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Abstract

This paper summarizes some recent results of the authors on the characterization and the canonical
representation of order n phase type distributions (PH(n)) and Markov Arrival processes (MAP(n)). These
results make possible a unique and minimal representation of PH(n) and MAP(n) and opens the way for
constructing efficient fitting methods for MAP(n).

Especially, this summary is based on [10, 1, 9, 2].
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1 Phase type distributions

Continuous phase type distributions are defined as the time to absorption in a continuous time Markov chain with
n transient and an absorbing state. The probability distribution function of an order n phase type distribution
(PH(n)) is

F(t) = Pr(X <t)=1—ve'T,

where the row vector v is the initial (probability) vector of the Markov chain, the n x n square matrix H is
the transient generator of the Markov chain and 1 is the closing vector. The probability density function, its
Laplace transform and the moments of the distribution are

F(t) = veH (—H)I,

fr(s)=B(e**) =v(sI - H)"'(-H)T,

and
pn = E(X™) =nlo(—H) "1 .

Unfortunately, the (v, H) pair is not a unique representation of the distribution.

Example 1 Consider the following vector matrix pairs.

-5 2 1
v=[01 05 04], H=|1 -2 1
1 0 -4
and
-1 10 -1
z=[-11 25 —04], G=|-66 6 -1
-15 20 —6

The (v, H) and the (z, G) vector matriz pairs represent the same distribution, since

Ft)=1—ve'T =1 — 241 .
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Definition 1 (z,G) is similar to (v, H) if there is a square matriz B, such that B! exists, z = vB, G =
B 'HB and BT = 1.

Any vector matrix pair similar to (v, H) defines the same distribution, since
F(t)=1-2C%"T=1-—vBeB HB'[=1_yBB 'e"'BI=1-veH'T.

In the previous example the

1 0 0
B=|-4 5 0
2 0 -1

similarity matrix is used.
Definition 2 Any general (z, G) pair is referred to as a matrix representation of F(t).

Definition 3 A (v, H) matriz representation is referred to as a Markovian representation if v is a probability
vector (v; >0, 3. v; = 1) and H is a valid transient generator matriz (Hy; < 0, H;; >0 fori # 4, 3H ™).

There are negative consequences of the non-uniqueness of Markovian representations of PH(n). E.g. it is
difficult to check the equivalence of two different Markovian representations; optimization methods using general
Markovian representations for distribution fitting with PH(n) are less efficient.

To overcome these difficulties we need to define a unique Markovian representation for all PH(n) which is
commonly referred to as canonical representation. A proper canonical representation is:

e unique,

e Markovian,

e simple (preferably it contains the minimal number of parameters),
e augmented with a function that

— transforms from any matrix representation to the canonical form if possible,
— indicates if it is not possible.
Currently canonical forms are available for acyclic PH distributions of any order and for order 2 and 3 phase

type distributions.
Any acyclic PH(n) (APH(n)) distributions can be transformed to the following form [4],

T[n T[n—]
OO
where \; > A\j11 >0, Vi € {1,...,n — 1}. The problem of transforming a non-Markovian representation of a

distribution to a Markovian canonical form was not considered before. [4] presents a procedure which transforms
any acyclic Markovian representation to this canonical from, but this transformation is not applicable for cyclic
Markovian and non-Markovian representations of APH(n) distributions. Recently [7, 8] presented procedures
for this purpose.

Since any cyclic PH(2) distribution can be transformed to an equivalent APH(2) [3], the APH(2) canonical
form can be applied for the whole PH(2) class.

Based on the results of [6], a canonical representation of the PH(3) class is presented in [9]. It has the
following structure

X13

X3 X2 X17X13

m3 T2 m

where 1 > x9 > 23 > 0, 0 < 213 < 21, 0 < 71,7, 3, 1 + M2 + w3 = 1. This general form (containing 6
independent parameters) splits into 3 possible cases with 5 independent parameters. These cases are

e r13=0



I =1y
(] 7T2:0

It is a nice feature of this canonical form that it is identical with the one proposed in [4] when the distribution
is an APH(3).

The minimal, unique, and Markovian canonical form makes possible the use of efficient fitting methods, but
it is restricted to the above mentioned PH classes. For fitting with other PH classes it is still beneficial to find
a minimal and unique representation of PH distributions. Potential candidates are the first 2n — 1 moments
of the distribution which we call moments representation and the 2n — 1 coefficients of the normalized rational
Laplace transform of the density function which we call Laplace representation. For fitting purposes we use the
moments representation, which carries more practical information about the distribution.

Since the moments representation is not closely related to a Markovian representation of the distribution
it is necessary to check if a set of 2n — 1 moments defines a valid PH distribution or not. Indeed we need to
investigate the borders of the following classes of distributions

where ME(n) stands for the order n matrix exponential distribution.
The following two-step numerical procedure can identify if a set of 2n — 1 moments falls in the APH(n) or
in the PH(n) classes.

e Convert the moments representation to a matrix representation by the procedure proposed by A.
van de Liefvoort in [11],

e check if the obtained matrix representation can be transformed to an acyclic Markovian representation,
which ensures the APH(n) membership, or to an order n Markovian representation, which ensures the
PH(n) membership.

The analysis of the ME(n)\PH(n) membership is more complex. It requires to check if the distribution function
defined by the matrix representation is monotone increasing.
Based on the available canonical forms and transformation methods we have the following cases:

o n=2

— ME(2) = PH(2) = APH(2) and the border is "known”, because canonical form with associated
transformation method exists.

en=23

— The APH - PH border is "known” (APH canonical form exists).
— The PH - ME border is "known” (PH(3) canonical form exists).

— The outer border of the ME class is ”less known”, i.e. there is no efficient explicit procedure to check
if a set of 2n — 1 moments defines a ME distribution or not. A set of available approaches is presented
in [5].

en>3

— The APH - PH border is known” (APH canonical form).



— The PH - ME border is "almost known”, i.e. there is a numerical optimization method [10] which
transforms a matrix representation to a Markovian representation if possible, in the majority of the
cases.

— The outer border of ME is ”less known”.

We can summarize the available transformations between representations of PH distributions as follows.

Laplace rep.

Liefvoort'smethod canonical transformation
or the numerical procedure of [10]

2 Markov Arrival Processes

Markov Arrival Processes of order n (MAP(n)) are defined as arrival processes governed by a CTMC of n states
(or phases). The most common description of these processes are through the Do and the Dy matrices of size
n X n.

e Dg contains the phase transition rates without arrivals,
e D contains the phase transition rates with arrivals.
Having these matrices the parameters of the MAP(n) process are computed as follows.

e The double transform of the number of arrivals in (0,t), Ny, is:

f(s,z) = EtHS(E(th)) =7(sI — Dg — le)*l]I ,

e the joint density of the first £ + 1 inter arrival times, X, X1,..., Xy, is:

Dgx Doz Dgx
flxo,x1,...,xp) =7 2" D1e %" Dy ...e7%"* D11 |

e and the joint moments of these inter arrival times are:
E(XP X ... X}) =mig!(—Do) Pi!(~Dg)"* P.. i) (— D)™ I
where P = (—Dg) ™' Dy, and 7 is the solution of 7P = 7 and n1 = 1.

Similar to the Markovian representations of a PH distribution the (Dg, D1) representation of a MAP is not
unique. A similarity transform with matrix B (having the same properties as in the previous section) results
in a different matrix representation of the same MAP, i.e.

(Do, D;) = (B"'DoB,B™'D;B).

In order to efficiently fit arrival processes with MAP(n) we also need canonical forms, which contain a
minimal number of parameters and Markovian.

Unfortunately, there are much less results for the canonical representation of MAPs. The only MAP class for
which canonical representation exists is the MAP(2) class [1]. If the lag-1 correlation parameter is non-negative
the canonical form is

o —)\1 (1—@))\1 o a/\l 0
Do = [ 0 A ] D= [(1—b)/\2 bAJ :

and if it is positive the canonical form is

_ —)\1 (1 — (Z))\l o 0 (1)\1
DO_[ 0 —X2 ] Dl_[b/\2 (lb))\g} ’



where 0 < A1 < X9, 0 <a <1 and0<b<1. This canonical form contains 4 parameters.

Higher order MAPs are also uniquely defined with properly chosen n? parameters [10]. A proper set of
parameters are the first 2n — 1 moments of the interarrival time and the first (n — 1)? joint moments of
consecutive interarrival times, i.e. E(X¢),i =1,...,2n—1 and E(X{X7),4,5 =1,...,n— 1. All together these
are (2n — 1) + (n — 1)? = n? parameters. We refer to this set of parameters as the moments representation
of MAP(n). Using the moments representation of MAP(n), for n > 3, we also have to check the limits of the
MAP(n) class. It can be done using the the two-step procedure presented in [10]. The first step generates a
matrix representation of the MAP(n) based on the moments representation and the second one applies the same
numerical procedure to transform it to a Markovian representation.

[

‘fnoments and joint
moments matching

Matrixrep. )

numerical proc.

The solid lines of the figure indicate that the moments and the joint moments can be easily computed from any
matrix representation including the Markovian representations.

Example 2 Starting from the Markovian representation
[E(X}),..., B(XJ)] = [0.850622,1.79118, 5.90205, 26.122, 144.701]

o 1. 0.850622 1.79118
{E(X{X1)} = |0.850622 0.717379 1.50502
179118  1.5069  3.15812

we apply the two-step procedure of [10] to obtain a Markovian representation of this MAP(3).
The moments representation to matriz representation procedure results in:

—5.8026 40.6949  —39.1859 1.34479  —25.6148 28.5636
—0.374745 —4.10233 3.31133 |, [0.382524 —0.5226565  1.30587 |,
—0.408995 3.31859  —4.09507 0.401216  1.30639  —0.522132

and the matrix representation to Markovian representation procedure:

—5.11384  2.04249  0.821793 0.097178  0.646453  1.50593
0.00591528 —1.64109 1.15513 |, [0.180526 0.120557  0.178963
0.487631 3.73933  —7.24507 2.92962 0.00621774 0.0822646

Since the procedure resulted in a valid Markovian representation we conclude that the original set of moments
and joint moments represent a MAP(3).

3 Summary of results, problems and open questions

The presented two-step method allows the moments matching of PH(n) and MAP(n) for n > 3, if the set of
moments define a PH(n) or a MAP(n), but based on our experience it is often not the case with field data. In
these cases either efficient fitting methods, or partial moments matching procedures are required, which are not
really available yet. The research for these kind of methods is a dominant challenge on this field.

The available canonical forms of PH(3) and MAP(2) distributions already indicate that there is no hope
for a single canonical structure which can describe the whole class, but we need more than one structures
occasionally with very strange constraints (e.g., 2 diagonal elements of the generator matrix are equal). Indeed,
our preliminary investigations suggest that the number of different structures increases rapidly with order.

The “explicit” transformation methods of canonical forms require the solution of the spectral equation, and
we guess that it remains the case for the currently unsolved classes (PH(n) with n > 4 and MAP(n) with
n > 3). Unfortunately, the solution of the spectral equation can become numerically hard around the limits of
discriminants. Furthermore, explicit solutions are available only for n < 4. For n > 5 only numerical solutions
are available.
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