
Model Engineering for Complex Systems

Jean Bézivin, Richard F. Paige, Uwe Aβmann, Bernhard Rumpe, Doug Schmidt

1. Introduction

Complex systems are hard to define [1].
Nevertheless they are more and more frequently 
encountered. Examples include a worldwide airline 
traffic management system, a global telecommunication 
or energy infrastructure or even the whole legacy 
portfolio accumulated for more than thirty years in a 
large insurance company. There are currently few 
engineering methods and tools to deal with them in 
practice. The purpose of this Dagstuhl Perspectives 
Workshop on Model Engineering for Complex Systems 
was to study the applicability of Model Driven 
Engineering (MDE) to the development and 
management of complex systems.

MDE is a software engineering field based on few 
simple and sound principles. Its power stems from the 
assumption of considering everything – engineering 
artefacts, manipulations of artefacts, etc – as a model
[3].

Our intuition was that MDE may provide the right 
level of abstraction to move the study of complex 
systems from an informal goal to more concrete 
grounds.

In order to provide first evidence in support of this 
intuition, the workshop studied different visions and 
different approaches to the development and 
management of different kinds of complex systems. 
This note presents the summary of the discussions.

2. Complex systems

There are a number of examples of complex 
biological, ecological or societal complex systems
discussed in the literature [5]. In the context of this 
note we are interested predominantly in Computer 
Based Complex Systems (CBCS), i.e. complex systems 
with a significant number of hardware or software 
components. These parts may be processing elements 
(processors, programs, processes, etc.) or data elements 
(memory, disks, repositories, files, etc.) or any kind of 
composite elements (hardware and software). One of 
the most important characteristics of a complex system 

is that it is composed of a very large number of 
individual parts. But there are also additional 
properties.

A CBCS is constantly in evolution with a past 
history, a present, and a future. This evolution is the 
consequence of the various interactions between the 
parts of the system. The evolution is permanent, i.e. the 
CBCS usually never stops, even when some parts are 
added, removed exchanged or under maintenance or 
repair.

A CBCS has a structure (or static architecture) and a 
dynamic behaviour. It is composed of elements that 
may themselves be CBCSs (with structure and 
behaviour) and no limit exists on this deep nesting.

In addition to structure and behaviour, a CBCS also 
has a goal defining its purpose in the context in which 
it is operating. As previously stated, this also applies to 
any component of this system. Important information is 
also the metadata associated to any component. The 
categories of metadata are quite diverse.

Another dimension of a CBCS is engineering 
heterogeneity. Many components are hardware and 
software elements produced in the last fifty years, with 
different types of technologies. For example many 
different hardware technologies, programming 
languages, APIs, operating systems, database 
organizations, network protocols, standards, or 
normative specifications have been used. Furthermore 
there may be a penalty to the use of any technology. 
This is often called accidental complexity by Fred 
Brooks, and it adds an artificial portion to the essential
complexity of the base problem. Managing the 
accidental complexity accumulated by many layers of 
technological legacy is an important challenge in the 
management of CBCSs.

A CBCS is also often a distributed system, i.e. its 
elements are located on many widely dispersed 
physical locations.

By definition a CBCS may not be understood by 
one unique human operator. On the contrary many 
stakeholders will have different views on the system. 
These stakeholders may play different roles (architect, 
designer, implementer, maintainer, manager, user, etc.)

Dagstuhl Seminar Proceedings 08331 
Perspectives Workshop: Model Engineering of Complex Systems (MECS) 
http://drops.dagstuhl.de/opus/volltexte/2008/1603

1



The interactions between the different parts of a 
CBCS are not random interactions and they follow 
specific patterns. Such a system is also characterized by
the relationships that hold between its parts. Very often 
these relationships are informally characterized but in 
some occasions they may be explicitly represented. In 
either case they are quite important.

Managing a CBCS means observing, understanding,
and controlling it. However management may imply 
additional operations like designing it, constructing it, 
measuring it, managing it, maintaining it, and many 
more. We are interested here in the support MDE may 
bring to all these operations on CBCS.

An additional property of CBCS is emergence. 
Emergence is the way complex systems and patterns 
arise out of a multiplicity of relatively simple 
interactions. Emergence is central to the theories 
of integrative levels and of complex systems.
Emergence particularly makes engineering CBCS 
challenging because the behaviour of the overall 
system is difficult, if not impossible to predict from the 
behaviour of the individual components and connectors 
that make it up.

Overall, the discussion at the workshop led to the 
identification of the following critical properties of a 
CBCS:

 Size: such systems are often large and may be
constructed from multiple different viewpoints. 
There was much discussion at the workshop on 
the challenges of integrating and reconciling 
different views (and hence viewpoints) in the 
CBCS engineering process. Importantly, this 
discussion was also raised at the Challenges in 
MDE Workshop at MoDELS/UML 2008 in 
Toulouse in September.

 Heterogeneity: as discussed earlier, CBCS are 
often built from different technologies. A 
particular challenge that was noted at the 
workshop was the ability to be able to replace
CBCS elements at run-time, i.e., as the CBCS 
was attempting to accomplish its goals. A novel 
flavour of this kind of run-time adaptation was 
the situation where the replacement is 
heterogeneous, i.e., where software needs to be 
replaced by hardware elements, and vice versa.

 Distribution: also, as mentioned earlier; the 
challenges of managing and deploying 
distributed CBCS, and developing them in the 
first place – with widely distributed teams –
was discussed in many situations in the 
workshop. It was also noted that many of the 
challenges associated with distribution were not 

new and restricted to CBCS or MDE, but were 
inherent issues.

 Dynamicity: it was noted that CBCS were often 
dynamic, in the sense that they would adapt and 
evolve due to changes in their environment, 
new inputs, and feedback. Dynamicity 
combined with distribution poses particular 
challenges for development. There was some 
discussion at the workshop on the tension 
between dynamicity and criticality: it is 
inherently difficult to predict the behaviour of 
dynamic systems, yet predictability is essential 
in order to verify and validate a critical CBCS. 
There was some discussion on the use of 
contracts and lightweight static analysis for 
supporting critical CBCS development.

 Autonomy: CBCS exist that are constructed 
from autonomous individual components that 
are themselves capable of carrying out function 
and attempting to achieve goals. As discussed 
at the workshop, MDE may be well suited to 
building individual components that behave in a 
predictable way, but at the moment it is not 
clear how to integrate autonomous components 
using MDE in a disciplined and predictable 
way, so as to achieve system level goals. That 
being said, it was noted that this was not a 
specific difficulty with MDE: rather, it was one 
of the major challenges in building CBCS.

3. Model Driven Engineering

In the previous section, we have listed some 
important characteristics of complex systems, and some 
of the challenges in addressing them that were 
identified during the presentations and discussion 
sessions at the Dagstuhl Perspectives workshop. In this 
section we summarise our MDE-specific discussions 
related to engineering of complex systems.

Figure 1. The two basic relationships of MDE

MDE considers models as first class citizens. A 
model is a representation of a system (relation repOf in 

S
repOf

M

MM

c2

2



Figure 1) and the nature of the model is defined by its 
metamodel. We say that a model conforms to its 
metamodel (relation c2 in Figure 1). 

MDE is mainly built on top of these two basic 
relations of representation and conformance, like 
object technology was mainly based on the relations of 
instantiation and class inheritance. MDE may be 
implemented with the help of object technology (or any
other like functional). However the basic paradigms of 
MDE are inherently different from those of object 
technology.

Any system can be represented by a model. Then, 
we are able to give a homogeneous representation of a 
heterogeneous situation or phenomenon.

Metamodels are used as filters to define matter of 
interest in the system. Used as a typing system, they
provide precise semantics to artefacts and relations
between these artefacts. This homogeneity of definition 
of metamodels and models give us the power to apply 
operations on them in a generic way. Model to model 
transformations encode those operations.

A system can be “filtered” by more than one 
metamodel. As a complex system can not be 
understood and managed from one single point of view, 
being able to have different representations of this 
system is of great interest. For instance, we can imagine
having a model of the static structure of a software 
application and a model of its execution trace (method 
calls, etc.) Moreover, as those representations are of 
the same system, they bear some relations (weaving 
models). 

Model Driven Engineering provides some principles 
and tools to manage complex systems. But it is not 
sufficient by itself. The distribution and the handling of 
numerous artefacts, representation of complex systems 
as composition of artefacts that may be complex 
themselves are not addressed directly by MDE. These 
issues were discussed at the workshop.

3.1 Applying MDE to CBCS

The challenges of building CBCS that were 
identified during the workshop were summarized in 
Section 2, including dealing with aspects of size, 
heterogeneity, distributed, autonomy and dynamicity
[16].

The connections between MDE and CBCS were 
discussed in detail in the latter part of the workshop. 
Many participants noted that some of the challenges 
noted were inherent to system engineering in general 
(particularly issues of size and distribution, and to a 
lesser extent heterogeneity). A number of participants 

pointed out specific solutions to challenges of 
heterogeneity and dynamicity from other communities. 

For example, it was noted that the database 
community had well-defined principles and practices 
for handling heterogeneity in both databases and 
database management technology and that – at least 
conceptually – some of these ideas could be usefully 
applied to CBCS and integrated into state-of-the-art 
MDE technology as well. The debate on this issue 
seemed to focus on whether the MDE community 
understood how to efficiently model behaviour and 
semantics in a way that allowed their tooling to 
continue to be used.
A number of participants noted that one rich area for 
consideration in MDE for CBCS was in dealing with 
autonomous systems [11], [9]. Such systems – which 
may be self configuring, self healing, self optimizing –
could apparently be at least partly addressed by current 
MDE techniques, but new ideas from the run-time 
systems management community (particularly for 
specifying “safe” or “acceptable” reconfigurations) 
were needed. Several participants from the more 
traditional complex systems community also noted that 
some of these kinds of systems were inherently 
challenging, if not impossible, to manage – e.g., bio-
inspired systems – and that hoping to capture all the 
parameters of a “safe” or “acceptable” reconfiguration 
would be exceptionally difficult. One proposal for 
dealing with this was to exploit simulation technology 
– something that MDE can be used to support – to help 
to predict different possible reconfigurations that might 
arise, and to use simulation data to help manage, 
control, or at least direct the path of reconfiguration. 
This appears to be a challenging, yet likely fruitful 
direction of future research.
There was also discussion on industrial needs for MDE 
and CBCS. Participants discussed the benefits from 
having process support for MDE of CBCS (i.e., to 
support documenting and describing the engineering 
lifecycle), as well as challenges in integrating with 
legacy components and sub-systems (as discussed 
earlier). Technology for model understanding (or 
model "grokking") was presented that may help with 
this. Finally, the challenges of verification and 
validation of CBCS on an industrial scale were 
summarized and led to much debate that linked in to 
earlier discussions at the workshop on viewpoints and 
view integration [15,17]. The feeling was that
individual verification technology (such as model 
checking, static analysis, or theorem proving) was 
insufficient and that integrated tool chains and 
workbenches for MDE were needed. Several examples 
of applying MDE to CBCS were discussed like 

3



megamodeling [2], [6], global traceability [8], model 
weaving [12], model merging [13], action semantics 
[14], etc.

4. Conclusion

The workshop was a success, and led to increased 
understanding of the fundamental characteristics of 
complex systems, the challenges of engineering them, 
the features for doing this that are currently offered by 
MDE, and several interesting future directions for 
research in MDE. Many participants noted that some of 
the challenges that were discussed had nothing to do 
with CBCS and MDE, but were simply challenges of 
building modern large-scale systems. However, it was 
acknowledged that MDE solutions for complex systems 
needed to address these challenges as well.

While the workshop was generally considered a 
success, many participants also noted that 2.5 days was 
simply too little time to fully discuss and start to 
collaborate on some of the key challenges. It is 
anticipated that some of the participants will work 
towards developing a successor Dagstuhl workshop, 
ideally of longer duration, for the future.

8. Acknowledgements

This workshop initiated through efforts in the
ModelPlex European Integrated project (2006-2009).

9. References

[1] Mikaël Barbero, Frédéric Jouault, Jean Bézivin: Model 
Driven Management of Complex Systems: Implementing 
the Macroscope’s Vision. Pp.277-286, 15th Annual IEEE 
International Conference and Workshop on Engineering 
of Computer Based Systems (ECBS 2008), 31 March - 4 
April 2008, Belfast, Northern Ireland. IEEE Computer 
Society 2008.

[2] Jean Bézivin, Frédéric Jouault, F, Patrick Valduriez: On 
the Need for Megamodels. In: Proceedings of the 
OOPSLA/GPCE: Best Practices for Model-Driven 
Software Development workshop, 19th Annual ACM 
Conference on Object-Oriented Programming, Systems, 
Languages, and Applications. 2004.

[3] Jean Bézivin: On the Unification Power of Models. 
Software and System Modeling (SoSym) 4(2):171—188. 
2005.

[4] Frederick P. Brooks: No Silver Bullet: Essence and 
Accidents of Software Engineering. 1987.

[5] Joel De Rosnay: The macroscope, Harper & Row, New 
York, 1979.

[6] Rick Salay et al: An Eclipse-Based Tool Framework for 
Software Model Management, Eclipse Technology 

Exchange Workshop at OOPSLA 2007, Montreal, 
October 2008.

[7] Dimitrios S. Kolovos, Richard F. Paige, Fiona Polack: 
Detecting and Repairing Inconsistencies across 
Heterogeneous Models. ICST 2008: 356-364.

[8] Alek Radjenovic, Richard F. Paige: The Role of 
Dependency Links in Ensuring Architectural View 
Consistency. WICSA 2008: 199-208.

[9] Régine Laleau, Fiona Polack: Using formal metamodels 
to check consistency of functional views in information 
systems specification. Information & Software 
Technology 50(7-8): 797-814 (2008)

[10] Richard F. Paige, Phillip J. Brooke, Jonathan S. Ostroff: 
Metamodel-based model conformance and multiview 
consistency checking. ACM Trans. Softw. Eng. Methodol. 
16(3): (2007).

[11] Andrew Weeks, Susan Stepney, Fiona Polack: Neutral 
Emergence and Coarse Graining. ECAL 2007: 1131-
1140.

[12] Jean Bézivin, Salim Bouzitouna, Marcos Didonet Del 
Fabro, Marie-Pierre Gervais, Frédéric Jouault, Dimitrios 
S. Kolovos, Ivan Kurtev, Richard F. Paige: A Canonical 
Scheme for Model Composition. ECMDA-FA 2006: 346-
360.

[13] Dimitrios S. Kolovos, Richard F. Paige, Fiona Polack: 
Merging Models with the Epsilon Merging Language 
(EML). MoDELS 2006: 215-229

[14] Richard F. Paige, Dimitrios S. Kolovos, Fiona Polack:
An action semantics for MOF 2.0. SAC 2006: 1304-1305.

[15] C. Herrmann, H. Krahn, B. Rumpe, M. Schindler, S. 
Völkel: An Algebraic View on the Semantics of model 
Composition. ECMDA-FA 2007, LNCS 4530: 99-113

[16] R. France, B. Rumpe: Model-Driven Development of 
Complex Software: A Research Roadmap. Future of 
Software Engineering 2007 at ICSE: 37-54, IEEE, May 
2007.

[17] D. Harel, B. Rumpe: Meaningful Modeling: What's the 
Semantics of "Semantics"? IEEE Computer: 37(10):64-
72, October 2004.

4




