On Horizontal and Vertical Relationships
between Models

Martin Gogolla

University of Bremen (D), CS Department, Database Systems Group

Abstract. Detecting, modeling and managing relationships between
models are central tasks within model-driven engineering. By taking a
simple view on software development, we distinguish in a vertical di-
mension between domain-specific models, core models, and executable
models. A typical example for a vertical relationship is the refinement
relationship beween a core model and an executable model. In the hori-
zontal dimension, there may be several so-called property models which
have the task to validate or verify particular properties of the core model.
Software development coincides in our view with model development, and
therefore finding the right models and their relationships is a crucial task.

1 Models in Software Development

We follow the basic assumption expressed in [Béz05] that Everything is a model.
Under this asumption, every artifact in software development (e.g., a require-
ment, a specification, executable code, or a test case) may be understood as a
model.

Figure 1 shows our view on the use of models in software development. Ev-
erything within a rectangle represents a model, and an arrow stands for a re-
lationship between models. As a special case, relationships may be uni- or bi-
directional transformations. One concrete development is a path through this
graph. The path may go up and down the different layers and may turn left and
right as needed. Thus a path representing a development may be labelled as a
yoyo-left-right path.

In Fig. 1 we have shown three layers for domain, core, and executable models
and have indicated typical languages in which these models may be described.
However, a development is not restricted to exactly these three layers. For ex-
ample, there may be more than one core model layer with models being closer or
farer from the executable layer. We work with UML models which incorporate
OCL invariants as well as OCL pre- and postconditions for operations [GBRO7].
Respective class diagrams and OCL invariants may be formulated in a loose way
allowing for different implementations or may be very close to programming
languages and determine a particular implementation.

Dagstuhl Seminar Proceedings 08331
Perspectives Workshop: Model Engineering of Complex Systems (MECS)
http://drops.dagstuhl.de/opus/volltexte/2008 /1635

Property model

e.g., in DSL / Profiled UML

Domain model Validation /
Verification /...
Property model
Transformations &
Relationships

’

Core model Checking vertical compliance / ...
? Property model
Transformations &

Relationships
i e.g.. inJava /Ruby / XML / SQL

Property model

eg.. inUML/OCL

Validation / Verification /

Property model

Checking vertical compliance /

Executable model /
Physical model Checking Efficiency / ...
Property model

Fig. 1. Models in Software Development

2 Relationships in Software Development

Between the layers, certain relationships between the respective models have to
hold in the wertical direction. Typical in this context are the refinement rela-
tionship or uni- or bi-directional transformations. Within a single layer there
may be horizontal relationships. These relationships connect models to so-called
property models which have the task to validate, to verify, to test or to assert
particular properties of the present models. There may be relationships between
property models of different layers as well. For example, a test model includ-
ing test cases of a core model may be propagated to an executable model. But
there may be also property models, for example verification models, which are
present only on one particular layer. Property models may also be related to
other property models on the same layer.

Let us now come to the main message of this contribution which is very sim-
ple: Of course, models in software development are important, but relationships
between models possess at least the same degree of importance as the models
themselves. A more systematic study and classification is needed. The kinds of
relationships are manifold. They range from set-theoretic relationships and oper-
ations (like union or intersection) over theoretical relationships and notions (like
refinement or equivalence) to more practical issues (like validation, verification
or testing). Similar relationships have been studied in the context of information
systems schemas (see, e.g., [BM07]), graph transformations (see, e.g., [HCEL96])
or algebraic specification (see, e.g., [ST06]).

From our experience with UML and OCL models the following relationships
seem to be important and may hold between two given models MODI1 and
MOD2. This list is not meant to be exhaustive.

— MOD1 union MOD2

— MODL1 intersection MOD2

— MOD1 difference MOD2

— MODL1 projectionOf MOD2

— MOD1 conformsTo MOD2 (MOD1 inheritsFrom MOD2)
— MOD1 representedBy MOD2 (MOD1 instanceOf MOD2)
— MODL1 refines MOD2

— MODL1 satisfies MOD2

— MODL1 equivalentTo MOD2

— MODL1 includedIn MOD2

— MODL1 consistentWith MOD2

— MODI1 validatedBy MOD2

— MODL1 verifiedBy MOD2

— MODL1 testedBy MOD2

— MOD1 implementedBy MOD2

These relationships are partly operations like MOD1 union MOD2 which re-
sult in a new model and are partly pure relationships like MOD1 refines MOD2
which can be established only under special given conditions. The relationships
partly assume a common metamodel or on the other hand define exactly the
connection between a model and its metamodel. Regarding the classification
into vertical and horizontal relationships, we think that some relationships like
refinement or implementation mainly belong into the vertical dimension and
other relationships like testing or validation mainly into the horizontal dimen-
sion. But, for example, equivalence or inclusion may be useful both as a vertical
and horizontal concept.

When we faithfully follow the priciple Everything is a model, then we can come
to the conclusion that relationships are also models, or at least that relationships
can be described by models, which is an aspect that has been already discussed
in [BBG106].

References

[BBGT06] J. Bezivin, F. Biittner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lin-
dow. Model Transformations? Transformation Models! In O. Nierstrasz,
J. Whittle, D. Harel, and G. Reggio, editors, Proc. 9th Int. Conf. Model
Driven Engineering Languages and Systems (MoDFELS’2006). LNCS 4199,
Springer, Berlin, 2006.

[Béz05] J. Bézivin. On the unification power of models. Software and System Mod-
eling, 4(2):171-188, 2005.

[BM07] P.A. Bernstein and S. Melnik. Model management 2.0: manipulating richer
mappings. In C. Y. Chan, B. C. Ooi, and A. Zhou, editors, SIGMOD Con-
ference, pages 1-12. ACM, 2007.

[GBRO7] M. Gogolla, F. Biittner, and M. Richters. USE: A UML-Based Specification
Environment for Validating UML and OCL. Science of Computer Program-
ming, 69:27-34, 2007.

[HCEL96] R. Heckel, A. Corradini, H. Ehrig, and M. Léwe. Horizontal and vertical
structuring of typed graph transformation systems. Mathematical Structures
in Computer Science, 6(6):613-648, 1996.

[ST06] D. Sannella and A. Tarlecki. Horizontal composability revisited. In K.
Futatsugi, J.-P. Jouannaud, and J. Meseguer, editors, Fssays Dedicated to
Joseph A. Goguen, LNCS 4060, pages 296-316. Springer, 2006.

