Riva del Garda, 2005.

J. Lambert, B. Van Houdt, and C. Blondia. A policy iteration algorithm
for Markov decision processes skip-free in one direction. In Proceedings
of the International Workshop on Tools for solving Structured Markov
Chains (SMCtools 2007), Nantes, 2007.

G. Latouche, P.A. Jacobs, and D.P. Gaver. Finite Markov chain models
skip-free in one direction. Naval Research Logistics Quarterly, 31:571—
588, 1984.

G. Latouche and V. Ramaswami. Introduction to Matrix Analytic
Methods and stochastic modeling. SIAM, Philadelphia, 1999.

H. C. Tijms. Stochastic Modelling and Analysis, A Computational
Approach. Wiley, 1986.

L.B. White. A new policy evaluation algorithm for Markov decision
processes with quasi birth-death structure. Stochastic Models, 21:785—
797, 2005.

[3]

[4]
[5]

[6]

[7]

[8]
[9]
[10]

