
Minimax Trees in Linear Time
with Applications

Pawe l Gawrychowski1 and Travis Gagie2,?

1 Institute of Computer Science
University of Wroclaw, Poland

gawry1@gmail.com

2 Research Group in Genome Informatics
Bielefeld University, Germany
travis.gagie@gmail.com

Abstract. A minimax tree is similar to a Huffman tree except that,
instead of minimizing the weighted average of the leaves’ depths, it min-
imizes the maximum of any leaf’s weight plus its depth. Golumbic (1976)
introduced minimax trees and gave a Huffman-like, O(n log n)-time algo-
rithm for building them. Drmota and Szpankowski (2002) gave another
O(n log n)-time algorithm, which takes linear time when the weights
are already sorted by their fractional parts. In this paper we give the
first linear-time algorithm for building minimax trees for unsorted real
weights.

1 Introduction

In a minimax tree for a multiset W = {w1, . . . , wn} of weights, each leaf has a
weight wi, each internal node has weight equal to the maximum of its children’s
weights plus 1, and the weight of the root is as small as possible. In other words,
if `i is the depth of the leaf with weight wi, then maxi{wi + `i} is minimized.
Golumbic [21] showed that if we modify Huffman’s algorithm [24] to repeat-
edly replace the two nodes with smallest weights by a node whose weight is
equal to their maximum plus 1, instead of their sum, then it builds a minimax
tree instead of a Huffman tree. Like Huffman’s algorithm, Golumbic’s algorithm
takes O(n log n) time and can build trees of any degree. Golumbic, Parker [34]
and Hoover, Klawe and Pippenger [22] showed how to use Golumbic’s algo-
rithm to restrict circuits’ fan-in and fan-out without greatly increasing their
sizes or depths. While studying prefix codes with minimum maximum pointwise
redundancy, Drmota and Szpankowski [10, 11] independently introduced mini-
max trees as code-trees for generalized Shannon codes [36] and gave another
O(n log n)-time algorithm for building them, which takes linear time when the

? This paper was written while the second author was at the University of Eastern
Piedmont, Italy, supported by Italy-Israel FIRB Project “Pattern Discovery Algo-
rithms in Discrete Structures, with Applications to Bioinformatics”.

Dagstuhl Seminar Proceedings 09281
Search Methodologies
http://drops.dagstuhl.de/opus/volltexte/2009/2242

2 P. Gawrychowski and T. Gagie

weights are already sorted by their fractional parts. To see why the two prob-
lems are related, consider that, if P = p1, . . . , pn is a probability distribution and
each wi = log2 pi, then a minimax tree for W is the code-tree for a prefix code
with minimum maximum pointwise redundancy with respect to P . By analyzing
their algorithm, Drmota and Szpankowski proved bounds on the redundancy of
arithmetic coding, which Baer [3] recently improved by analyzing Golumbic’s
algorithm. In this paper we show how Drmota and Szpankowski’s algorithm can
be made to run in linear time on a word RAM when each index and weight
fits in O(1) words. Thus, we obtain the first linear-time algorithm for building
minimax trees for unsorted real weights.

Between Golumbic’s article and Drmota and Szpankowski’s, there seems to
have been little research on building minimax trees. Several important papers
were published, however, on the related problem of building alphabetic minimax
trees, in which the leaves’ weights must be in a given order from left to right.
Hu, Kleitman and Tamaki [23] gave the first O(n log n)-time algorithm for build-
ing alphabetic minimax trees for real weights. Kirkpatrick and Klawe [27] and
Coppersmith, Klawe and Pippenger [6] gave an algorithm (or, more precisely,
two algorithms that are equivalent when the trees are to be binary) that builds
alphabetic minimax trees for integer weights in linear time, and showed how
to use it to restrict circuits’ fan-in and fan-out without greatly increasing their
sizes or depths and without changing the numbers of edge crossings (and, thus,
preserving planarity). Kirkpatrick and Klawe also showed how to combine their
algorithm with binary search in order to build alphabet minimax trees for real
weights in O(n log n) time. We note that, if their algorithm for integer weights
is viewed as an alphabetic analogue of the Kraft Inequality [31] — as it was by
Yeung [38] and Nakatsu [33], who independently rediscovered it — then their al-
gorithm for real weights is an alphabetic analogue of Drmota and Szpankowski’s.
Kirkpatrick and Przytycka [28] gave an O(log n)-time, O(n/ log n)-processor al-
gorithm for integer weights in the CREW PRAM model. Finally, Evans and
Kirkpatrick [12] showed how a generalization of Kirkpatrick and Klawe’s algo-
rithm can be used to restructure binary search trees.

We became interested in minimax trees while studying adaptive prefix cod-
ing. In a previous paper [16] (see also [17, 25]) we noted that minimax trees
built with Golumbic’s algorithm have the same Sibling Property [13, 18] as Huff-
man trees, and turned the Faller-Gallager-Knuth algorithm [30] for adaptive
Huffman coding into an algorithm for adaptive Shannon coding. Intriguingly,
although static Huffman coding is optimal and static Shannon coding is not,
adaptive Shannon coding has a better worst-case bound than adaptive Huffman
coding does. In another previous paper [15] we used a data structure due to Kirk-
patrick and Przytycka and a technique for generalized selection due to Klawe
and Mumey [29], to make Kirkpatrick and Klawe’s algorithm for real weights
run in O

(
nmin(log n, d log log n)

)
time, where d is the number of distinct values

dwie. In that paper we conjectured that a similar modification could make Dr-
mota and Szpankowski’s algorithm run in linear time on unsorted real weights,
and in this paper we prove that conjecture.

Minimax Trees in Linear Time 3

In Section 2 we consider the preliminary problem of building minimax trees
for unsorted integer weights. Notice that, as such weights have no fractional
parts, Drmota and Szpankowski’s algorithm takes linear time for this problem.
However, there are two difficulties when using their algorithm: first, because they
considered the weights to be logarithms, they did not address some questions of
precision that arise when the weights are large; second, because they were mostly
interested in analysis, they were satisfied with computing the depths of minimax
trees’ leaves in linear time, rather than building the trees themselves. We give
two new linear-time algorithms for unsorted integer weights that can handle
large weights — i.e., polynomial in n, so that each fits in a constant number of
machine words — and that actually build the minimax trees. In Section 3 we
present our main result, a linear-time algorithm for building minimax trees for
unsorted real weights. Our algorithm is based on Drmota and Szpankowski’s but,
whereas theirs uses sorting and binary search, ours uses generalized selection,
as well as a new data structure to test the Kraft Inequality. In Section 4 we
discuss how our algorithms from Sections 2 and 3 can be applied to problems in,
e.g., data compression, group testing and circuit design. In Section 5 we briefly
discuss two possible directions for future work. Our results generalize to higher
degrees and larger code alphabets but, for the sake of simplicity, in the current
version of this paper we consider only binary trees and alphabets; by log we
always mean log2.

2 Minimax Trees for Integer Weights

In this section we give two O(n)-time algorithms for building a minimax tree
for a multiset of integer weights, both based on the following lemma (which we
note applies to any weights, not only integers) and corollary. We write M(W)
to denote the weight of the root of a minimax tree for W .

Lemma 1. If W = {w1, . . . , wn} is a multiset of weights and

W ′ =
{

max
(
w1,maxi{wi} − n+ 1

)
, . . . ,max

(
wn,maxi{wi} − n+ 1

)}
,

then M(W ′) = M(W). Moreover, any minimax tree for W ′ becomes a minimax
tree for W when we replace the leaves’ weights equal to maxi{wi}−n+ 1 by the
weights in W less than or equal to maxi{wi} − n+ 1, in any order.

Proof. Consider a minimax tree T for W . Without loss of generality, we can
assume T is strictly binary — i.e., that every internal node has exactly two
children — and, therefore, that it has height at most n − 1. If n = 1, then
W = w1 = maxi{wi}− n+ 1. Otherwise, all the leaves have depth at least 1, so
M(W) ≥ maxi{wi} + 1. Consider any leaf (if one exists) with weight less than
maxi{wi}−n+1 and depth `. Since maxi{wi}−n+1+` ≤ maxi{wi} < M(W),
increasing that leaf’s weight to maxi{wi} − n + 1 and updating its ancestors’
weights, does not change the weight M(W) of the root. It follows that M(W ′) =
M(W).

4 P. Gawrychowski and T. Gagie

Now consider a minimax tree T ′ for W ′. If we replace the leaves’ weights equal
to maxi{wi}−n+ 1 by the weights in W less than or equal to maxi{wi}−n+ 1
and update all the nodes’ weights, then the weight M(W ′) of the root cannot
increase nor, by definition, decrease to less than M(W). Since M(W ′) = M(W),
it follows that the re-weighted tree is a minimax tree for W . ut

Corollary 1. When all the weights in W are integers, we can sort W ′ in O(n)
time.

Proof. When all the weights in W at least maxi{wi}−n+ 1 are integers, all the
weights in W ′ are integers in the interval

[
maxi{wi} − n+ 1,maxi{wi}

]
. Since

this interval has length n − 1, we can sort W ′ in O(n) time using either direct
addressing, which takes O(n) extra space, or radix sort, which takes no extra
space [14]. ut

For our first algorithm, we build and sort W ′; build a minimax tree for W ′

using an implementation of Golumbic’s algorithm that takes O(n) time when the
weights are already sorted; and replace the leaves’ weights equal to maxi{wi}−
n + 1 by the weights in W less than or equal to maxi{wi} − n + 1. We note
that Van Leeuwen [37] showed how to implement Huffman’s algorithm to take
O(n) time when the weights are already sorted. We could implement Golumbic’s
algorithm analogously, but we think the implementation below is simpler.

Lemma 2. Golumbic’s algorithm can be implemented to take O(n) time when
the weights are already sorted.

Proof. We start with the weights stored in a linked list in nondecreasing order,
and set a pointer to the head of the list. We then repeat the following procedure
until there is only one node left in the list, which is the root of a minimax
tree for the given weights: we move the pointer along the list to the last weight
less than or equal to the maximum of the first two weights plus 1; remove the
first two nodes from the list; make those nodes the children of a new node with
weight equal to the maximum of their weights plus one; and insert the new node
immediately to the right of the pointer. Notice we remove two nodes for each
one we insert, so the total number of nodes is 2n−1. Therefore, since the pointer
passes over each node once, this implementation takes O(n) time. ut

Building and sorting W ′ takes O(n) time, by Corollary 1; building a minimax
tree for W ′ takes O(n) time, by Lemma 2; replacing the leaves’ weights equal to
maxi{wi} − n + 1 by the weights in W less than or equal to maxi{wi} − n + 1
takes O(n) time, because it can be done in any order. By Lemma 1, the resulting
tree is a minimax tree for W .

Theorem 1. Given a multiset W of n integer weights, we can build a minimax
tree for W in O(n) time.

Our second algorithm differs in its second step: instead of using Golumbic’s
algorithm to build a minimax tree for W ′, we use Kirkpatrick and Klawe’s O(n)-
time algorithm for integer weights to build an alphabetic minimax tree for the

Minimax Trees in Linear Time 5

sequence V consisting of the weights in W ′ in non-increasing order. The algo-
rithm’s correctness follows from the Kraft Inequality.

Theorem 2 (Kraft, 1949). If there exists a binary tree whose leaves have
depths `1, . . . , `n, then

∑
i 1/2`i ≤ 1. Conversely, if

∑
i 1/2`i ≤ 1 and `1 ≤ · · · ≤

`n, then there exists an ordered binary tree whose leaves, from left to right, have
depths `1, . . . , `n.

By the latter part of Theorem 2 and a standard exchange argument — i.e., if a
minimax tree contains two leaves such that the deeper one has a higher weight
than the shallower one, then we can swap their weights — there exists a minimax
tree for W ′ in which the leaves’ weights are non-increasing from left to right.
Therefore, by definition, any alphabetic minimax tree for V is a minimax tree
for W ′.

3 Minimax Trees for Real Weights

In this section we give the first O(n)-time algorithm for building minimax trees
for unsorted real weights. As we noted in the introduction, our algorithm is based
on Drmota and Szpankowski’s algorithm but avoids sorting, which is the step
that determines their algorithm’s O(n log n) complexity. In addition to yielding
an optimal algorithm for an interesting problem with applications in, e.g., data
compression, group testing and circuit design — described in Section 4 — we
believe the techniques we use in this section may be of independent interest.

To build a prefix code with minimum maximum pointwise redundancy with
respect to a given probability distribution P = p1, . . . , pn, Drmota and Sz-
pankowski start with a Shannon code for P , in which the codeword for the
ith character has length dlog(1/pi)e, for each i; they sort the logarithms by their
fractional parts, i.e., log(1/p1) − blog(1/p1)c, . . . , log(1/pn) − blog(1/pn)c; and
they find the largest value x such that dlog(1/p1)−xe, . . . , dlog(1/pn)−xe obey
the Kraft Inequality. A binary tree with leaves at these depths is the code-tree
for a prefix code with minimum maximum pointwise redundancy with respect
to P , and a minimax tree for {log p1, . . . , log pn}.

We can use Drmota and Szpankowski’s algorithm to build a minimax tree
given any multiset of weights because, for any value c, if W = {w1, . . . , wn} and
W ′ = {w1 + c, . . . , wn + c} then, by definition, M(W ′) = M(W) + c and any
minimax tree forW ′ becomes a minimax tree forW when we subtract c from each
leaf’s weight. In particular, if c = − log (

∑
i 2wi) then

∑
i 2wi+c = 2c

∑
i 2wi =

1; therefore, W ′ = {log p1, . . . , log pn} for some probability distribution P =
p1, . . . , pn and we can use Drmota and Szpankowski’s algorithm directly to build
minimax trees for W ′ and, thus, for W . Without loss of generality, we henceforth
assume the given multiset W of weights is equal to {log p1, . . . , log pn} for some
probability distribution P (so, in particular, each wi ≤ 0). We can restate the
theorem Drmota and Szpankowski proved to establish the correctness of their
algorithm — and which also establishes the correctness of our own — in terms
of minimax trees instead of prefix codes, as follows:

6 P. Gawrychowski and T. Gagie

Theorem 3 (Drmota and Szpankowski, 2002). If W = {w1, . . . , wn} is a
multiset of weights, X = {x1, . . . , xn} = {|w1| − b|w1|c, . . . , |wn| − b|wn|c} and
xi is the largest element in X ∪ {0} such that∑

xj≤xi

1/2b|wj |c +
∑

xj>xi

1/2d|wj |e ≤ 1 ,

then any minimax tree for {−b|wj |c : xj ≤ xi} ∪ {−d|wj |e : xj > xi} becomes
a minimax tree for W when we replace each leaf ’s weight −b|wj |c or −d|wj |e by
wj.

If x1 ≤ · · · ≤ xn and xi > 0 then, by Theorem 3, i is the largest index such
that {b|wj |c : xj ≤ xi} ∪ {d|wj |e : xj > xi} satisfies the Kraft Inequality. To
build a minimax tree for W with Drmota and Szpankowski’s algorithm, we com-
pute and sort X; use binary search to find i, in each round testing whether the
Kraft Inequality holds; build a minimax tree for {−b|w1|c, . . . ,−b|wi|c,−d|wi+1|e,
. . . ,−d|wn|e}; and replace each leaf’s weight −b|wj |c or −d|wj |e by wj . Our ver-
sion differs in three ways: we use generalized selection instead of sorting and
binary search; we use a new data structure to test the Kraft Inequality; and
we use either of our algorithms from Section 2 to build the minimax tree for
{−b|w1|c, . . . ,−b|wi|c,−d|wi+1|e, . . . ,−d|wn|e}. In the remainder of this section
we first show how to use generalized selection to find i in O(n) time, excluding
the time needed to test the Kraft Inequality; we then show how to perform all
the necessary tests in a total of O(n) time using our new data structure. Since
each of our algorithms from Section 2 takes O(n) time, it follows that we can
build a minimax tree for W in O(n) time.

To find xi in O(n) time with general selection, we start with the multiset
X1 = X ∪ {0} and repeat the following procedure until we reach the empty set:
in the rth round, we use the linear-time selection algorithm due to Blum et al. [4]
to find the current multiset Xr’s median xm, then test whether∑

xj≤xm

1/2b|wj |c +
∑

xj>xm

1/2d|wj |e ≤ 1 ;

if so, we remove those elements of Xr that are less than or equal to xm and
recurse on the resulting multiset; if not, we remove those elements of Xr that
are greater than or equal to xm and recurse. The element xi is the largest median
we consider for which the test is positive. Since the size of the multisets decreases
by a factor of at least 2 in each round, we use O(log n) rounds and we find all
the medians in a total of O(n) time.

By the same arguments we used to prove Lemma 1, we can assume, without
loss of generality, that d|wj |e ≤ n − 1 for each j. To test the Kraft Inequality,
we use a data structure consisting of two n-bit binary fractions, S1 and S2,
each broken into (log n)-bit blocks and initially set to 0. For 1 ≤ k ≤ n − 1,
adding 1/2k to either fraction takes O(1) amortized time, for the same reason
that incrementing a binary counter takes O(1) amortized time (see, e.g., [7,
Section 17.3]). Nondestructively testing whether S1 + S2 ≤ 1 takes O(n/ log n)

Minimax Trees in Linear Time 7

time, because adding each corresponding pair of blocks takes O(1) time and, by
induction, the number carried from each pair to the next is at most 1; resetting
either fraction to 0 takes O(1) time for each block, i.e., O(n/ log n) time in total.

Before starting to search for xi, we set S1 =
∑

j 1/2d|wj |e in O(n) time.
Throughout our generalized selection, we maintain the invariant that, at the
beginning of the rth round,

S1 =
∑

j

1/2d|wj |e +
∑

0<xj<min(Xr)

1/2d|wj |e

and S2 = 0. In the rth round, we set

S2 =
∑

min(Xr)≤xj≤xm

1/2d|wj |e

in O(|Xr|) time. Since

S1 + S2 =
∑

j

1/2d|wj |e +
∑

0<xj<min(Xr)

1/2d|wj |e +
∑

min(Xr)≤xj≤xm

1/2d|wj |e

=
∑

xj≤xm

1/2b|wj |c +
∑

xj>xm

1/2d|wj |e ,

we can test the Kraft Inequality in O(n/ log n) time by checking whether S1 +
S2 ≤ 1. If the test is positive, then we add S2 to S1 in O(n/ log n) time; if the test
is negative, then we do not change S1. In either case, straightforward calculation
shows that, afterwards,

S1 =
∑

j

1/2d|wj |e +
∑

0<xj<min(Xr+1)

1/2d|wj |e

so the first part of our invariant is maintained. Finally, we reset S2 = 0 in
O(n/ log n) time, so the second part of our invariant is maintained. Since |Xr| =
O(n/2r), the rth round takes a total ofO(n/2r + n/ log n) time. Since

∑
r≥1 n/2

r =
n and we useO(log n) rounds, it follows that our whole generalized selection takes
O(n) time. This completes the proof of our main result:

Theorem 4. Given a multiset W of n real weights, we can build a minimax tree
for W in O(n) time.

4 Applications

Our results from Sections 2 and 3 allow us to solve the following problems in
linear time:

I. build a prefix code with minimum maximum pointwise redundancy with
respect to a given distribution;

8 P. Gawrychowski and T. Gagie

II. given a good estimate of the distribution over an alphabet, build a good
prefix code;

III. given a good estimate of the distribution over a set, design a good group
test to find the unique target;

IV. build a minimax tree for a given multiset of real weights;
V. build a Shannon code for a given distribution;

VI. build a tree whose leaves have at most given depths;
VII. restrict a given circuit to have bounded fan-in or fan-out;

VIII. build a minimax tree for a given multiset of integer weights.

The authors cited in the introduction have already shown, however, that Prob-
lem I takes O(n) more time than IV [10, 11, 3], V than VI [10, 11, 16], and VI
and VII than VIII [21, 34, 22]. Therefore, in the current version of this paper,
we discuss only Problems II, III, IV and VIII. We showed in Sections 2 and 3,
respectively, that Problem VIII and IV take O(n) time. In the remainder of this
section we define what we mean by “good” in Problems II and III, and show they
take O(n) more time than IV. (Problems II and III are, in fact, equivalent to
each other and to I, and analogous to a problem we considered in our paper [15]
on building alphabetic minimax trees.) It follows that all the problems listed
above take O(n) time.

Suppose we want to build a good prefix code with which to compress a
file, but are given only a sample of its characters. Let P = p1, . . . , pn be the
normalized distribution of characters in the file, let Q = q1, . . . , qn be the nor-
malized distribution of characters in the sample and suppose our codewords are
C = c1, . . . , cn. An ideal code for Q assigns the ith character a codeword of
length log(1/qi) (which may not be an integer), and the average codeword’s
length using such a code is H(P) + D(P‖Q), where H(P) =

∑
i pi log(1/pi) is

the entropy of P and D(P‖Q) =
∑

i pi log(pi/qi) is the relative entropy between
P and Q. The entropy measures our expected surprise at a character drawn
uniformly at random from the file, given P ; the relative entropy (also known as
the informational divergence or Kullback-Leibler pseudo-distance) measures the
increase in our expected surprise when we estimate P by Q, and is often used
to quantify how well Q approximates P (see, e.g., [8]).

Consider the best worst-case bound we can achieve, given only Q, on how
much the average codeword’s length exceedsH(P)+D(P‖Q). A result by Katona
and Nemetz [26] implies we do not generally achieve a constant bound on the
difference when C is a Huffman code for Q. (Given P , of course, the best bound
we could achieve on how much the average codeword’s length exceeds H(P),
would be the redundancy of a Huffman code for P .) For example, if q1, . . . , qn
are proportional to Fn, . . . , F1, where Fi denotes the ith Fibonacci number (i.e.,
F1 = F2 = 1 and Fi = Fi−1 + Fi−2 for i ≥ 3), then the codewords’ lengths are
1, . . . , n− 2, n− 1, n− 1 in any Huffman code for Q. If pn is sufficiently close to
1, then

H(P) +D(P‖Q) ≈ log(1/qn) = log
n∑

i=1

Fi = n log φ+O(1)

Minimax Trees in Linear Time 9

but the average codeword’s length
∑

i pi|ci| ≈ n−1, so for large n the difference
is about (1/ log φ− 1)n ≈ 0.44n, where φ ≈ 1.62 is the golden ratio.

As long as qi > 0 whenever pi > 0, the average codeword’s length∑
i

pi|ci| =
∑

i

pi

(
log(1/pi) + log(pi/qi) + log qi + |ci|

)
= H(P) +D(P‖Q) +

∑
i

pi(log qi + |ci|)

(if qi = 0 but pi > 0 for some i, then D(P‖Q) is infinite). Notice each |ci| is
the length of a branch in the code-tree for C. Therefore, the best bound we can
achieve is

min
C

max
P

{∑
i

pi(log qi + |ci|)

}
= min

C
max

i
{log qi + |ci|}

= M(log q1, . . . , log qn) ,

which is less than 1 by inspection of Drmota and Szpankowski’s algorithm (see
also [8, Theorem 5.4.3] and [11, 35, 3]). Moreover, we achieve this bound when
the code-tree for C has the same shape as a minimax tree for {log q1, . . . , log qn}.
In other words, Problem II takes O(n) more time than IV.

Now suppose we want to design a good group test (see, e.g., [1, 2]) to find the
unique target in a set, given only an estimate Q — presumably gained from past
experience or experimentation — of the probability distribution P according to
which the target is chosen. A group test allows us to choose, repeatedly, a subset
of the elements and check whether the target is among them. We can represent
a group test as a decision tree in which each leaf is labelled with an element
and each internal node is labelled with the concatenation of its children’s labels.
Because such a decision tree can be viewed as the code-tree for a prefix code,
and vice versa, the expected number of checks we make exceeds H(P)+D(P‖Q)
by as little as possible when the decision tree for our group test has the same
shape as a minimax tree for {log q1, . . . , log qn}. In other words, Problem III is
equivalent to II and, therefore, also takes O(n) more time than IV.

5 Future Work

We are currently studying whether either Drmota and Szpankowski’s solution to
Problem I or our solution to II can give us an intuitive explanation of why adap-
tive Shannon coding has a better worst-case bound than does adaptive Huffman
coding. On the one hand, worst-case bounds (especially for online algorithms;
see, e.g., [5]) are often proven by considering a game between the algorithm and
an omniscient adversary, and minimizing the maximum pointwise redundancy
at each step seems somehow related (more than just by name) to the minimax
strategy for the algorithm. On the other hand, adaptive prefix coding can be

10 P. Gawrychowski and T. Gagie

viewed as a procedure in which we repeatedly build a prefix code based on a
sample — i.e., the characters already encoded.

We are still studying alphabetic minimax trees and have started studying
minimax trees with unequal edge costs. We believe this latter variant will prove
particularly interesting, for three reasons: first, it is not known how to build
efficiently a Huffman tree with unequal edge costs (see, e.g., [19, 20]); second, the
earliest efficient approximation algorithm (of which we are aware) for building
a Huffman tree with unequal edge costs, was Krause’s generalization [32] of
Shannon coding; third, there is an analogue of the Kraft Inequality for binary
trees with unequal edge costs [9].

Acknowledgments

Many thanks to Michael Baer, Giovanni Manzini and the referees for their advice.

References

1. R. Ahlswede and I. Wegener. Search Problems. Wiley, 1987.
2. M. Aigner. Combinatorial Search. Wiley, 1988.
3. M. B. Baer. Tight bounds on minimum maximum pointwise redundancy. In

Proceedings of the International Symposium on Information Theory, pages 1944–
1948, 2008.

4. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds
for selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.

5. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

6. D. Coppersmith, M. M. Klawe, and N. Pippenger. Alphabetic minimax trees of
degree at most t. SIAM Journal on Computing, 15(1):189–192, 1986.

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press and McGraw-Hill, 2nd edition, 2001.

8. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 2nd
edition, 2006.

9. R. De Prisco and G. Persiano. Characteristic inequalities for binary trees. Infor-
mation Processing Letters, 53(4):201–207, 1995.

10. M. Drmota and W. Szpankowski. Generalized Shannon code minimizes the max-
imal redundancy. In Proceedings of the 5th Latin American Symposium on Theo-
retical Informatics, pages 306–318, 2002.

11. M. Drmota and W. Szpankowski. Precise minimax redundancy and regret. IEEE
Transactions on Information Theory, 50(11):2686–2707, 2004.

12. W. S. Evans and D. G. Kirkpatrick. Restructuring ordered binary trees. Journal
of Algorithms, 50(2):168–193, 2004.

13. N. Faller. An adaptive system for data compression. In Record of the 7th Asilomar
Conference on Circuits, Systems and Computers, pages 593–597, 1973.

14. G. Franceschini, S. Muthukrishnan, and M. Pătraşcu. Radix sorting with no extra
space. In Proceedings of the 15th European Symposium on Algorithms, pages 194–
205, 2007.

15. T. Gagie. A new algorithm for building alphabetic minimax trees. Fundamenta
Informaticae. To appear.

Minimax Trees in Linear Time 11

16. T. Gagie. Dynamic Shannon coding. In Proceedings of the 12th European Sympo-
sium on Algorithms, pages 359–370, 2004.

17. T. Gagie. Dynamic Shannon coding. Information Processing Letters, 102(2–3):113–
117, 2007.

18. R. G. Gallager. Variations on a theme by Huffman. IEEE Transactions on Infor-
mation Theory, 24(6):668–674, 1978.

19. M. J. Golin, C. Kenyon, and N. E. Young. Huffman coding with unequal letter
costs. In Proceedings of the 34th Symposium on Theory of Computing, pages 785–
791, 2002.

20. M. J. Golin and J. Li. More efficient algorithms and analyses for unequal letter cost
prefix-free coding. IEEE Transactions on Information Theory, 52(8):3412–3424,
2008.

21. M. C. Golumbic. Combinatorial merging. IEEE Transactions on Computers,
25(11):1164–1167, 1976.

22. H. J. Hoover, M. M. Klawe, and N. Pippenger. Bounding fan-out in logical net-
works. Journal of the ACM, 31(1):13–18, 1984.

23. T. C. Hu, D. J. Kleitman, and J. Tamaki. Binary trees optimum under various
criteria. SIAM Journal on Applied Mathematics, 37(2):246–256, 1979.

24. D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40:1089–1101, 1952.

25. M. Karpinski and Y. Nekrich. A fast algorithm for adaptive prefix coding. Algo-
rithmica, 55(1):29–41, 2009.

26. G. O. H. Katona and T. O. H. Nemetz. Huffman codes and self-information. IEEE
Transactions on Information Theory, 22(3):337–340, 1976.

27. D. G. Kirkpatrick and M. M. Klawe. Alphabetic minimax trees. SIAM Journal on
Computing, 14(3):514–526, 1985.

28. D. G. Kirkpatrick and T. M. Przytycka. An optimal parallel minimax tree algo-
rithm. In Proceedings of the 2nd Symposium on Parallel and Distributed Processing,
pages 293–300, 1990.

29. M. M. Klawe and B. Mumey. Upper and lower bounds on constructing alphabetic
binary trees. SIAM Journal on Discrete Mathematics, 8(4):638–651, 1995.

30. D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6(2):163–180,
1985.

31. L. G. Kraft. A device for quantizing, grouping, and coding amplitude-modulated
pulses. MSc thesis, Massachusetts Institute of Technology, 1949.

32. R. M. Krause. Channels which transmit letters of unequal duration. Information
and Control, 5(1):13–24, 1962.

33. N. Nakatsu. Bounds on the redundancy of binary alphabetical codes. IEEE Trans-
actions on Information Theory, 37(4):1225–1229, 1991.

34. D. S. Parker, Jr. Combinatorial merging and Huffman’s algorithm. IEEE Trans-
actions on Computers, 28(5):365–367, 1979.

35. F. Rezaei and C. D. Charalambous. Robust coding for uncertain sources: a min-
imax approach. In Proceedings of the International Symposium on Information
Theory, pages 1539–1543, 2005.

36. C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–645, 1948.

37. J. van Leeuwen. On the construction of Huffman trees. In Proceedings of the
3rd International Colloquium on Automata, Languages and Programming, pages
382–410, 1976.

38. R. W. Yeung. Alphabetic codes revisited. IEEE Transactions on Information
Theory, 37(3):564–572, 1991.

