
Pattern matching with don’t cares and few errors

Raphaël Clifford

University of Bristol, Dept. of Computer Science

Bristol, BS8 1UB, UK

clifford@cs.bris.ac.uk

Klim Efremenko

Bar-Ilan University, Dept. of Computer Science

52900 Ramat-Gan and

Weizmann Institute

Rehovot 76100, Israel

klimefrem@gmail.com

Ely Porat∗

Bar-Ilan University, Dept. of Computer Science

52900 Ramat-Gan, Israel

porately@cs.biu.ac.il

Amir Rothschild

Bar-Ilan University, Dept. of Computer Science

52900 Ramat-Gan, Israel

amirrot@gmail.com

Abstract

We present solutions for the k-mismatch pattern matching problem

with don’t cares. Given a text t of length n and a pattern p of length m

with don’t care symbols and a bound k, our algorithms find all the places

that the pattern matches the text with at most k mismatches. We first

give an Θ (n(k + log m log k) log n) time randomised algorithm which finds

the correct answer with high probability. We then present a new deter-

ministic Θ
`
nk2 log2 m

´
time solution that uses tools originally developed

for group testing. Taking our derandomisation approach further we de-

velop an approach based on k-selectors that runs in Θ (nk polylogm) time.

Further, in each case the location of the mismatches at each alignment is

also given at no extra cost.

∗Research supported in part by the Binational Science Foundation (BSF)

1

Dagstuhl Seminar Proceedings 09281
Search Methodologies
http://drops.dagstuhl.de/opus/volltexte/2009/2244

1 Introduction

In this paper we consider string matching under the widely used Hamming
distance and in particular a bounded version of this problem which we call k-
mismatch with don’t cares. Given a text t of length n and a pattern p of length m
both possibly containing single character promiscuously matching or don’t care
symbols and a bound k, the problem is to find all the places that the pattern
matches the text with at most k mismatches. If the distance is greater than
k, the algorithm need only report that fact and not give the actual Hamming
distance.

The problem of finding all the occurrences of a given pattern of length m

in a text t of length n is a classic problem in computer science and can be
solved in Θ (n) time [BM77, KMP77]. The problem of determining the time
complexity of exact matching with optional single character don’t care symbols
has also been well studied. Fischer and Paterson [FP74] presented the first so-
lution based on fast Fourier transforms (FFT) with an Θ (n logm log |Σ|) time
algorithm in 19741, where Σ is the alphabet that the symbols are chosen from.
Subsequently, the major challenge has been to remove this dependency on the
alphabet size. Indyk [Ind98] gave a randomised Θ (n log n) time algorithm which
was followed by a simpler and slightly faster Θ (n logm) time randomised solu-
tion by Kalai [Kal02]. In 2002, the first deterministic Θ (n logm) time solution
was given [CH02] which was then further simplified in [CC07].

The key observation given by [CC07] but implicit in previous work is that
for numeric strings, if there are no don’t care symbols then for each alignment
of the pattern with respect to the text 1 ≤ i ≤ n−m+ 1 we can calculate

m∑
j=1

(pj − ti+j−1)2 =
m∑
j=1

(p2
j − 2pjti+j−1 + t2i+j−1) (1)

in Θ (n logm) time using FFTs. Wherever there is an exact match this sum will
be exactly 0. If p and t are not numeric, then an arbitrary one-to-one mapping
can be chosen from the alphabet to the set of positive integers N. In the case
of matching with don’t cares, each don’t care symbol in p or t is replaced by a
0 and the sum is modified to be

m∑
j=1

p′jt
′
i+j−1(pj − ti+j−1)2

where p′j = 0 (t′i = 0) if pj (ti) is a don’t care symbol and 1 otherwise. This
sum equals 0 if and only if there is an exact match with don’t cares and can

1Throughout this paper we assume the RAM model with multiplication when giving the

time complexity of the FFT. This is in order to be consistent with the large body of previous

work on pattern matching with FFTs.

2

also be computed in Θ (n logm) time using FFTs.

1.1 Related work and previous results

Much progress has been made in finding fast algorithms for the k-mismatch
problem without don’t cares over the last 20 years. Θ

(
n
√
m logm

)
time so-

lutions for the k-mismatch problem based on repeated applications of the
FFT were given independently by both Abrahamson and Kosaraju in 1987
[Abr87, Kos87]. Their algorithms are in fact independent of the bound k and
report the Hamming distance at every position irrespective of its value. In 1985
Landau and Vishkin gave a beautiful Θ (nk) algorithm that is not FFT based
which uses constant time lowest common ancestor (LCA) operations on the
suffix tree of p and t [LV86]. This was subsequently improved in [ALP04] to
Θ
(
n
√
k log k

)
time by a method based on filtering and FFTs again. Approxi-

mations within a multiplicative factor of (1 + ε) to the Hamming distance can
also be found in O(n/ε2 logcm) time, where the exact value of c depends on
whether the algorithm is deterministic or randomised [Kar93] .

For a more limited version of the k-mismatch problem with don’t cares,
where don’t cares are only permitted in either the pattern or text, but not both,
a filtering algorithm has been developed which runs in O(nm1/3k1/3 log2/3m)
time [CP07]. A variant of the edit-distance problem (see e.g. [LV85]) called
the k-difference problem with don’t cares was considered in [Aku95]. Progress
has also been made recently on the related problem of indexing with errors and
don’t cares [CGL04, CLS+06].

To the authors’ knowledge, no previous efficient algorithms have been
given to date for the k-mismatch problem with don’t cares. However, the
Θ
(
n
√
m logm

)
divide and conquer algorithm of Kosaraju and Abrahamson

can be easily extended to handle don’t cares in both the pattern and text with
little extra work. This is because the algorithm counts matches and not mis-
matches. First we count the number of non don’t care matches at each position
i in Θ

(
n
√
m logm

)
time. Then we need only subtract this number from the

maximum possible number of non don’t care matches in order to count the mis-
matches. To do this we create a new pattern string p′ so that p′j = 1 if pj is not
a don’t care and pj = 0 otherwise. A new text string t′ is also made in the same
way. The cross-correlation of p′ and t′ now gives us the maximum number of
non don’t care matches possible at each position. This single cross-correlation
calculation takes Θ (n logm) time. Therefore the overall running time remains
Θ
(
n
√
m logm

)
.

3

2 Our results

We present fast randomised solutions for the k-mismatch problem with don’t
cares. This problem does not appear to be amenable to any of the recent meth-
ods for solving the corresponding problem without don’t cares. For example,
the LCA based technique of Landau and Vishkin [LV86] requires the use of
suffix trees to find longest common prefix matches between strings in constant
time. It is not known how to find longest common prefixes in even sublinear
time when arbitrary numbers of don’t cares are allowed. Similarly, it does not
appear to be possible to apply filtering methods such as those in [ALP04] when
don’t cares are permitted in both the pattern and the text.

We give two new algorithms that overcome these obstacles and pro-
vide substantial improvements to the known time complexities of the prob-
lem. We present a randomised algorithm in Section 4 that runs in
Θ (n(k + logm log k) log n) time and gives the correct answer with high proba-
bility. The basic technique is to repeatedly sample subpatterns of p and find
the positions of single mismatches in the text. A subpattern is simply a copy
of the pattern with some positions set to the don’t care character. In order to
count the total number of mismatches overall we are also required at each stage
to find the position and values of all the mismatches found so far.

We then give a deterministic algorithm in Section 5 that runs in
Θ
(
nk2 log2m

)
time. This algorithm uses a recent group testing result in a

novel way, not as a stand alone tool, but rather as a derandomisation scheme.
The testing scheme allows us to effectively choose subpatterns deterministically
which in turn give us the required single mismatches. Combining the results of
these tests enables us to find the locations of the mismatches and also to check
that none has been missed out. Finally we discuss the use of k-selectors instead
of group testing and show that a deterministic Θ (nk polylogm) time solution
to the k-mismatch problem with don’t cares can be found.

3 Preliminaries

Let Σ be a set of characters which we term the alphabet, and let φ be the don’t
care symbol. Let t = t1t2 . . . tn ∈ Σn be the text and p = p1p2 . . . pm ∈ Σm

the pattern. Both the pattern and text may also include φ in their alphabet
depending on the problem definition. The terms symbol and character are used
interchangeably throughout. Similarly, we will sometimes refer to a location in
a string and synonymously at other times a position.

• Define HD(i) to be the Hamming distance between p and t[i, . . . , i+m−1]
and define the don’t care symbol to match any symbol in the alphabet.

4

• Define HDk(i) =

{
HD(i) if HD(i) ≤ k
⊥ otherwise

• We say that there is a k-mismatch between p and t at alignment i if
HDk(i) 6= ⊥.

Our algorithms make extensive use of the fast Fourier transform (FFT). An
important property of the FFT is that in the RAM model, the cross-correlation,

(t⊗ p)[i] def=
m∑
j=1

pjti+j−1, 0 ≤ i ≤ n−m+ 1,

can be calculated accurately and efficiently in Θ (n log n) time (see e.g. [CLR90],
Chapter 32). By a standard trick of splitting the text into overlapping substrings
of length 2m, the running time can be further reduced to Θ (n logm). We will
often assume that the text is of length 2m in the presentation of an algorithm
or analysis and that the reader is familiar with this splitting technique.

With high probability

The main results presented in this paper are for randomised algorithms which
give the correct answer with high probability. This term is used with varying
meanings in the literature and our use provides particularly strict bounds. The
motivation for our definition lies in the assumption that any pattern matching
algorithm may be applied a large (typically polynomial) number of times over
varying data sets. In this situation, it is desirable that the bounds on the
probability of failure will still hold.

Definition 3.1 We say that an algorithm outputs the correct answer with high
probability or whp in time Θ (f(n)) if for every α ≥ 1, there exists a value
cα > 0 depending on α, such that after Θ (f(n)) time, the algorithm outputs the
correct answer with probability at least 1− cα

nα . Note that the constant in the Θ
notation may also depend on α.

4 Randomised k-mismatch

The overall strategy is to repeatedly sample single mismatches using a fast
solution for the 1-mismatch problem with don’t cares. This is achieved by
effectively masking out a number of positions in the pattern with don’t care
symbols, thus making it likely that exactly one of the remaining positions will
result in a mismatch. In this way, we can sample single mismatches even when
the true Hamming distance may be considerably larger.

We call such a masked version of the pattern a subpattern. A number of
subpatterns will be chosen at random and for each one, the 1-mismatch pattern

5

matching algorithm is performed. Each 1-mismatch operation will tell us the
location of a mismatch with the subpattern if one occurs, at each position in the
text. We will show that after Θ (k log n) iterations, all of the mismatches at each
alignment that has up to k mismatches, will have been identified and counted
whp. As each 1-mismatch stage takes Θ (n logm) time the overall running time
of the algorithm is Θ (nk logm log n). We will then show how to reduce the
running time further by recursively halving the number of sampling iterations.

1-mismatch

The 1-mismatch problem is to determine in which alignments p and t have
exactly one mismatch and to identify the location of the mismatch for each
such alignment. More formally we wish to find all i s.t. HD(i) = 1 and for
each such i, find the unique position i′ s.t. p[i′− i+ 1] 6= t[i′]. The method that
we employ is to modify Equation 1 to give us the required information. The
method is shown in Algorithm 1. For simplicity of notation, here and for the
rest of the paper we write Σj instead of Σmj=1 and p′ and t′ are defined as in
Section 1. [n] is further defined to be the set of integers {1, . . . , n}.

Input: Pattern p, text t
Output: B[i] contains mismatch location in t for each alignment where

HD(i) = 1
Compute array A0[i] =

∑
j(pj − ti+j−1)2p′jt

′
i+j−1;

Compute array A1[i] =
∑
j(i+ j − 1)(pj − ti+j−1)2p′jt

′
i+j−1;

foreach i ∈ [n] do
if A0[i] 6= 0 then

B[i]← A1[i]/A0[i];
else

B[i]← No Mismatch;

foreach i ∈ [n] s.t. B[i] 6= No Mismatch do
if (p[B[i]− i+ 1]− t[B[i]])2 6= A0[i] then

B[i]← More Than 1 Mismatch;

Algorithm 1: 1-mismatch

For any i where there are no mismatches between p and t[i, . . . , i+m− 1],
both A0[i] = 0 and A1[i] = 0. If there is exactly one mismatch then B[i] is
its location in t. The check is to ensure that the value of B[i] came from no
more than 1 mismatch. The following Lemma gives the correctness and time
complexity of the algorithm.

Lemma 4.1 Algorithm 1 solves the 1-mismatch problem in Θ (n logm) time.

6

Proof: For a fixed alignment i of the text with respect to the pattern, there
are three cases for Algorithm 1:

1. HD(i) = 0⇒ A0[i] = 0 and B[i] is correctly set to No Mismatch.

2. HD(i) = 1⇒ There is exactly one mismatch at some position `. Therefore
A0[i] = (p`−i+1 − t`)2 and A1[i] = `(p`−i+1 − t`)2. Therefore B[i] =
A1[i]/A0[i] = ` which gives the location of the mismatch in t.

3. HD(i) > 1⇒ (p[B[i]−i+1]−t[B[i]])2 < A0[i]. Therefore B[i] is correctly
set to More Than 1 Mismatch.

The overall running time of Algorithm 1 is dominated by the time taken to
perform the FFTs needed in order to compute A0 and A1. Therefore the running
time is Θ (n logm).

Sampling and Matching

We now show how Algorithm 1 can be repeatedly applied to random subpatterns
of p to solve the full k-mismatch problem. Each subpattern p∗ is chosen at
random by sampling locations j uniformly at random from the pattern.

The sampling rate is set to 1/k so that the average number of selected
locations is m/k. A subpattern p∗ is created by setting p∗j = pj for those chosen
locations. We set the characters of all other positions in p∗ to be the don’t care
symbol and ensure |p∗| = |p|.

We then run the 1-mismatch algorithm using p∗ and t. This whole “sample
and match” process is repeated Θ (k log n) times, each time keeping record of
where any single mismatch occurs for each index i in the text. Algorithm 2 sets
out the main steps.

Input: Pattern p, text t and an integer k
Output: O[i] = HDk(p, t[i, . . . , i+m− 1])
for times = 1 to Θ (k log n) do

/* Sample and Match stage */

Sample subpattern p∗ with sample rate 1/k;
1-mismatch(p∗, t);

L[i]← total number distinct mismatches found at alignment i;
/* Checking stage */

Check at each position i in t that all mismatches were found;
O[i]← L[i], if all mismatches found, otherwise O[i]← ⊥;

Algorithm 2: Randomised k-mismatch with don’t cares

Theorem 4.2 Algorithm 2 computes HDk(i) for all locations i whp.

7

Proof: We first analyse the algorithm for a single alignment of the pattern
and text and show that if there are no more than k mismatches, the Hamming
distance is correctly computed whp. By adding a final checking stage, we then
show that this probabilistic bound is sufficient to show that HDk(i) will be
correctly computed for all alignments i whp.

Suppose d = HD(i) ≤ k, and let i1, ..., id be the locations of the mismatches.
We focus wlog, on a single mismatch i1. The sample and match stage will find
mismatch i1 if and only if p∗[ij] = φ for all j > 1 and p∗[i1] = p[i1]. The
probability of this event happening is ((k− 1)/k)k−1/k which is bounded below
by 1/ek for all k ≥ 2.

Therefore, the probability that Θ (k log n) iterations will not find i1 is at
most (1 − 1

ek)Θ(k logn) ≤ n−c, for some value c which grows linearly with the
number of iterations of the sample and match stage. Thus, i1 will be found whp
after Θ (k log n) iterations. Hence, according to the union bound, all mismatch
positions ij will also be found whp after Θ (k log n) iterations.

It remains to show we can determine if the Hamming distance is in fact
greater than k as the algorithm so far relies on the assumption that HD(i) ≤
k. This is performed by an extra checking stage which checks to see if all
the mismatches at a given location have been found. An important feature of
Algorithm 1 is that it gives us not only the location ` of the error but also the
value A0[`− i+ 1] = (p`−i+1− t`)2 for each i where there is a 1-mismatch. If we
first compute C[i] =

∑
j(pj − ti+j−1)2p′jt

′
i+j−1 for all i, then we can “correct”

this cross-correlation for each distinct 1-mismatch using the value of A0[i] found
during the running of 1-mismatch. For each iteration of 1-mismatch that results
in a new mismatch being found at position i, we subtract the value of A0[i] from
C[i]. In this way, we can check whether we have found all the mismatches at
a given position by keeping track of which mismatches have been seen before,
using a binary search tree for example. The time required to perform insertions
and lookups in the binary search trees is subsumed by the time required to
perform each cross-correlation calculation and so does not affect the overall
time complexity of the algorithm.

We now know that if C[i] 6= 0 after correcting all the up to k different
mismatches found at some position i, then whp there is no k-mismatch at that
position. Notice that if exactly k mismatches have been found at position i,
then C[i] 6= 0 implies with certainty that HD(i) > k.

The following Theorem gives the running time of the algorithm.

Theorem 4.3 Algorithm 2 runs in Θ (nk logm log n) time.

Proof: The algorithm runs Θ (k log n) sample and match iterations, each tak-
ing Θ (n logm) time to compute. After that, it goes over the array C =∑
j(pj − ti+j−1)2p′jt

′
i+j−1 and checks for each location i whether the distinct

8

mismatch contributions sum up to C[i]. This is done in Θ (n logm+ nk log k)
time. Therefore, the overall running time of Algorithm 2 is Θ (nk logm log n).

An Θ (n(k + log m log k) log n) time recursive algorithm

We now show how to improve the time complexity of the previous algorithm
from Θ (nk logm log n) to Θ (n(k + logm log k) log n). The approach is recursive
and requires us to halve the number of mismatches we are looking for at each
turn. To simplify the explanation consider the worst case, where the number
of mismatches at a alignment is at least k. If the number of mismatches is less
than k, then the algorithm can only find the mismatches more quickly and so
the bounds given still hold.

Our improved algorithm will work in log k recursive stages. At stage s, the
algorithm will whp have found all but at most ks = 2−sk mismatches in any
alignment j assuming HD(j) ≤ k. We will show how to effectively ignore all
previously found mismatches when performing the 1-mismatch algorithm. The
main motivation behind this approach is the observation that when sampling, it
is the final mismatch that will take the longest to find. However, in our approach,
by being able to disregard the contribution of previously found mismatches to
the cross-correlations, the final mismatch becomes the easiest to find thus giving
us our desired speedup.

Algorithm 3 gives an outline of the recursive k-mismatch algorithm. In this
algorithm we will also have to maintain a second data structure, E, containing
the same set of previously found distinct mismatches. However, in this case the
data structure is to be implemented differently than before. The mismatches
are held in an array of lists. The array has size m and list j in this array will
contain all mismatches found so far that occur between the text and location j
of the pattern, pj . The total size can not be greater than nk as we only consider
at most k mismatches per position in the text. We initialise E to be empty as
a first step of the algorithm.

Our solution to the problem of disregarding the contributions of previously
found mismatches is to correct the sums in arrays A0 and A1 prior to their
being used. We show the modified self-correcting 1-mismatch algorithm in Al-
gorithm 4.

We will next show that our overall scheme answers the k-mismatch problem
correctly whp. Lemma 4.5 shows that we can find ks/2 of the required mis-
matches using Θ (ks + log n) executions of the Algorithm 4. The proof of this
Lemma employs Theorem 4.4 which is a version of a Chernoff-Hoeffding bound
(see e.g. [AS01] for standard versions of these bounds).

Theorem 4.4 (Chernoff bound - error relative to 1st moment)

9

Input: Pattern p, text t
Output: O[i] = HDk(p, t[i, . . . , i+m− 1])
/* E holds all previously found mismatches */

Initialise E;
Set k0 = k;
for s = 0 to blog kc do

for times = 1 to Θ (ks + log n) do
/* Sample and Match stage */

Sample a subpattern p∗ with sample rate 1/ks from p;
Algorithm 4(p∗, t, E);

Update E according to the mismatches found in these iterations;
ks+1 = ks/2;

Let L[i] = total number distinct mismatches found at alignment i;
/* Checking stage */

Check at each position i in t that all mismatches were found;
O[i] = L[i], if all mismatches found, otherwise O[i] = ⊥;

Algorithm 3: Faster recursive randomised k-mismatch with don’t cares

Input: Pattern p, text t, previously discovered mismatches E
Output: Array B, containing the location of the mismatch in each

alignment where there is one mismatch not yet discovered
Compute array A0[i] =

∑
j(pj − ti+j−1)2p′jt

′
i+j−1;

Compute array A1[i] =
∑
j(i+ j − 1)(pj − ti+j−1)2p′jt

′
i+j−1;

foreach i ∈ [n] do
Correct A0[i] and A1[i] according to E;
if A0[i] 6= 0 then

B[i] = A1[i]/A0[i];
else

let B[i] = No Mismatch;

foreach i ∈ [n] s.t. B[i] 6= No Mismatch do
if (p[B[i]− i+ 1]− t[B[i]])2 6= A0[i] then

B[i] = More Than 1 Mismatch;

Algorithm 4: Self-correcting 1-mismatch

10

Assume random variables X1, ..., Xm are i.i.d. and Xi ∈ [0, 1]. Let µ = E(Xi).
Then

Pr

(
1
m

∑
Xi ≤ (1− δ)µ

)
< e−mµδ

2/2

Lemma 4.5 After Θ (ks + log n) iterations of sample and match stage, the lo-
cations and values of at most ks/2 different mismatches will remain to be found
whp.

Proof: We assume for simplicity the worst case where the number of mis-
matches remaining to be found is ks. The probability of finding a mismatch
after one iteration is at least 1/e. We apply the Chernoff bound, Theorem 4.4
with random variable Xi = 1 if at the ith stage a mismatch is found and 0 oth-
erwise and δ = 1/2, Therefore at least x/2e not necessarily distinct mismatches
are found after x = Θ (ks + log n) iterations whp.

On the other hand, fix some set of mismatch locations of size ks/2. The
probability that the mismatches found are entirely contained in this set is at
most 2−x/2e. Therefore, the probability that we will have found fewer than ks/2
distinct mismatches overall is at most 2−x/2e

(
ks
ks/2

)
. It follows that given we have

found x/2e not necessarily distinct mismatches in total, we will have found at
least ks/2 distinct mismatches with probability no less than 1 − 2−x/2e

(
ks
ks/2

)
.

Therefore, after Θ (ks + log n) iterations of Algorithm 4, at least ks/2 mis-
matches will be found whp.

In order to show the claimed running time of Algorithm 4, we will have
to prove that computing the contribution of previously discovered mismatches
at each stage takes Θ

(
nk
ks

)
time. Performed naively, this computation would

take Θ (nk) time as for each alignment, there could be as many as k previously
discovered mismatches. We rely on the fact that a sampled subpattern is likely
not to have more than cm/ks positions which are not don’t cares, for some
constant c.

We correct the contributions of previously found mismatches as follows. In
order to correct the mismatches of a single sampled subpattern p∗, we need
only consider the positions in the array E which relate to positions which do
not contain don’t cares in p∗. For each such position j in the array, we look
up each position i′ in the text where a mismatch will occur with position j

of the pattern and calculate the contribution they make to A0[i′ − j + 1] and
A1[i′ − j + 1] required by Algorithm 4. This can be done in constant time per
mismatch. The number of such mismatches is at most nk/ks in expectation and
we will next show, that it is also small whp. We will need another version of
a Chernoff-Hoeffding bound (see [AS01] again) which is given in the following
Theorem.

11

Theorem 4.6 (Chernoff bound - error relative to 2nd moment) Let
X1, ..., Xm be discrete, independent random variables such that E(Xi) = 0 and
|Xi| ≤ 1 for all i. Let X =

∑m
i=1Xi. Then

Pr
(
X ≥ λ

√
V ar(X)

)
≤ e−λ

2/4

for any 0 ≤ λ ≤ 2
√
V ar(X).

We can now show the total number of not necessarily distinct mismatches
that will need to be corrected in one stage of the recursive algorithm.

Lemma 4.7 If the sample and match stage is run Θ (ks + log n) times, the
number of times a previously discovered mismatch is found is O(nk(ks +
log n)/ks) whp.

Proof: Fix the number of iterations of the sample and match stage to be r =
d(ks + log n) for some constant d. We will show that for d sufficiently large,
the claim holds whp. Clearly if the claim is true for large d it will also be
true for smaller values of d as the number of mismatches found increases with
the number of iterations. We consider the random variables {Xi,j}i∈[m],j∈[r]

which indicate whether pi was replaced with a φ in iteration j. We let Xi,j = 1
with probability 1/ks and 0 otherwise. Let ai be the number of mismatches
previously found at index i of the pattern when comparing it to the text in all
alignments. The total number of these previously found mismatches over all
r iterations is therefore X =

∑
i∈[m],j∈[r] aiXi,j . We want to show that X is

O(nk(ks + log n)/ks) whp.
In order to be able to use the Chernoff bound we need to define Yi,j = ai

nXi,j

and Y =
∑m
i=1 Yi = 1

nX and show several bounds on these random variables.
We notice that Yi ∈ {0, ain } ∈ [0, 1]. Hence, according to the Chernoff bound
(Theorem 4.6) as long as r < 4V ar(Y)

Pr
(
Y − E(Y) ≥

√
rV ar(Y)

)
≤ e−r/4 < e−d logn/4 (2)

meaning Y < E(Y) +
√
rV ar(Y) whp. Notice though that if V ar(Y) is

smaller then r/4, the probabilities must be even better, and surely Y <

E(Y) +
√
rV ar(Y) whp. Next, we calculate E(Y) and V ar(Y):

E(Y) =
∑

i∈[m],j∈[r]

ai
n
E(Xi,j) =

∑
i∈[m],j∈[r]

ai
n

1
ks

=
r

nks

m∑
i=1

ai

V ar(Y) =
∑

i∈[m],j∈[r]

a2
i

n2
V ar(Xi,j) ≤

∑
i∈[m],j∈[r]

a2
i

n2

1
ks

=
r

n2ks

m∑
i=1

a2
i

Finally, the sum
∑m
i=1 ai is the number of mismatches previously found, and

so, it is bounded above by nk. The number of mismatches in each index is

12

bounded by n, hence the sum
∑m
i=1 a

2
i is bounded by max ai

∑m
i=1 ai ≤ n2k.

Therefore it follows that V ar(Y) ≤ rk/ks.
By applying inequality 2, we get that Y < rk

ks
+
√

r2k
ks

whp, and so, X is

O(kksnr) whp as required.

Using Lemma 4.7 we can now give the time complexity of running the self-
correcting 1-mismatch algorithm Θ (ks + log n) times:

Corollary 4.8 The time complexity of running the self-correcting 1-mismatch
algorithm Θ (ks + log n) times (as needed in one stage of our recursion) is
Θ
(
n
(
k + k

ks
log n+ ks logm+ log n logm

))
.

Proof: Computing A0 and A1 using FFTs, takes Θ (n logm) time for each run.
Therefore, overall, their computation takes Θ (n(ks + log n) logm) time. The
time complexity of handling all the previously found mismatches in all runs,
accumulates to Θ (kn(ks + log n)/ks) according to Lemma 4.7.

Therefore, the overall time complexity is
Θ (n (k + k/ks log n+ ks logm+ log n logm)).

We can now give the final time complexity for the recursive randomised
k-mismatch with don’t cares algorithm.

Theorem 4.9 Algorithm 3 runs in Θ (n(k + logm log k) log n) time.

Proof: Let us concentrate on the i-th stage of the recursion. At this stage
we need to solve the k/2i-mismatch problem, by running the self-correcting 1-
mismatch algorithm Θ

(
2i + log n

)
times. According to Corollary 4.8 this takes

overall Θ
(
n
(
k + k

2i log n+ 2i logm+ log n logm
))

time.
Summing up the time taken by all stages together we therefore get

Θ (n (k log k + k log n+ k logm+ log n logm log k)), which can be simplifed to
Θ (n (k + logm log k) log n)

5 Deterministic k-mismatch with don’t cares

In this Section we give an Θ
(
nk2 log2m

)
time deterministic solution for the

k-mismatch with don’t cares problem. Our algorithm is based on Algorithm 2
but instead of simply taking random subpatterns of our pattern, it uses a group
testing scheme to select the subpatterns.

Group testing is a long studied problem in combinatorics. A small set of
k ill people are to be identified from a set of size m by using only queries
(tests) of the form “Does set X contain an ill person?”. Group testing is used in
many applications, including detecting syphilis or HIV in blood samples [Dor43],

13

quality control [SG59], communication [KS64, Wol85], software testing [BG02,
CDFP97] and numerous examples in computational molecular biology [DH00,
FKKM97, ND00, BBKT96, PL94, BLC91, BBK+95, TJP00]. The conventional
use of group testing is as a stand alone tool but in this paper, we use it in a
novel way as a building block of our algorithm.

The definition of a group testing scheme (GT) is as follows:

Definition 5.1 Consider a universe U of size m. A family of tests (subsets)
F ⊂ P(U) is a group testing scheme of strength r ((m, r)-GT) if for any subset
A ⊂ U of size at most r, and for any element x /∈ A, there exists a test B ∈ F
that distinguishes x from A, meaning x ∈ B while A ∩B = ∅.

Our algorithm, as other applications of group testing, requires a group test-
ing scheme which is as small as possible. The smallest explicit construction for
(m, r)-GT schemes hitherto contains t = Θ

(
min[r2 lnm,m]

)
tests, and takes

Θ (rm lnm) time to build [PR08].

Theorem 5.2 ([PR08]) Let m and r be positive integers. It is possible to con-
struct an (m, r)-GT scheme containing Θ

(
min[r2 lnm,m]

)
tests in Θ (rm lnm)

time.

Our usage of group testing is straightforward using the combinatorial con-
cepts of selection by intersection and strongly-selective families (SSF) [CMS03].
Selection by intersection means distinguishing an element from a set of elements
by intersecting it with another set. More precisely:

Definition 5.3 Given a subset A ⊂ U of a universe U , element x ∈ A is
selected by subset B ⊂ U if A∩B = {x}. An element is selected by a family of
subsets F ⊂ P(U) if one of the subsets in F selects it.

An SSF is a family of subsets that select any element out of a small enough
subset of the universe. More precisely,

Definition 5.4 A family F ⊂ P(U) is said to be (m, r)-strongly-selective if,
for every subset A ⊂ U of size |A| = r, all elements of A are selected by F . We
call such a family an (m, r)-SSF.

SSFs and group testing schemes are almost equivalent. On the one hand, an
(m, r + 1)-SSF is a group testing scheme of strength r. On the other hand, a
group testing scheme of strength r in a universe of size m is an (m, r)-SSF. For
a detailed proof see [KS64]. We will work with the notation of SSFs from now
on. Rewriting Theorem 5.2 in terms of SSFs we get the following result.

Corollary 5.5 Let m and r be positive integers. It is possible to construct an
(m, r)-SSF of size Θ

(
min[r2 lnm,m]

)
in Θ (rm lnm) time.

14

How will we choose the subpatterns p∗? We give a 1-1 correspondence be-
tween the patterns p∗ and the sets in the SSF. Each test of the SSF can be
regarded as a set of locations in the input pattern p. We use these locations to
form the subpatterns p∗ so that p∗j = pj for the locations that are in the test
and p∗ = φ, the don’t care symbol, otherwise.

An overview of the deterministic solution for k-mismatch with don’t cares
algorithm is given in Algorithm 5. Note that the strength r is now set to k

and that this deterministic algorithm is similar in structure to the randomised
solution presented in Algorithm 2.

Input: Pattern p, text t and an integer k
Output: O[i] = HDk(p, t[i, . . . , i+m− 1])
foreach s ∈ (m, k)-SSF do

/* Sample and Match stage */

Choose subpattern p∗ according to s;
Algorithm 1(p∗, t);

Let L[i] = total number distinct mismatches found at alignment i ;
/* Checking stage */

Check at each position i in t that all mismatches were found;
O[i] = L[i], if all mismatches found, otherwise O[i] = ⊥;

Algorithm 5: Deterministic k-mismatch with don’t cares

We can now show that Algorithm 5 gives a deterministic solution for the
k-mismatch problem with don’t cares.

Theorem 5.6 Algorithm 5 computes HDk(i) for all locations i.

Proof: Let i be an alignment of the pattern with respect to the text for which
` = HD(i) ≤ k. Let j1, ..., j` ∈ [m] be the mismatch locations in the pattern.
We show wlog that the mismatch in location j1 will be found. According to
the definition of an (m, k)-SSF, j1, is selected by at least one of the tests in
the family. The subpattern which matches this set will have don’t cares in all
locations jh except in j1. Therefore, this subpattern will have only one mismatch
with the text in alignment i. Hence, location j1 would be found when running
the Algorithm 1 on p∗ and t as required.

We can now see that for all alignments i where HDk(i) ≤ i, all mismatches
will be found. Moreover, the checking phase will detect if the Hamming distance
is in fact greater than k. It therefore follows that Algorithm 5 provides a full
deterministic solution to the k-mismatch problem with don’t cares.

The running time is given in the following Theorem.

Theorem 5.7 Algorithm 5 runs in Θ
(
nk2 log2m

)
time.

15

Proof: The (m, k)-SSF can be computed in Θ (mk logm) time, creating
Θ
(
k2 logm

)
tests. For each subpattern, the 1-mismatch calculation takes

Θ (n logm) time or Θ
(
nk2 log2m

)
time overall. Storing and counting the up

to k distinct 1-mismatches at each location will take Θ (nk log k) further time.
Finally, we can check and correct all mismatches found in Θ (n logm+ nk) time.
The total running time is therefore Θ

(
nk2 log2m

)
as required.

Further deterministic speedups

So far we have based our deterministic algorithm on the randomised Algo-
rithm 2, using group testing schemes instead of randomness. With some more
effort, we can base the deterministic algorithm on the faster randomised Algo-
rithm 3. However in order to benefit from this, we need to also replace the usage
of group testing schemes with another derandomisation tool. In the analysis of
Algorithm 3 the speed advantage came from the observation that finding the
first k/2 mismatches is easier than finding the last k/2. We therefore need a
derandomisation tool to help us exploit this fact and group testing will not suf-
fice on its own. Fortunately, there exists a tool suitable for our needs which is
known as a selector. An (m, k)-selector is similar to a (m, k)-SSF, but instead of
selecting all k elements as the SSF would do, it instead only guarantees to select
at least k/2 of them. This weaker property of selectors has the advantage that
the lower bound for the number of tests for a selector is Ω(k logkm) whereas it
is Ω(k2 logkm) for group testing [CMS01]. Therefore, using selectors instead of
SSFs could potentially save a factor of k in the running time. Unfortunately,
there are no known efficient algorithms for explicitly building selectors of size
smaller then Θ (k polylogm) [CK05] where polylogm hides a large exponent.
We finish with the following two remarks.

Remark 1 The k-mismatch problem with don’t cares can be solved using (m, k)-
selectors instead of (m, k)-SSFs combined with Algorithm 3.

Remark 2 As the best construction of (m, k)-selectors is of size Θ (k polylogm)
and takes Θ (mpolylogm) time to construct, the new algorithm will then run in
Θ (nk polylogm). However, more efficient constructions of selectors will trans-
late into more efficient algorithms for the k-mismatch problem.

6 Conclusion and Open Problems

We have presented the first non-trivial algorithms for the k-mismatch problem
with don’t cares. We conjecture that the gap between the deterministic and
randomised complexities can be closed. A further interesting open question is
whether an Θ̃(n

√
k) algorithm can be found to match the fastest known solution

for the problem without don’t care symbols.

16

References

[Abr87] K. Abrahamson. Generalized string matching. SIAM journal on
Computing, 16(6):1039–1051, 1987.

[Aku95] T. Akutsu. Approximate string matching with don’t care characters.
Information Procesing Letters, 55:235–239, 1995.

[ALP04] Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algo-
rithms for string matching with k mismatches. J. Algorithms,
50(2):257–275, 2004.

[AS01] N. Alon and J. Spencer. The Probabilistic Method. John Wiley and
Sons Inc., 2nd edition, 2001.

[BBK+95] W.J. Bruno, D.J. Balding, E. Knill, D. Bruce, C. Whittaker,
N. Dogget, R. Stalling, and D.C. Torney. Design of efficient pooling
experiments. Genomics, 26:21–30, 1995.

[BBKT96] D. J. Balding, W. J. Bruno, E. Knill, and D. C. Torney. A compar-
ative survey of non-adaptive pooling designs. Institute for Mathe-
matics and Its Applications, 81:133–+, 1996.

[BG02] A. Blass and Y. Gurevich. Pairwise testing. Bulletin of the EATCS,
78:100–132, 2002.

[BLC91] E. Barillot, B. Lacroix, and D. Cohen. Theoretical analysis of library
screening using a N-dimensional pooling strategy. Nucleic Acids
Research, 19(22):6241–6247, 1991.

[BM77] R. S. Boyer and J. S. Moore. A fast string matching algorithm.
Communications of the ACM, 20:762–772, 1977.

[CC07] P. Clifford and R. Clifford. Simple deterministic wildcard matching.
Information Processing Letters, 101(2):53–54, 2007.

[CDFP97] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton. The
AETG system: An approach to testing based on combinatiorial
design. Software Engineering, 23(7):437–444, 1997.

[CGL04] Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary
matching and indexing with errors and don’t cares. In STOC ’04:
Proceedings of the Annual ACM Symposium on the Theory of Com-
puting, pages 91–100, 2004.

[CH02] R. Cole and R. Hariharan. Verifying candidate matches in sparse
and wildcard matching. In STOC ’02: Proceedings of the Annual
ACM Symposium on Theory of Computing, pages 592–601, 2002.

17

[CK05] B. S. Chlebus and D. R. Kowalski. Almost optimal explicit selectors.
In Maciej Liskiewicz and Rüdiger Reischuk, editors, Proceedings of
Fundamentals of Computation Theory (FCT 2005), volume 3623 of
LNCS, pages 270–280. Springer, 2005.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press, 1990.

[CLS+06] Ho-Leung Chan, Tak Wah Lam, Wing-Kin Sung, Siu-Lung Tam,
and Swee-Seong Wong. A linear size index for approximate pattern
matching. In CPM, pages 49–59, 2006.

[CMS01] Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Selec-
tive families, superimposed codes, and broadcasting on unknown ra-
dio networks. In Proceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithms (SODA ’01), pages 709–718, 2001.

[CMS03] A.E.F. Clementi, A. Monti, and R. Silvestri. Distributed broad-
cast in radio networds of unknown topology. Theoretical Computer
Science, 302(1–3):337–364, 2003.

[CP07] R. Clifford and E. Porat. A filtering algorithm for k-mismatch with
don’t cares. In 14th International Symposium on String Processing
and Information Retrieval (SPIRE), pages 130–136, October 2007.

[DH00] D. Z. Du and F. K. Hwang. Combinatorial Group Testing and its
Applications, volume 12 of Series on Applied Mathematics. World
Scientific, 2nd edition, 2000.

[Dor43] R. Dorfman. The detection of defective members of large popula-
tions. The Annals of Mathematical Statistics, 14(4):436–440, 1943.

[FKKM97] M. Farach, S. Kannan, E. Knill, and S. Muthukrishnan. Group
testing problems with sequences in experimental molecular biology.
In the Compression and Complexity of Sequences 1997, page 357,
1997.

[FP74] M. Fischer and M. Paterson. String matching and other products.
In R. Karp, editor, Proceedings of the 7th SIAM-AMS Complexity
of Computation, pages 113–125, 1974.

[Ind98] P. Indyk. Faster algorithms for string matching problems: Matching
the convolution bound. In FOCS ’98: Proceedings of the 39th An-
nual Symposium on Foundations of Computer Science, pages 166–
173, 1998.

18

[Kal02] A. Kalai. Efficient pattern-matching with don’t cares. In Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 655–656, 2002.

[Kar93] H. Karloff. Fast algorithms for approximately counting mismatches.
Information Processing Letters, 48(2):53–60, 1993.

[KMP77] D. E. Knuth, J. H. Morris, and V. B. Pratt. Fast pattern matching
in strings. SIAM Journal of Computing, 6:323–350, 1977.

[Kos87] S. R. Kosaraju. Efficient string matching. Manuscript, 1987.

[KS64] W.H. Kautz and R.C. Singleton. Nonrandom binary superimposed
codes. IEEE Transaction of InformationTheory, 10:363–377, 1964.

[LV85] G. M. Landau and U. Vishkin. Efficient string matching in the
presence of errors. In FOCS ’85: Proceedings of the 26th Symposium
on Foundations of Computer Science, pages 126–136, 1985.

[LV86] G. M. Landau and U. Vishkin. Efficient string matching with k

mismatches. Theoretical Computer Science, 43:239–249, 1986.

[ND00] H.Q. Ngo and D.Z. Du. A survey on combinatorial group testing
algorithms with applications to DNA library screening. In DIMACS
Series Discrete Math. and Theor. Computer Science 55, AMS 2000,
pages 171–182, 2000.

[PL94] Pavel A. Pevzner and Robert J. Lipshutz. Towards dna sequencing
chips. In MFCS ’94: Proceedings of the 19th International Sym-
posium on Mathematical Foundations of Computer Science 1994,
pages 143–158, London, UK, 1994. Springer-Verlag.

[PR08] E. Porat and A. Rothschild. Explicit non-adaptive combinatorial
group testing schemes. In Automata, Languages and Programming:
35st International Colloquium, ICALP 2008, 2008.

[SG59] M. Sobel and P.A. Groll. Group testing to eliminate efficiently all
defectives in a binomial sample. Bell Syst. Tech. J., 38:1179–1252,
1959.

[TJP00] Berger T., Mandell J.W., and Subrahmanya P. Maximally efficient
two-stage screening. Biometrics, 56:833–840(8), September 2000.

[Wol85] J.K. Wolf. Born again group testing: Multiaccess communications.
IEEE Transactions on Information Theory, 31(2):185–191, 1985.

19

	Introduction
	Related work and previous results

	Our results
	Preliminaries
	Randomised k-mismatch
	Deterministic k-mismatch with don't cares
	Conclusion and Open Problems
	Bibliography

