A Journey through the Secret Life of Models

Antonio Vallecillo

GISUM/Atenea Research Group. Universidad de Mdalaga (Spain)

av@lcc.uma.es

Abstract. Although Model Driven Software Development (MDSD) is
achieving significant progress, it is still far from becoming a real En-
gineering discipline. In fact, many of the difficult problems of the engi-
neering of complex software systems are still unresolved, or simplistically
addressed by many of the existing MDSD approaches. In this paper we
outline three of the currently outstanding problems of MDSD on which
we are now working, and propose some hints on how they can be ad-
dressed. The challenges are: the specification of the behavioral semantics
of metamodels; the addition of time to these specifications so that mod-
els can be properly animated, simulated and analyzed; and the use of
viewpoints and correspondences for specifying large-scale software sys-
tems.

1 Introduction

The ideas behind Model Driven Software Development (MDSD) have been present
for years, although they did not become really popular until the beginning of this
century. Probably, one of the triggers of this renewed and wider popularity was
the launching, in late 2000, of the Model-Driven Architecture (MDA) initiative
by the OMG. The MDA proposed a new way to consider the design, development
and maintenance of information systems, using models as the essential artifacts
of the software development process. MDA attracted a real interest from indus-
try because of its many potential benefits: increased productivity and quality of
the resulting products, reduced development costs and efforts, reduced time-to-
market, increased protection of investments, ability to modernize existing and
legacy applications, etc.

Although both MDSD and MDA have experienced significant advances dur-
ing the past 8 years [1], some of the key difficult issues still remain unresolved.
In fact, the number of engineering practices and tools that have been devel-
oped for the industrial design, implementation and maintenance of large-scale,
enterprise-wide software systems is still low—i.e. there are very few real Model-
Driven Engineering (MDE) practices and tools. There are several reasons for
that. Firstly, many of the current MDSD processes, notations and tools usu-
ally fall apart when dealing with large-scale systems composed of hundred of
thousands of highly interconnected elements; and secondly, MDE should go be-
yond generative programming: other engineering activities (such as simulation,
analysis, validation, quality evaluation, etc.) should be fully supported too.

Dagstuhl Seminar Proceedings 08331
Perspectives Workshop: Model Engineering of Complex Systems (MECS)
http://drops.dagstuhl.de/opus/volltexte/2008,/1601

In addition, we are currently in a situation where the industry is interested
in MDE, but we can easily fail again if we do not deliver (promptly) anything
really useful to them. There are still many challenges ahead, which we should
soon address in order not to lose the current momentum of MDE.

In this paper we focus on three of these challenges, which we consider relevant
to the real industrial adoption of MDE practices and tools, and on which we are
currently working (with different levels of achievement). Basically, they are all
issues that have been successfully solved by other mature engineering disciplines
(civil engineering, avionics, even hardware!) and that should also be solved for
MDE if a real engineering of large software systems is to be achieved.

The first issue is the specification of the behavioral semantics of metamodels
(beyond their basic structure) so that models can be animated, and different
kinds of analysis can be conducted on them including, e.g., simulation, valida-
tion and model checking. A second challenge is the support of the notion of
time in these behavioral descriptions, another key issue to allow industrial sys-
tems to be realistically simulated and properly analyzed—to be able to conduct,
e.g., performance, schedulability or reliability analysis. Finally, we need not only
to tackle the accidental complexity involved building software systems, but we
should also try to deal with their essential complexity [2]. In this sense, the
effective use of independent but complementary viewpoints to model large-scale
systems, and the specification of correspondences between them to reason about
the consistency of the global specifications, is the third of our identified chal-
lenges.

2 Adding Behavioral Semantics to DSLs

Domain Specific Languages (DSLs) are usually defined only by their abstract
and concrete syntaxes. The abstract syntax of a DSL is normally specified by
a metamodel, which describes the concepts of the language, the relationships
among them, and the structuring rules that constrain the model elements and
their combinations in order to respect the domain rules.

The concrete syntax of a DSL provides a realization of the abstract syntax of
a metamodel as a mapping between the metamodel concepts and their textual or
graphical representation (see the right hand side of Fig. 1). A language can have
several concrete syntaxes. For visual languages, it is necessary to establish links
between these concepts and the visual symbols that represent them—as done,
e.g., with GMF [3]. Similarly, with textual languages it is necessary to establish
links between metamodel elements and the syntactic structures of the textual
DSL [4].

Current DSM approaches have mainly focused on the structural aspects of
DSLs. Explicit and formal specification of a model semantics has not received
much attention by the DSM community until recently, despite the fact that this
creates a possibility for semantic mismatch between design models and model-
ing languages of analysis tools [5]. While this problem exists in virtually every
domain where DSLs are used, it is more common in domains in which behavior

0.1
1
BehavioralSemantics | ’AbstractSyntax ConcreteSyntax
0
+specification |, 0..1 1 [+specification 0..1 |, +specification
Semantic +source frsource Concrete
Mapping 1| MetaModel |1 Syntax
+target +target Mapping
1 1

Fig. 1. Specification of a Domain Specific Language

needs to be explicitly represented, as it happens in most industrial applications
of a certain complexity. This issue is particularly important in safety-critical
real-time and embedded system domains, where precision is required and where
semantic ambiguities may produce conflicting results across different tools. Fur-
thermore, the lack of explicit behavioral semantics strongly hampers the develop-
ment of formal analysis and simulation tools, relegating models to their current
common role of simple illustrations.

2.1 A Running Example

To illustrate the ideas presented in this paper, we will use a running example:
an industrial production line for assembling parts (in this case, hammers).

Container parts * Part
{ordered}

capacity ©int

— 1T —1
|HandIeGen | |HeadGen |

in| Tray (04 |Conveyor | |0perator | |Head | |Hammer | |Handle |

Assembler o e 1
L out | 1

Fig. 2. Meta-model of a DSVL for production systems.

This kind of production systems consist of machines, containers and parts.
Machines can be either generators of hammers’ heads or handles, or assemblers.
Generators produce parts and assemblers consume them to create new ones.
Machines take their inputs from trays and put their results in conveyors, which
transfer the parts between the trays. Operators collect assembled hammers (in
this sense, they act as containers, too). The metamodel for this kind of produc-
tion systems is shown in Fig. 2.

o : Operator

capacity=10

q: P
| heg : HeadGen :_ capacity= 2 |

=l . —— e - .
: Tray 3 eyol :Tray
t1: Tr: e RacEbler c3: Conw r 12:Tr
e2: Conveyor | | capacity=4 - capacity=4 capacity= 4

capacity=2

I hag : HandleGen |_
e —

(=) Abstract syntax (object diagram)

() Concrete syntax
hed i
.c.a;n acity="10_

12

capacity=4

Fig. 3. initModel example production system.

Fig. 3 shows an example of a valid production system, using the abstract
syntax and a concrete visual representation for it. Machines are represented as
cogwheels with an icon showing the kind of part they generate. Conveyors, trays
and users are represented using easily-recognizable icons. This model consists of
two generators connected to two conveyors, which are in turn connected to one
tray from which parts are assembled, deposited in a third conveyor, and then
stored in another tray. An operator collects hammers from the final tray.

Of course, this DSL for production systems have an implicit semantics, be-
cause everybody has an (informal) idea about how this kind of systems work.
However, this lack of explicit and precise specifications opens the door to poten-
tial semantic mismatches, and hinders any kind of formal analysis of the system.
For instance, it is not clear from the production system metamodel when are
handles and heads generated, or what happens when one of the trays is full: does
the preceding machines stop until the tray has some free space, or do the newly
generated pieces fall into the plant’s floor? Can we simulate the system with
different trays’ capacities, in order to find the most efficient production line?
How will the system perform if more generators are added, or if we change the
current configuration of trays and conveyors? These are the sort of issues that
need to be precisely clarified by a behavioral specification.

2.2 Defining DSLs Behavioral Semantics

In general, semantic has not been added to DSLs or has been done using natural
languages. Although users can normally guess the meaning of most terms of the
DSL (a good language designer probably chooses keywords and special symbols
with a meaning similar to some accepted norm), a computer cannot act on such
assumptions [6]. To be useful in the computing arena, any language (whether it is
textual or visual or used for programming, requirements, specification, or design)

must come with rigid rules that clearly state allowable syntactic expressions and
give a precise description of their meaning.

A formal description of a language semantics is usually done using an op-
erational, denotational, or aziomatic style (see [7] for a comprehensive survey
of semantic description frameworks). In operational frameworks, the semantics
of the language is specified as a sequence, or execution history, of state transi-
tions, usually as operations on some hypothetical abstract machine. A denota-
tional semantics is given by a mathematical function which maps the syntax of
the language to a semantic value (a denotation). Axiomatic semantics involves
rules for deducing assertions about the correctness or equivalence of language
expressions and corresponding parts. Each of these frameworks has particular
properties, but the distinction between them is seldom sharp: they frequently
borrow features from each other.

In any case, the definition of the semantics of a language can be accomplished
through the definition of a mapping between the language itself and another
language with well-defined semantics (see the left hand side of Fig. 1) such
as Abstract State Machines [8], Petri Nets [9], or rewriting logic [10]. These
semantic mappings [6] between semantic domains are very useful not only to
provide precise semantics to DSLs, but also to be able to simulate, analyze or
reason about them using the logical and semantical framework available in the
target domain [11]. The advantage of using a model-driven approach is that these
mappings can be defined in terms of model transformations.

2.3 Describing Dynamic Behavior using Model Transformations

One particular way to specify the dynamic behavior of a DSL is by describing the
evolution of the state of the modeled artifacts along some time model. In MDE,
where models, metamodels and model transformations are the key artifacts,
model transformations seem to be the natural way. In particular, model trans-
formation languages that support in-place update [12] are perfect candidates
for the job. This kind of transformations allow users to describe the permitted
actions and how the model elements evolve as a result of these actions.

There are several approaches that propose in-place model transformation to
describe the behavior of a DSL, from textual to graphical. Graphical notations
are proving to be extremely helpful in software and systems development, since
they are are intuitive to specify and to understand. Furthermore, in a theoreti-
cal sense, textual and graphical notations have no principal differences, since a
formal definition can be established in both. Textual notations are instead more
expressive, and usually graphical notations make use of (some kind of) them to
deal with complex behavior.

One of the most important graphical approaches is Graph Grammars [9,
13], in which the dynamic behavior is specified by using visual rules. These
rules prescribe the preconditions of the actions to be triggered and the effects
of such actions, given both visually as models that use the concrete syntax
of the DSL. This kind of representation is quite intuitive, because it allows
designers to work with domain specific concepts and their concrete syntax for

describing the rules [9]. There are also other graphical approaches, most of which
are in turn based on graph grammars. Among them, we can find the visual
representation of QVT [14] (where QVT is given in-place semantics) or the
use of different (usually extended) UML diagrams [15, 16]. These approaches do
not use (so far) the concrete syntax of the DSL, but an object diagram-like
structure. Furthermore, most of them (including graph grammars approaches)
use their own textual language to deal with complex behavior, such as Java [15]
or Python [17]. Regarding textual approaches, we can find, e.g., the use of QVT
(in a textual fashion) or rewrite logic rules [10].

Of course, there are other textual notations to describe behavioral seman-
tics of models, but they do not make use of in-place model transformations.
For example, Abstract State Machines are used in [8] to specify the operational
semantics of metamodels, and MOF is extended with an action language (Ker-
meta) in [18]. Each approach has its own benefits and limitations, and is better
suited for some purposes. As we shall see in Section 2.5, the possibility of defin-
ing semantic bridges between the different approaches can be of great help for
obtaining the best of all worlds.

In in-place model transformation languages, source and target models are
always instances of the same metamodel (i.e., they are endogenous transfor-
mations), and transformation rules are of the form ! : [NAC] x LHS — RHS,
where [is the rule label (name); LHS and RHS are model patterns that represent
certain states of the system, and NAC is a set of optional negative application
conditions that forbids applying the rule if one of these patterns are found in
the model. Rules are applied if an occurrence (or match) of the LHS is found in
the source model, and the NAC is not found. Then, the target model is obtained
by substituting the match by the RHS. More precisely, after the application of
the rule the elements in the LHS that do not appear in the RHS are deleted,
whereas the elements in the RHS that do not appear in the LHS are created.
Elements that appear in both patterns will be modified as indicated. Rules may
include attribute conditions (which must be satisfied by the match) and attribute
computations. Generally, if several matches are found, one is selected randomly;
the model transformation proceeds by applying the rules in non-deterministic
order, until none is applicable (although this behavior can be modified by some
execution control mechanisms).

2.4 The Example Revisited

To illustrate how to specify the dynamic behavior of the production system, this
section shows some examples of the rules that need to be added to its metamodel
specification. The interested reader can consult [19] or [20] for more complete
descriptions of this approach.

For instance, Fig. 4 shows the behavior of the head generator, which creates
a hammer head and deposits it into its outgoing conveyor. Notice that this rule
can only be applied if the conveyor has room to store the newly created part, as
stated by the condition on the LHS. Otherwise, the rule will not be triggered.

GenHead

ha
"“..__,.. ."‘-.....--

c.paris->size(] < c.capacity

Fig. 4. GenHead rule.

Similarly, Fig. 5 specifies the behavior of the assemble machine. Every time
that the assembler finds a head and a handle in its in-tray, it consumes these two
parts (they disappear from the tray in the RHS) and deposits a newly assembled
hammer in its outgoing conveyor. Again, the action specified by this rule will
only occur if there is room in the conveyor to store the hammer.

Assemble
c.parts-»sizel) < c.capacity
he ha ham
a B,
— C t Teagpan®
1 Segg

Fig. 5. Assemble rule.

Finally, Fig. 6 shows the movement of parts over conveyors. Notice the use
of an abstract item p of class Part (represented by a hollow square) in the rule.

Carry

ﬁgmﬂt _—.E

t.parts-»sizel) < t.capacity

Fig. 6. Carry rule.

2.5 Model Simulation and Analysis

Having defined the behavior of a DSL, the following step is to perform simu-
lation and analysis over the produced specifications. Simulation and execution
possibilities are available for all the approaches on which behavior can be speci-
fied (including of course in-place transformations); but the kinds of analysis they
provide is limited in many of them.

In general, each semantic domain is more appropriate to represent and rea-
son about certain properties, and to conduct certain kinds of analysis. Defining
the model behavior as a model will allow us to transform them into different
semantic domain, depending on the kind of formal analysis we require (Fig. 7).
Of course, not all the transformations can always be accomplished: it depends
on the expressiveness of the semantic approach.

eampxel Trar::;zll':'lc:‘.ions
(Structure) 4= Sl

hodel Transfomation (MT1) TR
Rewriting Logic Petri Nets Semantic
Domain N
[Reachahbility analysis, ([Terminatior,
model checking...) Confluence...]

Fig. 7. Mapping a DSL to different semantic domains.

For example, the most common formalization of graph transformation is the
so-called algebraic approach, which uses category theory to express the rewrit-
ing [21]. This approach supports a number of interesting analysis techniques, such
as detecting rule dependencies or calculating critical pairs (minimal context of
pairs of conflicting rules). Graph transformations have also been formalized into
Petri Nets in [9], allowing termination and confluence analysis.

We have been working on the formalization of models and metamodels in
equational and rewriting logic using Maude [22]. We have developed an Eclipse
plug-in that allows to specify and implement some of the most common opera-
tions on metamodels, such as subtyping and difference [23], with a very accept-
able performance. This formalization has also allowed us to add behavior [10]
in a very natural way to the Maude specifications, and also made metamodels
amenable to other kind of formal analysis, such as model checking, reachability
analysis or theorem proving [20]. Furthermore, Maude offers very good prop-
erties as a logical and semantic framework, in which many different logics and
formalisms can be expressed [24]. Therefore, our proposal can be used to pro-
vide a rich semantic framework in which other proposals can be mapped, hence

allowing them to take advantage of the formal analysis methods and tools of
Maude. For instance, we have already mapped Graph Grammars behavioral
specifications of Domain Specific Visual Languages to Maude [19]. This allows
performing simulation, reachability and model-checking analysis using the tools
and techniques that Maude provides.

In general, we can map our behavior specifications to the semantic domain
that provides the best formal analysis capabilities and tools we are looking for.

2.6 Analyzing the Hammer Production System

It is well known that “there are no correct programs, but untested ones”. In
fact, even this very simple production example is not free from errors, as can be
easily uncovered when verifying the system models.

For instance, using reachability analysis we can look for deadlock states,
e.g., final states in which the operator has collected less than 10 hammers. By
observing them we realize that a possible source of deadlock is that the t1 tray
may be full of items of the same type, not allowing the assembler machine to
proceed. This is due to a system design flaw, which can be easily solved by
controlling that generators of pieces of type X do not produce new parts if tray
tl already has tl.capacity-1 parts of that type.

Are there more flaws left? For example, the question on whether the system
may lose parts is left as an exercise for the reader . This simple question clearly
shows the need for a complete set of analysis tools.

In [20] we showed some interesting examples of simulation and validation ex-
ercises on a similar production system that can be conducted with our approach,
using the Maude toolkit [25].

2.7 End of Part 1: The (Secret) Journey of Models

Let us introduce here an intuitive analogy to illustrate our vision. As we perceive
it, there is the Universe of behavioral semantic descriptions, which is composed
of different Worlds, each one representing different semantic domains. For exam-
ple we can have the Petri Nets world, the Process Algebra world, the Contracts
world (in the sense of Eiffel contracts, with pre- and postconditions, and invari-
ants), the Graph Grammars world, the Rewriting Logic world, etc. Each world
is characterized by its underlying logic.

Each world is in turn composed of Villages, each one providing: a precise se-
mantics, a concrete notation, and a set of tools. For example, within the Process
Algebra world we find villages for the approaches that use CCS, CSP, or the
various flavors of the m-calculus (normal, polyadic, etc.) for describing behav-
ioral specifications and for specifying them with their associated tools. In the
Rewriting Logic world we have the proposals based on languages and support-
ing systems such as OBJ, Cafe, Maude, etc. In the Petri Net world we have the
approaches that use different versions and flavors of Petri Nets (basic, colored,
hierarchical, etc.), each one with its precise semantics and associated notations
and analysis tools.

10

In our analogy, defining semantic mappings means building Bridges between
the different villages, so that the animated models can travel from one to the
other, being able to use the local analysis tools to reason about their properties,
conduct simulations, validations, etc. Bridges can also be very useful to pro-
vide semantics to those metamodels that lack precise semantics (e.g., UML). In
these cases, the semantics of a source element is given by the semantics of the
transformed element in the target domain.

Bridges are called domestic if they are defined between villages in the same
world. In addition, bridges can go in any direction depending on the level of ab-
straction of the source and target villages. Horizontal bridges are those between
villages that sit at the same abstraction level, maintaining the granularity of the
specification. Bridges can also be Abstracting or Refining. Abstracting bridges
are those that abstract away some of the details of the source model, leaving just
the information that matters to the target domain. Refining bridges, on the con-
trary, add some information to the models that cross through them. For instance,
the progressive refinements defined in the MDA chain (CIM—PIM—PSM) can
be seen as refining transformations from high-level models into final implementa-
tions. Other approaches, such as the Architecture-Driven Modernization (ADM),
use abstracting bridges through which the technology-dependent and platform-
specific details are trimmed down from the low level implementations to leave
just the platform-independent information. Abstract interpretation [26] is an-
other well known technique that uses abstracting transformations to abstract
away details which are irrelevant for our target analysis, while program refine-
ment provides just the opposite approach. Forgetful bridges are an interesting
kind of abstracting bridges which respect all elements of the abstract syntax,
but forget about the semantics and/or the concrete syntax of the DSL (name in-
spired by the forgetful functors defined in category theory [27]). Pruning bridges
are those forgetful bridges that also trim down some of the metamodel elements,
in order to restrict the domain.

Please note as well that bridges are reusable, so once built they can used as
long as the “crossing” model conforms to kind of models the bridge is able to deal
with. Something that needs to be carefully considered when building bridges is
that the results of the analysis conducted at the target end may need to return,
and be properly represented at origin. This is an interesting challenge, which can
be tackled, for instance, by annotating the transformed model with information
about the source (i.e., leaving some track to allow returning) as described in [28].

Finally, the journey of a model should be kept as secret as possible (as the
heading of this section suggests), so that engineers living on a particular village
can be completely unaware of the fact that most of the analysis tools used to
simulate and reason about their models are not actually available in that village
(or even in that planet!). It is the modeling tools the ones that know the villages
that models should visit to get the analysis done.

With all this, what we have is a three dimensional universe of semantic
domains, inter-related by means of different kinds of bridges. We will come back
to this later in Section 4.

11

3 Adding Time to Behavioral Specifications

Formal analysis and simulation are critical issues in complex and error-prone ap-
plications such as safety-critical real-time and embedded systems. In such kind of
systems, timeouts, timing constraints and delays are predominant concepts [29],
and thus the notion of time should be explicitly included in the specification of
its behavior. Furthermore, without time information the kind of analysis that
can be performed on the system are quite limited: if many real applications we
need to be able to conduct performance and reliability analysis, too.

Most simulation tools that allow the modeling of time require specialized
knowledge and expertise, something that may hinder its usability by the average
DSL designer. On the other hand, current in-place transformation techniques do
not allow to model the notion of time in a quantitative way, or allow it by adding
some kind of clocks to the DSL metamodel. This latter approach forces designers
to modify the DSL metamodel to include time aspects, and allows them to design
rules that may easily lead the system to time-inconsistent states [29].

3.1 Modeling Timed Actions

One way to avoid this problem is by extending behavioral rules with their dura-
tion, i.e., by assigning to each action the time it needs to be performed. Thus,

timed rules are of the form [: [NAC] x LHS —— RHS, where ¢ expresses the
duration of the action modeled by the rule, in some time granularity.

Timed rules admit very rich semantics. In their simplest form, the LHS and
NAC patterns express pre-conditions for the rule to be triggered. If they happen,
the action specified by the rule is scheduled to happen after ¢ units of time.
At that moment, the preconditions are again evaluated and, if they still hold,
the rule is applied by substituting the match by the RHS (which expresses the
postcondition). Otherwise, the rewrite will not take place. In another semantic
variation of the rules, the LHS and NAC patterns should hold not only at the
beginning and at the end of the action, but also in-between, i.e., they act as
invariants (see Fig. 8). Further extensions to the rules are also possible, such as
defining specific invariant patterns.

Our model of time also allows actions occurrences to be represented in rule
conditions (LHS and NACs), opposite to standard in-place transformation ap-
proaches in which only system states can be specified (this makes many useful
action properties inexpressible without unnatural changes to a system’s specifi-
cation, as discussed in [30]).

Thus, we can include action expressions in rule patterns to describe them.
These action expressions are composed of the name (i.e., label) of the rule that
represents the corresponding action, which may incorporate a parameter to indi-
cate if the action is being realized or was performed previously (the present/past
parameter), and optionally identifiers of matching parameters. These action ex-
pressions represent rule executions.

Modeling both state-based and action-based properties is a powerful mech-
anism that eases designers in the modeling of complex systems, and saves them

12

Rule
LS L A :
N\
oo X N
precondition " postcondition
invariant
I
]
Action

Fig. 8. Actions modeled with timed rules.

from including behavioral aspects in the structural specifications. As normal
rules, timed rules can be applied only if an occurrence of the LHS pattern is
found in the model. This allows elements to be performing several actions at the
same time. In cases in which this situation is not desired (i.e., we want some
elements to realize only one action at a time) or on the contrary needed (i.e.,
an element must be performing one action to be able to conduct another), this
behavior can be easily restricted (or enforced) by including action expressions
in the NAC or LHS patterns, respectively, as we show in next subsection.

3.2 Adding Time to the Production System Example

Let us illustrate here how the behavior of the production system example can
be extended with time information. Fig. 9 shows a timed version of the Carry
rule described before. Note that the only difference with standard in-place rules
is the specification of the time the action consumes (in this case five time units).
According to this rule, when a part is placed on a conveyor, it takes five time
units to be deposited in the conveyor’s out tray.

Carry — Intime 5

C C
1

t.parts->size() < t.capacity

Fig. 9. Carry rule with time.

Now, what happens if a piece is placed on the conveyor when it is carrying
another piece? As previously mentioned, timed rules can be applied if an oc-
currence of the LHS pattern is found in the model. Since there is no restriction
about this situation, conveyors can move several pieces at the same time, and
each of them will stay five time units on the conveyor.

13

Fig. 10 shows a timed version of the behavior of a head generator, which
creates a hammer head every two time units. Since we do not want this rule
to be triggered while it is executing, we restrict the GenHead rule with the
inclusion of an action expression in its NAC. This action expression forbids the
matched generator hg to start creating a new head if it is already generating
one, and thus, making heads to be generated every two time units. In case of
more head generators in the system, rule GenHead will be applied to each of
them separately—this is the reason why the parameter is required.

GenHead

In time 2

c.parts-»size() < c.capacity

Fig. 10. GenHead rule with time.

In this example, action expressions have been simplified by omitting the
present/past parameter and the instantiation objects role. Thus, every action
expression will refer to actions that are being realized in the present, and objects
will perform the role dictated by its class (since there are no patterns composed
of several objects that belong to the same class).

Double Pushout (DPO) and Single Pushout (SPO) formalizations of in-place
transformation rules, as well as non-injective rules, are also possible in our ap-
proach, with the usual semantics given in standard graph transformations [19].

3.3 Analysis of timed rules

In order to analyze the system behavior when it is specified using these timed
rules, the usual theoretical results and tools defined for graph transformations
are not easily applicable. However, other semantic domains are better suited.
We are now working on the definition of a semantic mapping from our timed
rules to real-time Maude’s rewrite logic [31].

This mapping brings several advantages: (1) it allows to perform simulation,
reachability and model-checking analysis on the specified real-time systems; (2) it
permits decoupling time information from the structural aspects of the DSL (i.e.,
its metamodel); and (3) it allows to state properties over both model states and
actions, easing designers in the modeling of complex systems.

Simulation and formal analysis (parts of the first advantage) are performed
using Maude’s toolkit, which includes tool support for simulation, reachability
analysis and real-time model checking [25]. In addition, the way in which we have
specified timed rules allows to re-use many of the existing theoretical results for
timed-automata [32].

14

The second and third properties are achieved thanks to our Maude encoding
of timed rules. A timed rule is encoded as three Maude rewrite rules, each one
modeling one of the rule statements: the precondition, the postcondition and
the invariant. The precondition Maude rule creates a timer object when the
timed rule precondition is satisfied. This timer represents a countdown to the
finalization of the rule, and gathers all the information needed about the rule
instantiation: its name and the identifiers of the objects that participate in it. The
postcondition Maude rule performs the action described by the timed rule (i.e.,
it replaces LHS with RHS) provided that the rule invariant is satisfied and the
rule time consumed (i.e., the timer set to zero). (When an action is performed,
it corresponding timer is saved for history purposes.) The invariant Maude rule
interrupts the action (deleting it corresponding timer) whenever the invariant of
the timed rule breaks. This invariant is initially defined using the same patterns
as for the precondition: the LHS and negative application conditions (NACs).

Thus, our Maude encoding of timed rules makes DSL objects to be completely
unaware of the notion of time, and time elapse must be only defined over the
timers (using a Maude tick rule [31]). This also allows modeling elements that
can perform several actions simultaneously in a natural way.

3.4 Further Challenges in the Analysis of Complex Systems

Being able to represent (timed) behavior represents just one small step in the
hard task of being able to analyze, validate and reason about the models of the
systems. In our vision, software designers should be able to do their work using
engineering practices, like hardware designers and other traditional engineers
have been doing for many years: you build the models of your systems first
(probably one for each of the concerns you want to focus on—see Section 4),
and then start performing simulations, validations, and many other kinds of
analysis until they feel confident with their designs. At that moment, they are
ready to transform their models into real implementations!. In the following we
outline some (just a few) of the challenges involved in realizing this vision.

Further analysis capabilities. In addition to being able to simulate and
model-check the software specifications to validate some liveness and safety prop-
erties of the modeled systems, we also need to address the analysis of their
non-functional properties.

Since decades performance and reliability experts have built models for vali-
dating software/hardware systems against their non-functional requirements. In
order to fill the gap between software development and non-functional valida-
tion, in the last few years the research has faced the challenge of automated
generation of quantitative models for non-functional validation from software
artifacts. Several methodologies have been introduced that all share the idea

! These transformations are much harder in other engineering disciplines. We, soft-
ware engineers, are luckier because we do not need to change the media—and these
transformations are now a core part of MDE!

15

of annotating software models with data related to non functional aspects and
then translating the annotated model into a model ready to be validated (for a
comprehensive survey of these proposals, see [33]).

In this sense, there is the need to connect design models (possibly anno-
tated with time, probabilities and other non-functional properties) with existing
non-functional analysis frameworks to conduct, for instance, performance and
reliability analysis on the models (along the lines of the works described in [34]).

We have started studying how to extend our proposal to be able to model
non-functional properties, and how to connect our specifications with these non-
functional analysis frameworks. This includes first the appropriate representation
of QoS characteristics (such as throughput, delay, overhead, scheduling policies,
deadlines or memory usage) within the system specifications. In the context of
UML, the new UML Profile for MARTE [35] is a valid step in this direction.
Including this kind of QoS information in particular DSLs is something worth
investigating.

Simulation languages and frameworks have also been present for years. For
instance, Modelica [36] is an object oriented-language supported by a set of
powerful simulation tools. The definition of transformations from our models
to the Modelica system will allow us to make use of its simulation capabilities,
something which we plan to do as part of our future work.

Runtime monitoring. This is particularly important in execution environ-
ments in which the level of quality of service (QoS) is constantly changing (as
it happens with mobile or ubiquitous applications) and end-user service level
agreements need to be guaranteed (essential in case of critical embedded sys-
tems, such as those used in the aerospace and automotive industries, nuclear
plants, etc.). These facts make validation a very difficult task.

The use of MDE techniques for validating and monitoring runtime behavior
can yield significant benefits here, something which has not been fully exploited
yet. We believe that MDE can be effectively used not only to synthesize the
system code from the models, but also for the derivation of all the instrumen-
tation and monitoring code required for the effective QoS runtime management
in disparate and dynamically changing execution environments.

Modularity and scalability. Finally, some of the major limitations of rule-
based specifications are caused by the difficultly of managing the rules when
their number is large. Modularity and composition mechanisms are required to
be able to handle them in an orderly and controlled manner.

A good example of the use of modularity for timed systems in MoTif [37].
Based on the DEVS (Discrete Event System Specification) formalism, MoTif is a
modular language for controlled graph rewriting, in which models and submodels
can be re-used and composed to build larger specifications in a component-
oriented fashion.

It is also important to note that all aspects that need to be considered when
building the specification of a complex system cannot be treated in the same

16

model—each concern should be dealt with independently (ideally using a spe-
cialized DSL) and then combined with the rest of the concerns. This leads us to
the next (and final) section of our paper.

4 Viewpoint Integration and Consistency

Large-scale heterogeneous distributed systems are inherently much more com-
plex to design, specify, develop and maintain than classical, homogeneous, cen-
tralized systems. Thus, their complete specifications are so extensive that fully
comprehending all their aspects is a difficult task. One way to cope with such
complexity is by dividing the design activity according to several areas of con-
cerns, or wviewpoints, each one focusing on a specific aspect of the system, as
described in IEEE Std. 1471 [38].

Following this standard, current architectural practices for designing open
distributed systems define several distinct viewpoints. Examples include the
viewpoints described by Krutchen’s “4+1” view model [39], Viewpoints [40],
OpenViews [41], Dijkman’s framework [42], or the growing plethora of Enter-
prise Architectural Frameworks (EAF): the Zachman’s framework [43], Archi-
Mate [44], the US Department of Defense Architectural Framework (DoDAF),
The Open Group Architectural Framework (TOGAF), the Federal Enterprise
Architecture Framework (FEAF), or the Reference Model of Open Distributed
Processing (RM-ODP), among others.

In particular, RM-ODP [45] is the enterprise architectural framework pro-
posed by ISO/TEC and ITU-T for the specification of large, open and distributed
systems. It provides five generic and complementary viewpoints on the system
and its environment. Each viewpoint addresses a particular concern, and nor-
mally uses its own specific (viewpoint) language, which is defined in terms of a
set of concepts specific that concern, their relationships, and their well-formed
rules (i.e., a metamodel). A view (or viewpoint specification, in ODP terms) is a
representation of the whole system from the perspective of a viewpoint.

Although separately specified, developed and maintained to simplify rea-
soning about the complete system specifications, viewpoints are not completely
independent: elements in each viewpoint need to be related to elements in the
other viewpoints in order to ensure the consistency and completeness of the
global specifications. The questions are: how can it be assured that indeed one
system is specified? And, how can it be assured that no views impose contra-
dictory requirements? The first problem concerns the conceptual integration of
viewpoints, while the second one concerns the consistency of the viewpoints.

Currently, most viewpoint modeling approaches to system specification (in-
cluding the IEEE Std. 1471 itself and the majority of the existing EAFs) do not
address these problems.

4.1 Correspondences between viewpoints

The most general approach to viewpoint consistency is based on the definition
of correspondences between viewpoint elements. Correspondences do not form

17

part of any one of the viewpoints, but provide statements that relate the various
viewpoint specifications—expressing their semantic relationships [46]. Hence, we
could initially say that a proper system specification consists of a set of viewpoint
specifications, together with a set of correspondences between them.

The problem is that existing proposals and EAFs do not consider corre-
spondences between viewpoints, or assume they are trivially based on name
equality between correspondent elements, and are implicitly defined. This is a
serious problem for large-scale distributed systems in which the viewpoints are
indeed separately specified, and in which this simplistic assumption does not
hold. Making an analogy with the common 2D representation of 3D figures,
this is like drawing independently the three orthographic views of a figure but
without defining any correspondence lines between them. As we all know, the
consistency and completeness of the specification of the 3D figure cannot be
guaranteed unless the appropriate correspondences between the three 2D views
are described.

Furthermore, the majority of approaches that deal with the problem of incon-
sistency among viewpoints (see, e.g., [40,42,47-51]) assume that we can build
an underlying metamodel containing all the views, which is not normally true.
From a theoretical perspective, the use of a common global metamodel greatly
helps maintaining the coherence and conceptual integration among viewpoint el-
ements. However, the definition of such an underlying metamodel presents some
problems. Firstly, should the metamodel consist of the intersection or of the
union of all viewpoints elements? Some proposals (e.g., ArchiMate [44]) use the
first approach (i.e., the intersection), while others, e.g., Dijkman [42] or Grosse-
Rhode [50], use the second. Both approaches have serious problems with the
extensibility and expressiveness of the basic elements of the global metamodel
(not to mention complexity of the second approach—think for instance in the
UML 2.0 metamodel). Secondly, the granularity and level of abstraction of the
viewpoints can be arbitrarily different. Finally, the viewpoints may have very dif-
ferent formal semantics, which greatly complicates the definition of the common
underlying metamodel.

The RM-ODP defines independent viewpoints for specifying open distributed
systems, related by correspondences between them. In ODP, a correspondence
is a statement by which some terms or other linguistic constructs in the spec-
ification of a viewpoint are associated with (e.g. describe the same entities as)
terms or constructs in the specification of a second viewpoint.

There are two situations, depending on whether correspondences can be de-
fined in terms of model transformations (i.e., functions) between the two related
viewpoints, or not (i.e., just as mappings between the viewpoint elements).

4.2 Correspondences as model transformations

In the first case, the RM-ODP explicitly states that correspondences can be used
to define transformations between viewpoint elements to implement consistency
checks: “One form of consistency involves a set of correspondence rules to steer
a transformation from one language to another. Thus given a specification S;

18

in viewpoint language L, and specification S; in viewpoint language Lo, where
S1 and Sy both specify the same system, a transformation 7' can be applied to
S7 resulting in a new specification 7'(S7) in viewpoint language Lo which can
be compared directly to Sy to check, for example, for behavioral compatibility
between allegedly equivalent objects or configurations of objects” [45].

This approach has been proposed by several authors for relating concepts
from different viewpoint at the metalevel (as initially suggested by Akehurst [52]
using relations defined in OCL), and then further refined by Romero et al in [53]
using QVT as transformation language. The main benefit of this approach is
that it allows checking pairwise consistency between related viewpoints using
standard mechanisms and tools (e.g., behavioral subtyping, bisimulation, etc.).

However, this approach presents two important limitations: (a) pairwise con-
sistency is not enough for ensuring global consistency; and (b) there are many
situations in which correspondences can not be specified as model transforma-
tions because they are not functions—rather, they are just data mappings be-
tween related elements but without any transformation or change propagation
mechanism defined between them. In this latter case, techniques similar to model
weaving [54] are more appropriate than model transformations.

4.3 Specification of viewpoint correspondences

ISO/IEC and ITU-T have defined a very expressive metamodel and profile (in-
formally called UML4ODP) for specifying ODP viewpoints and correspondences
between them, which allows to cover both cases [55]. In this approach, as shown
in Fig. 11, a correspondence specification is composed of a set of correspondence
rules and a set of correspondence links. In ODP, a term is a linguistic construct
which may be used to refer to an entity. When a correspondence rule and a corre-
spondence link are related, this means that the constraint in the correspondence
rule must be enforced by the set of terms referenced by the correspondence link.

|Correspc d Specification IU--* 2 ViewpointSpecification

i
0. T o
Correspond. Rule (0.1 D..*l CorrespondenceLink |

expression ; Constraint ?
2

|CorrespondenceEndpoin‘l |

1.4

Term

Fig.11. ODP correspondence metamodel (from [55])

In UML4ODP, a correspondence rule is expressed by a constraint that must
be enforced by a set of terms belonging to two specifications from different view-
points. A correspondence link is established between two specifications from dif-

19

ferent viewpoints. Each end of the correspondence link is called a correspondence
endpoint, which is composed of terms involved in the consistency relationship.

Something we recently discovered when working with this profile is that mod-
eling views and correspondences between them is not enough. Well-formed rules
on the set of correspondence specifications are also required to establish when
the set of correspondences defined in a system specification is correct (see [56]).
That is, this set of well-formed rules specifies the constraints that the set of cor-
respondences should fulfil. OCL constraints can be used to express these rules
in our context.

This gives rise to the following definition of multi-viewpoint specification of
a system [56]:

Definition 1. A multi-viewpoint system specification consists of a set of views
V ={Vi,...,Vi}, a set of correspondences C = {C(1,2),C1,3),- -, Cln—1,n)} be-
tween the views, and a set of rules R = {ry,...,ri} that describe the constraints
that the correspondences of C' should fulfil in order for a specification to be well-
formed. Each view V; is a model that conforms to a metamodel M; (the viewpoint
language). Correspondences are also models, and C(; ;) conforms to a correspon-
dence metamodel C. Rules are expressed as constraints on the correspondence
elements, using any constraint language (e.g., OCL).

Our efforts are currently focused on the development of a generic framework
and a set of tools to represent viewpoints, views and correspondences, which are
able to manage and maintain viewpoint synchronization in evolution scenarios,
as reported in [57], and that can be used with the most popular existing EAFs.

These tools are initially based on the ODP viewpoints, and on the UML4ODP
profile for expressing the views and their respective correspondences. They al-
low validating the views in order to ensure that they conform to their respective
metamodels (intra-viewpoint consistency), that the set of user-defined corre-
spondences is well-defined, and to check that all required correspondences are
properly fulfilled by the system specification.

5 Epilogue: A Hitchhiker’s Guide to Metamodels

The MDE community is managing to know the answers to many of its current
problems and limitations. These answers are expressed in terms of goals that
need to be achieved for providing good engineering practices and tools for the
industrial development of complex large-scale software system. As in Douglas
Adams’s book [58], we already know the answers—but now there is the need to
formulate the questions so that these answers can be effectively implemented.

This paper provides a small step in this direction, by formulating three of
the current challenges of MDE so that they can be properly addressed.

In the last section we discussed the importance of defining independent views
of the system, each one focusing on one particular concern, and the use of Do-
main Specific Languages (DSLs) for specifying them. Up to now, DSLs have
been defined by their abstract and concrete syntaxes only. But there is also

20

the need to animate models, something for which we need precise description
of the behavior of their metamodels. One way to specify the dynamic behavior
of a DSL is by describing the evolution of the state of the modeled artifacts
along some time model. In-place model transformations seem to be well-suited
for this aim, extending metamodels (structural aspects of a DSL) with behavior.
Furthermore, if these transformations use the concrete syntax of the DSL, the
behavioral specifications become intuitive and natural both to specify and un-
derstand, because it allows designers to work with domain specific concepts. This
kind of behavioral specifications also enables the addition of time information
to the specifications in a natural way, as we have shown in Section 3.

We do not live in a Universe of isolated worlds, and thus we have also dis-
cussed the importance of building bridges that allow models to constantly travel
to different worlds, being able to use the local analysis tools to reason about their
properties, conduct simulations, validations, etc., and go back to their home vil-
lages with the results of the analysis—the life of models is quite traveled and
hectic in our vision. Defining the behavior of a DSL as a model also permits
us to exploit (using semantic mappings implemented by model transformations)
the formal analysis and tools that each semantic domain provides. Bridges can
also be very useful to provide precise semantics to those metamodels that lack
them.

Finally, once we have a set of worlds composed of villages interconnected
with bridges, we need to ensure the consistency between the set of models that
comprise a multi-viewpoint specification of a complex software system, which
live in different villages and may have different semantics. Correspondences can
be of great help in this context. Another important problem is how to maintain
this consistency between viewpoints in evolutionary scenarios.

But this is another story to be told...

Acknowledgements. The author would like to acknowledge the work of many
people who have been involved in investigating and addressing the problems
of the specification and modeling of large-scale software systems. Although the
views in this paper are the author’s solely responsibility, they could not have
been formulated without many hours of detailed discussions with the rest of
members of the GISUM/Atenea group (particularly José E. Rivera and José
Ratl Romero, who are closely working with the author in developing these ideas
and their associated tools); with the ISO experts on ODP, particularly Peter
Linington, Akira Tanaka, Bruno Traverson, Sandy Tyndale-Biscoe and Bryan
Wood; and finally, with a set of very intelligent and thought-provoking colleagues:
Francisco Duran, Alfonso Pierantonio, Jeff Gray, Jean Bézivin, Juan de Lara,
Iman Poernomo, Jean Marie Favre, José Meseguer, and many others.

The title of the paper has been borrowed from a great music album from
Stevie Wonder, while Douglas Adams’s masterpieces have served as an excellent
source of inspiration for many of the ideas used to illustrate the proposal.

This work has been partially supported by Spanish Research Projects TIN2005-
09405-C02-01, PET2006-0682-00 and P0O7-TIC-03184.

21

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bézivin, J., Vallecillo, A., Garcia-Molina, J., Rossi, G.: Special issue on MDSD:
“MDA at the age of seven: Past, present and future”. UPGRADE IX(2) (2008)
4-45 http://wuw.upgrade-cepis.org/issues/2008/2/upgrade-vol-IX-2.pdf.
Brooks, F.P.: No Silver Bullet — Essence and Accident in Software Engineering. In:
Proceedings of the IFIP Tenth World Computing Conference. (1986) 1069-1076
Eclipse: Graphical Modeling Framework (2008) http://www.eclipse.org/
modeling/gmf/.

Jouault, F., Bézivin, J., Kurtev, I.. TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: Proc. of GPCE’06. (2006) 249-254
Kleppe, A.G.: A language description is more than a metamodel. In: Proc. of the
Fourth International Workshop on Software Language Engineering (ATEM 2007),
Nashville, USA (2007) http://megaplanet.org/atem2007/ATEM2007-18.pdf.
Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of “semantics”?
Computer 37(10) (2004) 64-72

Zhang, Y., Xu, B.: A survey of semantic description frameworks for programming
languages. SIGPLAN Not. 39(3) (2004) 14-30

Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic anchoring with
model transformations. In: Proc. of Model Driven Architecture: Foundations and
Applications (ECMDA-FA 2005). Volume 3748 of LNCS., Springer (2005) 115-129
de Lara, J., Vangheluwe, H.: Translating model simulators to analysis models. In:
Proc. of FASE 2008. Volume 4961 of LNCS., Springer (2008) 77-92

Rivera, J.E., Vallecillo, A.: Adding behavioral semantics to models. In: Proc. of
EDOC 2007, IEEE Computer Society (2007) 169-180

Cuccuru, A., Mraidha, C., Terrier, F., Grard, S.: Enhancing UML extensions with
operational semantics: Behaviored profiles with templates. In: Proc. of MoDELS
2007. Volume 4735 of LNCS., Springer (2007) 271-285

Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture. (2003)

Kastenberg, H., Kleppe, A.G., Rensink, A.: Defining object-oriented execution
semantics using graph transformations. In: Proc. of FMOODS 2006. Number 4037
in LNCS, Springer (2006) 186-201

Markovié, S., Baar, T.: Semantics of OCL Specified with QVT. Journal of Software
and Systems Modeling (SoSyM) (2008)

Fischer, T., Niere, J., Torunski, L., Ziindorf, A.: Story diagrams: A new graph
rewrite language based on the unified modeling language. In: Proc. of the 6" In-
ternational Workshop on Theory and Application of Graph Transformation. (1998)
Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In: Proc. of UML 2000. Volume 1939 of LNCS., Springer (2000) 323-337

de Lara, J., Vangheluwe, H.: Defining visual notations and their manipulation
through meta-modelling and graph transformation. Journal of Visual Languages
and Computing 15(3-4) (2006) 309-330

Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-
oriented meta-languages. In: Proc. of MoDELS/UML’2005. Volume 3713 of LNCS.,
Springer (2005) 264-278

22

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-based behavioral
semantics of visual modeling languages with maude (2008) Submitted for publi-
cation (manuscript available at http://www.lcc.uma.es/~av/Publicaciones/08/
s1e08.pdf).

Rivera, J.E., Vallecillo, A., Durdn, F.: Analysing models with Maude. Technical
report, Universidad de Mélaga (2008) http://atenea.lcc.uma.es/images/e/eb/
AnalysingModels.pdf.

Ehrig, H., Karsten, Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

Romero, J.R., Rivera, J.E., Durdn, F., Vallecillo, A.: Formal and tool support for
model driven engineering with Maude. Journal of Object Technology 6(9) (2007)
187-207

Rivera, J.E., Vallecillo, A.: Representing and operating with model differences. In:
Proc. of TOOLS Europe 2008. Volume 11 of LNBIP., Springer (2008) 141-160
Marti-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework.
In Gabbay, D., Guenthner, F., eds.: Handbook of Philosophical Logic. Volume 9.
2 edn. Kluwer Academic Publishers (2002) 1-87

Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude — A High-Performance Logical Framework. Number 4350 in
LNCS. Springer, Heidelberg, Germany (2007)

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Los Angeles, California, ACM Press, New York, NY (1977)
238-252

Mac Lane, S.: Categories for the Working Mathematician. Springer (1971)
Guerra, E., de Lara, J.: Model view management with triple graph transformation
systems. In: Proc. of ICGT 2006. (2006) 351-366

Gyapay, S., Heckel, R., Varr6, D.: Graph transformation with time: Causality and
logical clocks. In: Proc. of ICGT 2002. (2002) 120-134

Meseguer, J.: The temporal logic of rewriting: A gentle introduction. In: Concur-
rency, Graphs and Models. Volume 5065 of LNCS., Springer (2008) 354-382
Olveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2) (2007) 161-196

Lynch, N.: Simulation techniques for proving properties of real-time systems. In:
A Decade of Concurrency. Reflections and Perspectives. Volume 803 of LNCS.,
Springer (1994) 375-424

Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE Trans. Softw. Eng. 30(5)
(2004) 295-310

Cortellessa, V., Marco, A.D., Inverardi, P.: Integrating performance and reliability
analysis in a non-functional MDA framework. In: Proc. of FASE 2007. Volume
4422 of LNCS., Springer (2007) 57-71

OMG: UML Profile for Modeling and Analysis of Real-time and Embedded Sys-
tems (MARTE). Object Management Group. (2008) OMG doc. ptc/08-06-08.
Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. Wiley-IEEE Press (2003)

Syriani, E., Vangheluwe, H.: Programmed graph rewriting with time for simulation-
based design. In: Proc. of ICMT 2008. Volume 5063 of LNCS., Zurich, Switzerland,
Springer (2008) 91-106

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

23

IEEE: Recommended Practice for Architectural Description of Software-Intensive
Systems, New York, USA. (2000) IEEE Std. 1471.

Kruchten, P.: Architectural blueprints — The “4+1” view model of software ar-
chitecture. IEEE Software 12(6) (1995) 42-50

Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: View-
points: a framework for integrating multiple prespectives in systems development.
SEKE journal 2(1) (1992) 31-58

Boiten, E.A., Bowman, H., Derrick, J., Linington, P., Steen, M.W.: Viewpoint
consistency in ODP. Computer Networks 34(3) (2000) 503-537

Dijkman, R.M., Quartel, D.A., van Sinderen, M.J.: Consistency in multi-viewpoint
design of enterprise information systems. Information and Software Technology
50(7-8) (2008) 737-752

Zachman, J.A.: The Zachman Framework: A Primer for Enterprise Engineering
and Manufacturing. Zachman International, La Canada (CA), USA (1997) http:
//www.zifa.com.

Lankhorst, M., ed.: Enterprise Architecture at Work. Springer (2005)

ISO/IEC: RM-ODP. Reference Model for Open Distributed Processing. ISO and
ITU-T, Geneva, Switzerland. (1997) ISO/IEC 10746, ITU-T Rec. X.901-X.904.
Linington, P.: Black Cats and Coloured Birds What do Viewpoint Correspon-
dences Do? In: Proc. of WODPEC 2007, Maryland, USA, IEEE Digital Library
(2007)

Easterbrook, S., Nuseibeh, B.: Using viewpoints for inconsistency management.
Software Engineering Journal (1996) 31-43

Egyed, A.: Instant consistency checking for the UML. In: Proc. of ICSE’06, New
York, NY, USA, ACM (2006) 381-390

Egyed, A.: Fixing inconsistencies in UML design models. In: Proc. of ICSE’07,
Washington, DC, USA, IEEE Computer Society (2007) 292-301

Grofle-Rhode, M.: Semantic Integration of Heterogeneous Software Specifications.
Springer-Verlag, Berlin (2004)

Straeten, R.V.D., Simmonds, J., Mens, T.: Detecting inconsistencies be-
tween UML models using description logic. In: Proc. of the International
Workshop on Description Logics (DL’03). Volume 81 of CEUR Proceed-
ings. (2003) http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/
Vol-81/vandery,straeten.pdf.

Akehurst, D.H.: Proposal for a model driven approach to creating a tool to support
the RM-ODP. In: Proc. of WODPEC 2004, Monterey, California (2004) 65-68
Romero, J.R., Moreno, N., Vallecillo, A.: Modeling ODP Correspondences using
QVT. In: Proc. of MDEIS’06. (2006) 15-26

Didonet Del Fabro, M., Bézivin, J., Jouault, F., Valduriez, P.: Applying generic
model management to data mapping. In: Proc. of Bases de Donnés Avancées
(BDAO05), Saint-Malo, France (2005) 17-20

ISO/IEC: Information technology — Open distributed processing — Use of UML for
ODP system specifications. ISO and ITU-T, Geneva, Switzerland. (2008) ISO/IEC
FDIS 19793, ITU-T X.906.

Romero, J.R., Vallecillo, A.: Well-formed rules for viewpoint correspondences spec-
ification. In: Proc. of WODPEC 2008, Munich, Germany (2008)

Eramo, R., Pierantonio, A., Romero, J.R., Vallecillo, A.: Change management
in multi-viewpoint systems using ASP. In: Proc. of WODPEC 2008, Munich,
Germany (2008)

Adams, D.: The Hitchhiker’s Guide to the Galaxy. Ballantine Books (1979)

