
DB&IR Integration:
Report on the Dagstuhl Seminar "Ranked XML Querying" 1

Sihem Amer-Yahia, Djoerd Hiemstra, Thomas Roelleke, Divesh Srivastava, Gerhard Weikum 2

Contact Author: Gerhard Weikum, Max Planck Institute for Informatics,
D-66123 Saarbruecken, Germany, email: weikum@mpi-inf.mpg.de

1 http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=08111
2 The seminar was organized by Sihem Amer-Yahia, Divesh Srivastava, and Gerhard Weikum; and this report was written by the three

organizers together with Djoerd Hiemstra and Thomas Roelleke.
Additional participants were Peter Apers, Holger Bast, Mariano Consens, Emiran Curtmola, Debora Donato, Ingo Frommholz, Irini
Fundulaki, Ihab Ilyas, Panos Ipeirotis, Benny Kimelfeld, Stefan Klinger, Amelie Marian, Maarten Marx, Yosi Mass, Sebastian Michel,
Ralf Schenkel, Harald Schoening, Pierre Senellart, Kostas Stefanidis, Martin Theobald, David Toman, and Arjen de Vries.

This paper is based on a five-day workshop on „Ranked
XML Querying“ that took place in Schloss Dagstuhl in
Germany in March 2008 and was attended by 27 people
from three different research communities: database
systems (DB), information retrieval (IR), and Web. The
seminar title was interpreted in an IR-style „andish“ sense
(it covered also subsets of {Ranking, XML, Querying},
with larger sets being favored) rather than the DB-style
strictly conjunctive manner. So in essence, the seminar
really addressed the integration of DB and IR technologies
with Web 2.0 being an important target area.

1 Why DB&IR with Integration?

DB and IR have evolved as separate communities for
historical reasons. They were spawned in the sixties with
focus on very different application areas: accounting and
reservation systems on the DB side, and library and patent
information on the IR side. Consequently, they have
emphasized different methodological paradigms: precise
querying over schematized data, based on logic and algebra
(DB), vs. keyword search and ranking over text and
uncertain data, based on statistics and probability theory
(IR). However, there are now many applications that
require managing both structured and unstructured data and
thus mandate serious consideration on how to integrate the
DB and IR worlds at both foundational and software-
system levels. These applications include Web and Web
2.0 use cases as well as more corporate-oriented scenarios
such as customer support and health care. All three
communities that participated in the seminar (DB, IR,
Web) agreed on the importance of the general direction and
came up with ten tenets, from different viewpoints, on why
DB&IR integration is desirable.

DB1: Preference search over travel portals or product

catalogs often poses a too-many-answers problem.
Narrowing the query conditions can easily overshoot by
producing too few or even no results; in general, interactive
reformulation and browsing is time-consuming and may
irritate customers. Large result sets inevitably require
ranking, based on data and/or workload statistics as well as
user profiles.

DB2: Adding text-matching functionality to DB systems
often entails approximate matching (e.g., because of
misspellings or spelling variants) and, when text fields
refer to named entities, leads into record linkage for
matching entities (e.g., to reconcile William J. Clinton and
Bill Clinton or M-31 and the Andromeda nebula).
Naturally, approximate matching by similarity measures
requires ranking.

DB3: It has become the norm that applications access
multiple databases, often with a run-time choice of the data
sources. Even if each of these sources contains structured,
exact data records and comes with an explicit schema, there
is no unified global schema unless some magic could
perform perfect on-the-fly data integration. So the
application program has to cope with the heterogeneity of
the underlying schema names, XML tags, or RDF
properties, and queries need to be schema-agnostic or
tolerant to schema relaxation. In addition to this fact of
life, many application builders (e.g., for e-science portals)
do not want to start with a lengthy schema design process
and rather want to be immediately productive by first
entering data and only later adding and evolving metadata
in a pay-as-you-go manner.

DB4: Textual information contains named entities and
relationships between them in natural-language sentences.
These can be made explicit by information-extraction

Dagstuhl Seminar Proceedings 08111
Ranked XML Querying
http://drops.dagstuhl.de/opus/volltexte/2008/1535

1

techniques (pattern matching, statistical learning, NLP).
This can potentially lead to large knowledge bases whose
facts, however, exhibit some uncertainty. Querying the
extracted facts thus entails the need for ranking. Moreover,
it is often desirable that such information can be
conveniently queried using keywords rather than
sophisticated expressions in SQL or XQuery. With the
extracted data organized in graph structures, this entails
new research problems like determining when keyword
occurrences are interconnected in a meaningful way and
efficiently computing answers in ranked order,

IR5: Digital information really comprises both record-
oriented and document-oriented data. The DB and IR fields
have common roots even before the two areas became
historically and somewhat artificially separated. In the
fifties, Hans-Peter Luhn foresaw computer-based business
intelligence and invented automatic indexing; this line of
research led to text IR, but included what would now be
seen as DB issues. It may be noteworthy that Luhn started
his career with a punchcard-based algorithm for searching
files of chemical compounds. Another anecdotal evidence
for DB&IR commonalities is that both HTML/XML and
thus the prevalent Web formats and the relational DB
technology can be traced back to IBM Almaden, namely, to
the seminal works of Charles Goldfarb and Ted Codd.

IR6: Information in digital libraries, enterprise intranets, e-
science portals, and business-oriented Web sites is
increasingly demanding structured IR that goes beyond
keyword search by understanding attributes, XML tags,
and metadata. The most successful approach along this line
is the faceted IR paradigm that underlies most Internet
merchant sites for product search, result refinement, and
interactive exploration.

IR7: Search-result personalization, adapting to the
information-oriented tasks of the user, and proactive
support for the user’s information needs, are key directions
towards better search precision/recall and user satisfaction.
To this end, user preferences and profiling based on the
user’s long-term history of queries, clicks, and data usage,
can be exploited, but also short-term behavior in the
context of the current task needs to be considered. Such
approaches are already pursued for Web, news, and blog
search, and have enormous potential especially for
individualizing and thus enhancing desktop search.

IR8: Recognizing and tagging entities in text sources
allows entity-search queries about electronics products,
travel destinations, movie stars, etc., thus boosting the
search capabilities on intranets, portals, news sites, and the
business- and entertainment-oriented parts of the Web.
Likewise, extracting binary relations between entities and
also place and time attributes can pave the way towards
semantic IR on digital libraries (e.g., PubMed), news, and

blogs. Such capabilities are also a key asset for opinion
mining and natural-language question answering.

Web9: As the surface Web is more and more dominated by
portals, dynamic content loading (using Ajax and CMS’s),
data feeds, and mashups, understanding and querying the
so-called Deep Web (aka. Hidden Web) of structured
databases underneath the surface becomes an increasingly
pressing issue.

Web10: Modern Web 2.0 platforms for user-generated
content and social networks have a mix of structured and
unstructured data such as photos or videos with rich
metadata, and an additional wealth of user-behavior and
community information like tagging, rating,
recommendations, friendships and other social relations,
and so on.

Notwithstanding the general sense of agreement, the three
communities also expressed major cultural and technical
differences. For example, DB3, IR6, and Web10 all
address the need for structure, whereas DB3 emphasizes
relaxation of structure, IR6 emphasizes adding structure to
information, and Web10 takes a mix of structured and
unstructured data for granted. As another example, DB2,
DB4, and IR8 address the need for named entities resulting
from NLP techniques, whereas DB2 and DB4 emphasize
approximate matching and ranking, and IR8 emphasizes
adding relationships between entities. Generally, what this
paper refers to as DB&IR integration would be naturally
called IR&DB integration for the IR community, and the
Web folks would not resist occasional remarks that the
Web has come with its own software technology and has
been very successful by ignoring both standard DB systems
and traditional IR engines. These cultural and technical
differences are partly reflected in the topics discussed
below.

2 Hot Issues and Emerging Themes

2.1 XQuery Full-Text Scoring and Ranking

Both DB and IR participants agreed that XQuery Full-Text,
XQFT for short, is troublesome (the Web people did not
seem to care about it). XQFT is the designated W3C
standard, currently in draft mode, for incorporating text-
matching, scoring, and ranking functionality into the
XQuery language. It offers great flexibility for applications
to customize their own tokenization (e.g.,
word/phrase/name/sentence boundaries, stemming, etc.),
thesauri, and scoring functions. However, this highly
flexible programming comes with semantic pitfalls, and
there is hardly any guidance for application developers on
making appropriate use of the various operators and score-
aggregation options.

For example, what are the semantic differences between

2

searching for „Billy AND the AND Kid“, „Billy OR the OR
Kid“, or „(Billy AND the) OR (the AND Kid)“, or the
phrase (sequence) „Billy the Kid“, in the same XML
element or spread across arbitrary elements? Is the phrase
search guaranteed to return a subset of the conjunctive
search? Is the ranked result list of the former a prefix of the
latter’s result? What if the conjunction is expressed at the
XQuery level rather than in the text condition? For
example, are the three conditions 1) $a ftcontains “Billy”
ftor “Kid”, 2) $a ftcontains (“Billy”, “Kid”), 3) $a
ftcontains “Billy” or $a ftcontains “Kid” equivalent
formulations, and if so, are they guaranteed to produce the
same rankings and therefore the same top-10 results for any
IR model instantiation? How does the tokenization plug-in
affect the outcome? How do scores for primitive conditions
propagate into scores for composite subqueries?

IR people felt that the scoring facilities for XQFT were
mere ad-hoc and restricted, since the XQFT approach lacks
the theoretical underpinnings of modern IR models like
probabilistic IR or statistical language models. Such IR
models have a range of desirable properties including
sound reasoning about score composability. Also, the
XQFT property that all scores – even for subquery results –
must be between 0 and 1 seems very limiting and would
rule out a straightforward implementation of some of the
most successful IR scoring functions such as BM25 or log-
likelihood ratios. DB people, on the other hand, felt that a
clean algebraic approach would help for reasoning about
equivalent query formulations (execution plans). When
users formulate different queries that are not really
equivalent in the underlying algebra, DB people would
blame it on the user (i.e., programmer in the case of
XQFT). IR people would be more concerned about users
understanding the principles behind the scoring model. For
example, how do global statistics about idf values or
average document/element lengths affect the scoring? How
can such aspects be incorporated into XQFT? Can
application builders really cope with the flexibility of
XQFT?

2.2 Search with Context

DB applications seem to be getting more and more user-
oriented (bringing the field closer to IR where awareness of
human-user aspects has a long tradition), as opposed to the
classical, now perfectly mastered, business-platform
applications. Examples are personalized Web exploration,
desktop search and personal information management, and
social networks. This trend raises the issue of how to take
into account the context in which a user poses queries and
explores information. The context includes environmental
parameters like the location, time, device, and situation
(e.g., business meeting vs. tourist tour) of the user, but
should also consider inherent preferences and long-term
behavior of the individual. For the latter, building and

maintaining user profiles is a popular approach, based on
statistics about prior queries, clicks, and others actions in
the user’s history. The profile may in turn be encoded in
the form of constraints and rules that can drive query
rewriting for simple relational queries or sophisticated
XQuery programs. Of course, such approaches have a long
tradition in IR, but relevance feedback, query expansion,
user-specific result ranking, and other related techniques
were mostly explored for keyword search; the structure of
XML data adds opportunities as well as research
challenges.

A particularly intriguing case for context-aware
functionality, customized to an individual user, is desktop
search. Path labels of email folders and directory paths,
along with attributes about dates, authors, and other
context, and content keywords together provide powerful
ways of searching and ranking. All this can be cast into
XML-centric DB&IR methods; particular attention needs
to be paid to approximate matchings of paths and other
sub-structures as users often do not remember their
directories that well. But the potential goes way beyond
XML similarity search: unlike in a Web setting, the user’s
own desktop data (i.e., the file system on her PC or mobile
device) can be analyzed in a much deeper way for more
expressive and strongly individualized rewriting,
expansion, and ranking strategies. Last but not least there
are great opportunities for observing the user – on the
client side without any privacy breaches – and customizing
system actions to the current task of the user. For example,
the last few emails read, the last few new items seen on a
Web site, the last few MP3 songs listened to, or the last
few incoming phone calls provide clues about the user’s
current information needs and can enable opportunities for
task-oriented search and even proactive information
supply.

2.3 Ranking over Uncertain Databases

The best years of exact data seem to be over. Most of the
interesting applications face uncertain data for various
reasons: 1) in sensor networks there are natural and
unavoidable sources of measurement errors so that the data
often needs to be interpreted in view of the error variance
or with confidence intervals; 2) in Web 2.0 forums, the
most valuable data is manifested in social
recommendations and ratings; but this „wisdom-of-
crowds“ data can only be interpreted in statistically
aggregated form, with natural uncertainty; 3) information
integration and pay-as-you-go data-acquisition applications
are bound to end up with missing values, inconsistent
values, and multiple alternatives for critical fields or entire
records; consequently, querying the resulting data amounts
to searching a potentially huge number of „possible
worlds“; 4) as text continues to be prevalent in content
production in news, blogs, and literature, information-

3

extraction methods are the way to lift text statements into
value-added relational facts; however, this process is
inherently error-prone so that confidence-aware search and
support for exploring uncertain data are crucial.

In all these settings, the uncertainty that arises from
different „possible worlds“ strongly suggests ranking of
query results. Thus, top-k queries are a dominant part of
the workload, and this calls for efficient algorithms and a
smart query optimizer. While top-k queries over „hard“
data, such as multimedia features, frequency values in
traffic logs, or precomputed scores in IR-style inverted
lists, have been intensively studied, there is little work on
the situation when the uncertain data incur an additional
dimension of combinatorial choices. Optimizing top-k
queries over a „possible-worlds“ dataset or social-network-
based ratings, where each user may be seen as a „possible
world“, poses great challenges for the DB community. At
the same time, the ranking should follow a principled
model, for example, based on a generative stochastic
process; this aspect is in the main expertise of the IR
community. Needless to say that ranking semantics and
computational complexity and thus efficient algorithms are
intertwined and should, therefore, be best considered
together. And to reassure the DB hardcore folks: yes, the
ranking (ordering) of search results is an aspect of query
semantics, although it may be based on a statistical model.

2.4 Light-weight DB&IR Engines

For several years, there have been strong advocates against
the heavy footprint, overly broad functionality, claim of
universality, and thus hardly manageable complexity of the
traditional brand of commercial database engines. In view
of this discussion, various light-weight engines for DB&IR
were presented at the workshop: open-source systems for
XML IR (TIJAH based on a column store (MonetDB) and
TopX 2.0 based on a homegrown file manager) and also
the very-light-weight CompleteSearch engine for faceted
IR with extensions for DB operations. An interesting
discussion emerged from these presentations as to whether
DB or IR is the better starting point for such a light-weight
DB&IR or IR&DB kernel.

2.5 Miscellaneous

Many other interesting topics were presented and discussed
in the seminar. Some were highly creative in pursuing
approaches off the beaten paths; some were provocative
and controversial. As a small selection, three of them are
pointed out here.

For opinion mining in product reviews (or in blogs),
instead of attempting to analyze natural-language
statements such as „incredible delivery time“ (most likely
to denote slow delivery and thus a negative opinion), one
can build a correlation model between text snippets and

numerical attributes such as prices paid by the customers.
This way, econometrics aids the otherwise very difficult
task of opinion analysis.

A largely unexplored issue that was felt to develop
increasing importance is search and mining of the history
of Web, intranet, news, blogs, or social-tagging data.
Digital heritage can be a gold mine for journalists,
sociologists, market analysts, lawyers dealing with
intellectual-property rights, and everybody interested in the
evolution of cultural and sub-cultural zeitgeist. Many data
sources have their built-in versioning (e.g., when using a
Wiki for collaborative input). So the mechanics for
indexing and query execution is present, but there are
tremendous scalability challenges and a widely open
question about ranking the results of time-travel queries.

Finally, a few participants advocated that text would be a
more natural form of data representation compared to
structured records (the DB hardcore participants took this
heresy with serenity). It is easier to enter, easier to interpret
by the user, and can go a very long way for advanced
search capabilities. One participant, Holger Bast, even cited
John 1:1: „In the beginning was the word“, and pointed out
that there is no mention of „in the beginning was the table“
anywhere. The audience interpreted this as another pitch
for the pay-as-you-go philosophy.

3 Speculative Directions

The workshop participants spent some time in breakout
groups on three speculative topics. The following reflects
the issues that were identified and discussed, without any
claims about paths towards solutions.

3.1 XML vs. RDF

XML is prevalent in business applications, digital libraries,
and as a ubiquitous exchange format. But RDF is gaining
momentum as the Semantic Web starts taking shape and is
fairly popular in the e-science community as an
import/export format. Both XML and RDF have been
conceived as representation models for semistructured data
that does not necessarily have a rigorous schema and
combines text with categorical and numerical values. The
question that the breakout group addressed was whether
there really is a need for both XML and RDF; perhaps one
could subsume the other, or they could be reconciled into a
single model, or another, possibly newly devised, model
could take this unifying role.

The group first tried to characterize the two data models
and put them in perspective with other models. XML was
seen as tree-oriented, with XLinks being added as an
afterthought (with no XPath support for traversal along
non-tree connections and across document boundaries).
RDF is a graph model with triples representing

4

relationships that form the graph’s edges. It may come with
a schema, but schema-less RDF is popular. Entire triples
can in turn participate in relationships; so RDF is
essentially an extended entity-relationship model. One
thought that came up towards bridging the two models was
to cast the RDF graph into a (small) number of (different)
spanning trees (possibly with a few additional non-tree
edges) that together cover the graph. This is reminiscent of
the „colorful XML“ proposal in the literature. Of course,
connections to object-relational models were obvious, too.
But the goal of the group was not to head for the „best“
data model per se; rather the discussion focused on the
context of search and ranking.

The discussion led to the general insight that XML and
RDF have different strengths and weaknesses regarding
their ease of use in different application classes and for
different tasks. The discussion of applications ranged from
collaborative Wikipedia authoring and social-tagging
forums, on the less structured side, to e-science data and
content management systems for museums, on the more
structured side. The tasks under consideration included
data entering, query formulation, search, ranking, result
presentation, and the long-term evolution of data and
applications. It was recognized that trees (XML) allow
easier input, easier query formulation, and simpler ways of
presenting the results because answer units are always
subtrees (although this is not true for XQuery). Graphs
(RDF), on the other hand, seem to be more flexible for the
long-term evolution of the data; the data-first-schema-later
paradigm of dataspaces fits nicely with this representation,
whereas XML trees may have to undergo more disruptive
restructuring in the lifecycle of a dataspace. As for ranking,
generative probabilistic models in the IR tradition are
easily applied to either of the two; extensions for both trees
and graphs have been proposed in the literature.

3.2 Ranking vs. Scoring

The traditional model for ranking search results is by first
associating a numerical score with each result item
independently and then ordering the items by descending
scores. The scores are usually based on various forms of
probabilistic/statistical models, and can be largely
precomputed so that run-time scoring boils down to
aggregating the score values. The question addressed in
this breakout group was whether one really needs both
ranking and scoring, and whether numerical scores are the
only or most appropriate way of computing rankings. From
an end-user perspective, scores are hardly interpretable and
only ranking matters, that is, the relative ordering of search
results. However, the relative distances between ranked
items is of potential interest, since a small distance means
closeness in relevance whereas a large distance clearly
differentiates retrieved items. When search is a service with
an API for application programs, the programs may need

access to scores, for example, to analyze the skew of score
distributions in the top-1000 results for finding suitable
cut-off points, or to cluster and visualize results. So both
ranking and scoring seem to be indispensable, for different
purposes.

An interesting thought that came up in the discussion was
to question the traditional wisdom of score aggregation,
and rather aim for a notion of holistic ranking.
Considering global statistics (idf values, length
distributions, background models for smoothing, etc.) for
the final ranking may be viewed as a first step in this
direction. Likewise, there is a recent trend of automatically
learning (coefficients of) a high-dimensional scoring
function by regression, using merely ordinal information as
input, namely, pairwise preferences of users about query
results. This input can be easily obtained from click logs
and other user-behavior data.

But holistic ranking may go much further. It is often
desirable that the top-10 ranks of the search result exhibit a
natural diversity. This may be needed for minimizing the
risk of misinterpreting the user’s actual information
demand, for example, when the query input is ambiguous
(e.g., searching for „Ajax“ may give information on Web
programming, the Iliad, the soccer club Ajax Amsterdam,
etc.) or the best results would depend on the user’s prior
expertise and knowledge which can only be guessed by the
system (e.g., searching for „online community“ should give
different results to accomplished sociologists vs. laymen or
children). Another reason for diversity that the group
speculated about is „user happiness“: when users see ten
excellent web pages in the top-10 results, they may feel
uneasy, whereas showing a few excellent ones mixed with
a few mediocre ones may be psychologically better (even if
many excellent results are available).

Holistic ranking could entail interesting technical
questions. For example, is it really an axiom that the items
in a top-k result should be a prefix of the items in a top-
(k+1) ranking? Maybe, it is not even necessary that the top-
k result is a subset of the top-(k+1) items. Diversity and
other considerations may well justify such deviation from
established practice.

3.3 Social Wisdom

Web 2.0 comes with a wealth of „social wisdom“ that can
be harnessed for improving search results and the entire
search experience. In fact, the standards of user
expectations are rising. Search engines should consider
context and background information about the user and the
user’s current task, and they should know about the user’s
social relations, her friends’ preferences and recent
cyberspace activities. For example, queries about recent
movies should not simply return Web pages, but should

5

place the user right into the experience of social-network
ratings and discussions on the movie. Similarly, a query
about a particular digital-camera model should
know/predict whether the user has the intention of buying a
new camera – and then point right into the best consumer
reviews and merchant sites –, or whether the user has
recently purchased this model – and then point into
troubleshooting or photo competition forums. Beyond user-
initiated search, such a richer kind of experience engine
should perform many tasks in a proactive information-
supply manner. Obviously, search-related advertisements
can be seen as an aspect of this ambitious approach, but the
experience engine should go much further and leverage the
social community aspects of Web 2.0.

4 Conclusion

All three of the participating communities – DB, IR, and
Web – felt that looking across the fence paid off very well,
and that the communities should continue learning from
each other. Challenges are ahead in areas like Web 2.0,
personal information management, and entity-relationship
search; these will remain difficult and rewarding areas for a
while. Combining the different and quite complementary
expertises from DB and IR would be vital towards well-
founded and practically viable solutions.

6

