
09301 Abstracts Collection

Typing, Analysis and Veri�cation of

Heap-Manipulating Programs

� Dagstuhl Seminar �

Peter O'Hearn1, Arnd Poetzsch-He�ter2 and Shmuel Mooly Sagiv3

1 Queen Mary College - London, GB
2 TU Kaiserslautern, D
3 Tel Aviv University, IL

msagiv@tau.ac.il

Abstract. From July 19 to 24, 2009, the Dagstuhl Seminar 09301 �Typ-

ing, Analysis and Veri�cation of Heap-Manipulating Programs � was held

in Schloss Dagstuhl � Leibniz Center for Informatics. During the sem-

inar, several participants presented their current research, and ongoing

work and open problems were discussed. Abstracts of the presentations

given during the seminar as well as abstracts of seminar results and ideas

are put together in this paper. The �rst section describes the seminar

topics and goals in general. Links to extended abstracts or full papers

are provided, if available.

Keywords. Ownership types, static analysis, program veri�cation, heap-

manipulating programs

09301 Executive Summary � Typing, Analysis, and

Veri�cation of Heap-Manipulating Programs

Jonathan Aldrich (Carnegie Mellon University - Pittsburgh, US)

The document contains an executive summary of the Dagstuhl Seminar "Typing,
Analysis, and Veri�cation of Heap-Manipulating Programs" that took place July
2009.

Keywords: Typing, Static Analysis, Veri�cation, Heap-Manipulating Programs

Joint work of: Sagiv, Mooly; Poetsch-He�ter, Arnd; O'Hearn, Peter

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2010/2435

Dagstuhl Seminar Proceedings 09301
Typing, Analysis and Veri�cation of Heap-Manipulating Programs
http://drops.dagstuhl.de/opus/volltexte/2010/2436

http://drops.dagstuhl.de/opus/volltexte/2010/2435

2 Peter O'Hearn, Arnd Poetzsch-He�ter and Shmuel Mooly Sagiv

Invariant-Carrying Permissions: Modular Dependence on

Shared State

Jonathan Aldrich (Carnegie Mellon University - Pittsburgh, US)

A longstanding veri�cation challenge is allowing the invariant for an object to
depend on information about another, shared mutable object's state. Existing
solutions restrict sharing or mutation (e.g. ownership), or require passing around
logical predicates in a way that sometimes violates information hiding and mod-
ularity (separation logic).

We have been developing an approach called Invariant-Carrying Permissions,
in which access to state is coordinated through fractional permissions that carry
an invariant. Each client can rely on the invariant and can mutate the object's
state but must respect the state invariant for the bene�t of other clients. Our
solution allows these permissions to be hidden inside other abstractions such
that clients need not be aware of their presence.

We have implemented a prototype of invariant-carrying permissions in our
typestate veri�cation system, Plural. Preliminary experience indicates that the
�exibility and modularity properties of invariant-carrying permissions are use-
ful in many practical examples. We believe the concept is applicable beyond
typestate, to enforce arbitrary predicates.

Full Paper:
http://www.cs.cmu.edu/∼kbierhof/papers/typestate-veri�cation.pdf

Challenge Problem: Modular Veri�cation of Customized

Invariants over Shared State

Jonathan Aldrich (Carnegie Mellon University - Pittsburgh, US)

This presentation proposes a challenge problem involving modular veri�cation of
customized invariants over shared state. The accompanying code (in Other.zip,
the name was chosen by the web software) shows a solution in the Plural types-
tate veri�cation system; see README.TXT in Other.zip �le for how to run the
example.

Challenge: remove the Plural speci�cation annotations and insert those from
your favorite veri�cation system.

Keywords: Invariant, heap, sharing, modular reasoning, invariant

http://www.cs.cmu.edu/~kbierhof/papers/typestate-verification.pdf

Typing, Analysis and Veri�cation of Heap-Manipulating Programs 3

Higher-Order Separation Logics for Reasoning About

First-Class Invariants

Andrew W. Appel (Princeton University, US)

We would like reason using Concurrent Separation Logic about imperative pro-
grams that store function-pointers and lock-pointers in the heap, and that con-
tain "assert" statements. We have strong demands on the expressiveness of the
logic. Invariants must be able to characterize the binding of memory locations
to other invariants, for example, "location l is a pointer to a lock (or function)
with resource invariant (or precondition) P". Invariants must have semantics
independent of program syntax, so that they survive compilation to lower-level
languages. We need polymorphism, that is, impredicative quanti�cation over in-
variants. Finally, we need it to apply smoothly to real programming languages.

We have constructed a powerful program logic with machine-checked proofs
in Coq. The mathematical foundations use (a new formulation of) Separation
Algebras combined (a generalization of) the Very Modal Model of mutable ref-
erences to model a multimodal substructural logic.

We apply this logic to C minor, the input language of Leroy's CompCert
compiler, again with machine-checked proofs.

Region Logic

Anindya Banerjee (Madrid Institute for Advanced Studies, ES)

Shared mutable objects pose grave challenges in reasoning, especially for data
abstraction and modularity. We present a novel logic for error-avoiding partial
correctness of programs featuring shared mutable objects. Using a �rst order
assertion language, the logic provides heap-local reasoning about mutation and
separation, via ghost �elds and variables of type `region' (�nite sets of object
references). A new form of modi�es clause speci�es write, read, and allocation
e�ects using region expressions; this supports e�ect masking and a frame rule
that allows a command to read state on which the framed predicate depends.
Soundness is proved using a standard program semantics. The logic facilitates
heap-local reasoning about object invariants. Disciplines such as ownership are
expressible without being hard-wired in the logic. Joint work with David A.
Naumann and Stan Rosenberg

Keywords: Veri�cation, object-based programs, local reasoning, heap

Joint work of: Banerjee, Anindya; Naumann, David A.; Rosenberg, Stan

4 Peter O'Hearn, Arnd Poetzsch-He�ter and Shmuel Mooly Sagiv

Veri�cation Condition Generation for Unstructured

Quanti�ers

Michael Barnett (Microsoft Research - Redmond, US)

In the Spec# project, we generated BPL from MSIL, the bytecode for the .NET
virtual machine. This required a new algorithm for generating veri�cation con-
ditions from code in the form of unstructured programs, namely general control-
�ow graphs. However, for several reasons, all speci�cations were preserved in a
separate expression language.

One of the main reasons was to support the easy translation of quanti-
�ers. Now, with the Code Contracts project, we cannot rely upon such lan-
guage/compiler support. Instead, a mechanism is needed to generate veri�cation
conditions for speci�cations from general MSIL.

Compiling Functional Types to Relational Speci�cations

for Low Level Imperative Code

Nick Benton (Microsoft Research UK - Cambridge, GB)

We describe a semantic type soundness result, formalized in the Coq proof assis-
tant, for a compiler from a simple functional language into an idealized assembly
language. Types in the high-level language are interpreted as binary relations,
built using both second-order quanti�cation and separation, over stores and val-
ues in the low-level machine.

Joint work of: Benton, Nick; Tabareau, Nicolas

Meta Predicate Abstraction for Hierarchical Symbolic

Heaps

Joshua Berdine (Microsoft Research UK - Cambridge, GB)

Automatic program analyses generally require operations to logically weaken
candidate invariants; e.g., in �nding loop invariants, procedure preconditions,
concurrently accessed resource invariants.

We propose a new technique to de�ne these operations, and apply the tech-
nique in the context of a logical domain for expressing complex hierarchically
nested data structures, with arbitrarily nested disjunction�to which this tech-
nique is particularly well suited.

The basis of this approach is to conceptually blur the distinction between
the assertion logic's proof theory and model theory, using the way the syntactic
structure of formulae re�ects the graph structure of the represented models. This
enables a form of predicate abstraction, where predicates expressed in �rst-order

Typing, Analysis and Veri�cation of Heap-Manipulating Programs 5

logic with transitive closure are evaluated globally over syntactic occurrences of
terms within formulae. The formulae are then weakened using logical implica-
tions that are enabled or disabled based on the predicate evaluations on formulae
terms.

Our approach provides a general, declarative means of de�ning logical-weakening
operations, which simulate the abstraction operations in existing separation logic
based analyses. Where previously complicated syntactic side-conditions on algo-
rithmic rewrite systems were used, we express operations in terms of predicate
evaluations. Our parametric de�nition scheme enables operation specialization,
e.g., to a class of programs, or even to di�erent control points or analysis phases
of the same program. These de�nitions are a key stepping stone to an analysis
that automatically re�nes the degree of logical weakening, perhaps guided by
counterexamples�which has been a key advance in automatic veri�cation for
arithmetic and control-�ow properties.

Keywords: Shape Analysis, Separation Logic

Joint work of: Berdine, Josh; Emmi, Mike

Reduction in End-User Shape Analysis

Bor-Yuh Evan Chang (University of Colorado, US)

Xisa is a shape analyzer parametrized by user-provided data structure de�ni-
tions that guide the analysis abstraction. These de�nitions come in the form of
data structure validation code, which are interpreted as inductive de�nitions in
separation logic. The user may provide di�erent de�nitions that correspond to
equivalent or related concretizations, which makes the framework quite expres-
sive. However, as a consequence, we must deal with multiple possible abstractions
at any point during the program analysis. In this talk, we observe that interest-
ingly, we can derive lemmas about related abstractions by applying and reusing
our parametric abstract domain on the user-provided data structure de�nitions
(that will then be its input for the program analysis). Such lemmas are needed
by a reduction operator for Xisa that converts between abstractions during the
program analysis phase.

Minimal Ownership for Active Objects

David Clarke (K.U. Leuven, BE)

Active objects o�er a structured approach to concurrency, encapsulating both
unshared state and a thread of control. For e�cient data transfer, data should
be passed by reference whenever possible, but this introduces aliasing and un-
dermines the validity of the active objects. This paper proposes a minimal vari-
ant of ownership types that preserves the required race freedom invariant yet

6 Peter O'Hearn, Arnd Poetzsch-He�ter and Shmuel Mooly Sagiv

enables data transfer by reference between active objects (that is, without copy-
ing) in many cases, and a cheap clone operation where copying is necessary. Our
approach is general and should be adaptable to several existing active object
systems.

Keywords: Ownership, concurrency, uniqueness, active objects

Joint work of: Clarke, David; Wrigstad, Tobias; Ostlund, Johan; Johnsen,
Einar Broch

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2437

Full Paper:
http://www.springerlink.com/content/d502311675h73147/

Observational Purity by Underspeci�cation

David Cok (Eastman Kodak Comp. - Rochester, US)

It is helpful in speci�cation to use methods of a program itself in its own spec-
i�cations. Speci�cation languages currently require such methods be at least
weakly pure. This is too constraining. We describe how a combination of under-
speci�cation and the separation of program state into disjoint regions can allow
the use of observational purity. This relaxation of purity requires a compensating
speci�cation mechanism for describing and checking any recursive modi�cations
of particular regions of program state.

Keywords: JML, speci�cation, observational purity

Compositional Shape Analysis by means of Bi-Abduction

Dino Distefano (University of London, GB)

This talk describes a compositional shape analysis, where each procedure is
analyzed independently of its callers.

The analysis uses an abstract domain based on a restricted fragment of sep-
aration logic, and assigns a collection of Hoare triples to each procedure; the
triples provide an over-approximation of data structure usage.

Compositionality brings its usual bene�ts �increased potential to scale, abil-
ity to deal with unknown calling contexts, graceful way to deal with imprecision
� to shape analysis, for the �rst time.

The analysis rests on a generalized form of abduction (inference of explana-
tory hypotheses) which we call bi-abduction. Bi-abduction displays abduction
as a kind of inverse to the frame problem: it jointly infers anti-frames (missing
portions of state) and frames (portions of state not touched by an operation),
and is the basis of a new interprocedural analysis algorithm.

We have implemented our analysis algorithm and we report case studies
on smaller programs to evaluate the quality of discovered speci�cations, and
larger programs (e.g., an entire Linux distribution) to test scalability and graceful
imprecision.

http://drops.dagstuhl.de/opus/volltexte/2010/2437
http://www.springerlink.com/content/d502311675h73147/

Typing, Analysis and Veri�cation of Heap-Manipulating Programs 7

The need for �exible object invariants

Sophia Drossopoulou (Imperial College London, GB)

Speci�cation and veri�cation of object oriented programs usually features in
some capacity the concept of an object invariant, used to describe the consistent
states of an object. Unavoidably, an object's invariant will be broken at some
points in its lifetime, and as a result, invariant protocols have been suggested,
which prescribe the times at which object invariants may be broken, and the
points at which they have to be re-established.

The fact that currently available invariant protocols do not handle well some
known examples, together with the fact that object invariants and invariant
protocols can largely be encoded through methods' pre- and post- conditions
has recently raised the question of whether they still have a role to play, or
should be replaced by more explicit pre- and post- conditions for methods.

In this paper we argue that invariant protocols express programmers' intu-
itions, lead to better design, allow more succinct speci�cations and proofs, and
allow the expression of properties which involve many objects in a localised man-
ner. In particular, the resulting veri�cation conditions can be made simpler and
more modular through the use of invariant-based reasoning.

We also argue that even though encoding invariant protocols through meth-
ods' pre- and post-conditions is possible, such an encoding loses important infor-
mation, and as a result makes speci�cations less explicit and program evolution
(whereby the program evolves after the encoding has taken place) more error-
prone. Finally, we show that such encodings often cannot express properties over
inaccessible objects, whereas an appropriate invariant protocol can handle them
simply.

Proving that non-blocking algorithms don't block

Alexey Gotsman (University of Cambridge, GB)

A concurrent data-structure implementation is considered non-blocking if it
meets one of three following liveness criteria: wait-freedom, lock-freedom, or
obstruction-freedom. Developers of non-blocking algorithms aim to meet these
criteria. However, to date their proofs for non-trivial algorithms have been only
manual pencil-and-paper semi-formal proofs. This paper proposes the �rst fully
automatic tool that allows developers to ensure that their algorithms are in-
deed non-blocking. Our tool uses rely-guarantee reasoning while overcoming the
technical challenge of sound reasoning in the presence of interdependent liveness
properties.

Keywords: Formal Veri�cation, Concurrent Programming, Liveness, Termina-
tion

8 Peter O'Hearn, Arnd Poetzsch-He�ter and Shmuel Mooly Sagiv

Automatic Veri�cation of Integer Array Programs

Peter Habermehl (LIAFA University Paris VII, FR)

We provide a veri�cation technique for a class of programs working on integer
arrays of �nite, but not a priori bounded length. We use the logic of integer arrays
SIL to specify pre- and post-conditions of programs and their parts. E�ects of
non-looping parts of code are computed syntactically on the level of SIL. Loop
pre-conditions derived during the computation in SIL are converted into counter
automata (CA).

Loops are automatically translated�purely on the syntactical level�to trans-
ducers. Pre-condition CA and transducers are composed, and the composition
over-approximated by �at automata with di�erence bound constraints, which
are next converted back into SIL formulae, thus inferring post-conditions of the
loops. Finally, validity of post-conditions speci�ed by the user in SIL may be
checked as entailment is decidable for SIL.

Relational semantics for e�ect-based program

transformations: higher-order store

Martin Hofmann (LMU München, DE)

We give a denotational semantics to an e�ect system tracking reading and writing
to global variables holding values of arbitrary type including e�ect-triggering
functions. E�ects are interpreted in terms of the preservation of certain binary
relations on the store. The semantics validates a number of e�ect-dependent
program equivalences and can thus serve as a foundation for e�ect-based compiler
transformations. The de�nition of the semantics requires the solution of a mixed-
variance equation which is not accessible to the hitherto known methods. We
illustrate the di�culties with a number of small example equations one of which
is still not known to have a solution.

Keywords: Denotational semantics, higher-order store, logical relation, e�ect
analysis

Joint work of: Benton, Nick; Beringer, Lennart; Hofmann, Martin; Kennedy,
Andrew

See also: to appear in PPDP2009

TVLA for Low-level C

Joerg Kreiker (TU München, DE)

With few exceptions, shape analyses of C programs employ an abstraction, where
records are modeled as atomic entities and pointer-valued components of records
as binary relations on them.

Typing, Analysis and Veri�cation of Heap-Manipulating Programs 9

This is too coarse when programs use pointers to components of records,
the address-of operator, pointer arithmetic to compute the head of a record
from a pointer to a component, pointer arithmetic to iterate over arrays, or
combinations of nested records and arrays. All these features are not uncommon
in systems code.

We re�ned the usual memory model used in shape analyses to be able to deal
with such constructs and implemented our analyses in the TVLA framework. We
used the implementation to analyze Linux device driver code samples featuring,
for instance, arrays of so-called "pprev lists". The results can be used for race
detection.

It shows that many of the insights gained in TVLA can be bene�cially re-used
in the new setting, for example, certain instrumentation predicates and integrity
constraints.

Finally, I present a few ideas on abstractions for arrays of dynamically allo-
cated data structures.

Keywords: Shape Analysis, Pointer Arithmetic, System Code, Arrays

Preventing Cross-Type Aliasing: A Problem Description

Gary T. Leavens (University of Central Florida - Orlando, US)

This talk explains the problem of preventing cross-type aliasing and why it is
important. The main motivation is to reason about history constraints using
static type information, while relaxing the overly strict rule of strong behavioral
subtyping, which imposes history constraints on all new methods of all subtypes.
To avoid these problems, a mechanism is needed that allows upcasts of objects
and borrowing, but prevents cross-type aliasing.

This work was supported in part by NSF grant CNS 08-08913.

Keywords: Types, subtyping, upcast, capability

A comparison of heap models: Ownership, dynamic

frames, permissions

K. Rustan M. Leino (Microsoft Research - Redmond, US)

I'd like to provide a comparison of ownership-based techniques (like in Spec#),
dynamic frames (like in Dafny), and permission- and abstract-predicate-based
techniques (like in separation logic or Chalice). What are pros and cons of each?
Can they be combined?

10 Peter O'Hearn, Arnd Poetzsch-He�ter and Shmuel Mooly Sagiv

Proving Copyless, Contract-based Message-Passing

Etienne Lozes (ENS - Cachan, FR)

Handling concurrency using locks is tedious and error-prone. One alternative is
to use message-passing synchronization instead. I will present a particular use
of message-passing for shared memory concurrency where the ownership of the
heap region representing the content of a message is lost upon sending, which can
lead to e�cient implementations. I will de�ne a proof system for a concurrent
imperative programming language implementing this idea and inspired by the
Singularity operating system research project. The proof system is an extension
of separation logic with particular small axioms for message-passing.

A soundness result for this proof system using best local actions, as in ab-
stract separation logic, is feasible, but does not imply that provable programs do
not leak memory. I will present a more re�ned semantics for which I will state a
"transfers erasure property" that entails the absence of memory leaks.

Communications are ruled by contracts, similar to session types, and this
particular aspect of the programming language plays a very important role in
the proof of this last result.

Keywords: Separation Logic, Session Types, Singularity

Joint work of: Lozes, Etienne; Villard, Jules; Calcagno, Cristiano

Using Stereotypes to Reason in Regional Logic

Peter Mueller (ETH Zürich, CH)

I will report on work in progress that simpli�es the application of Regional
Logic, especially to recursive data structures. Stereotypes are a layer on top of
Regional Logic that conveniently hide updates of ghost states and facilitate the
application of SMT solvers to the veri�cation of complex heap data structures.
We applied Stereotypes to verify a Priority Inheritance Protocol.

Joint work of: Müller, Peter; Rudich, Arsenii

Dynamic encapsulation boundaries: a second order frame

rule for region logic

David Naumann (Stevens Institute of Technology, US)

We consider local reasoning in object-based programs via reasoning about ex-
plicit footprints of formulas and commands.

Footprints are state-dependent expressions that denote certain location sets.
We give a second order frame rule for soundly hiding a module invariant from

clients that respect a dynamic encapsulation boundary.
The boundary is a footprint for the hidden invariant, expressed in client-

visible terms.

Typing, Analysis and Veri�cation of Heap-Manipulating Programs 11

Keywords: Veri�cation, local reasoning

Joint work of: Naumann, David; Banerjee, Anindya

Abstraction vs Veri�cation : Classes vs Patterns

James Noble (Victoria University of Wellington, NZ)

Veri�cation approaches based on ownership (such as Boogie and JML) are rea-
sonably successful at handling designs that can be represented as individual
classes. Unfortunately, object ownership does not work as well where designs
involve multiple classes - such as many Design Patterns. In this talk, I'll out-
line some proposed research on new abstractions that can represent patterns
explicitly, involving multiple classes. I hope this may not only make pattern im-
plementations easier to write and reuse, but also support their veri�cation via
forms of ownership.

Equivalences of object-oriented program components

Arnd Poetzsch-He�ter (TU Kaiserslautern, DE)

We consider object-oriented program components as units for modular program
veri�cation. In particular, we investigate so-called dynamic boxes as components.
A dynamic box is a component that can have multiple component instances at
runtime.

The implementation of such a box consists of a creation class K and the
minimal declaration-closed set of classes and interfaces containing K. At runtime,
a box instance C is created by creating a K-object X. C comprises all objects
that are directly or indirectly created by X.

The talk investigates the equivalence of boxes in certain classes of program
contexts. To abstract from the implementation, we de�ne a behavioral semantics
based on the incoming and outgoing messages of a box instance. To prove equiv-
alence, we derive a heap-independent and suitable representation of the com-
ponent behavior, the so-called behavior denotation. Using program veri�cation
techniques, we prove the behavior denotation correct w.r.t. to the operational
program semantics. The equivalence proof is based on an adequacy result for the
behavioral semantics and a proof that the behavior denotations are equal.

Logical Concurrency Control From Sequential Proofs

Ganesan Ramalingam (Microsoft Research India - Bangalore, IN)

In this talk, we consider the problem of making a sequential library safe for
concurrent clients.

12 Peter O'Hearn, Arnd Poetzsch-He�ter and Shmuel Mooly Sagiv

Informally, given a sequential library that works satisfactorily when invoked
by a sequential client, we wish to synthesize concurrency control code for the
library that ensures that it will work satisfactorily even when invoked by a
concurrent client (which may lead to overlapping executions of the library's
procedures).

Formally, we consider a sequential library annotated with assertions along
with a proof that these assertions hold in a sequential execution.

We show how such a proof can be used to derive a concurrency control for
the library that guarantees that the library's execution will satisfy the same
assertions even when invoked by a concurrent client.

We extend the approach to guarantee linearizability: any concurrent execu-
tion of a procedure is not only guaranteed to satisfy its speci�cation, it also
appears to take e�ect instantaneously at some point during its execution.

An interesting open question is how such an approach can be extended to
deal with heap allocated data and whether it is possible to derive �ne-grained
locking schemes in the presence of heap allocated data.

Keywords: Synthesizing concurrency control, atomicity, linearizability

Joint work of: Deshmukh, Jyotirmoy; Ramalingam, G.; Ranganath, Venkatesh
Prasad; Vaswani, Kapil

Sequential Veri�cation for Concurrency

Noam Rinetzky (University of London, GB)

Designing, implementing, and verifying concurrent programs is a a di�cult and
challenging problem.

In this talk, I describe two approaches which allow to lift existing sequential
reasoning techniques to the concurrent setting.

Keywords: Sequential reasoning, concurrency, serializability, linearizability, sep-
aration logic, TVLA, resilient assertions, hindsight lemma

Joint work of: Rinetzky, Noam; Attiya, H.; O'Hearn, P.W.; Ramalingam, G.;
Vechev, M.T.; Yahav, E.; Yorsh, G.

Shape Analysis Applied to C Code

Xavier Rival (ENS - Paris, FR)

Xisa is an abstract interpretation based shape analyzer, which infers invariants
for C programs. The analyzer uses data structure de�nitions provided by the
user in the form of inductive de�nitions.

The analysis process relies on both unfolding (materialization) and folding
(widening) of inductive de�nitions. We will present ongoing work on extending

Typing, Analysis and Veri�cation of Heap-Manipulating Programs 13

the subset of the C language handled by Xisa. The C memory model presents
many signi�cant challenges. In particular, we formalize the abstraction of point-
ers, composites (structs and unions), and arrays, and we show how these features
a�ect the transfer functions of the analysis.

Separation logic and the C5 generic collection library

Peter Sestoft (IT University of Copenhagen, DK)

We present fragments of a substantial software library that will be used as case
study in a project whose goal is to extend (a version of) separation logic to cover
a realistic programming language such as C#.

Keywords: Separation logic, speci�cation, veri�cation, collection library, C#

A glimpse of my Ph.D.: pointer analysis and separation

logic

Elodie-Jane Sims (ENS - Paris, FR)

We are interested in modular static analysis to analyse softwares automatically.
We focus on programs with data structures, and in particular, programs with
pointers. The �nal goal is to �nd errors in a program (problems of dereferencing,
aliasing, etc) or to prove that a program is correct (regarding those problems)
in an automatic way.

Isthiaq, Pym, O'Hearn and Reynolds have recently developed separation log-
ics, which are Hoare logics with assertions and predicates language that allow
to prove the correctness of programs that manipulate pointers. The semantics of
the logic's triples ({P}C{P ′}) is de�ned by predicate transformers in the style
of weakest preconditions.

We expressed and proved the correctness of those weakest preconditions (wlp)
and strongest postconditions (sp), in particular in the case of while-loops. The
advance from the existing work is that wlp and sp are de�ned for any formula,
while previously existing rules had syntactic restrictions.

We added �xpoints to the logic as well as a postponed substitution which then
allow to express recursive formulae. We expressed wlp and sp in the extended
logic and proved their correctness. The postponed substitution is directly useful
to express recursive formulae. For example,

nclist(x) = µXv.(x = nil) ∨ ∃x1, x2.(isval(x1) ∧ (x 7→ x1, x2 ∗Xv[x2/x]))

describes the set of memory where x points to a list of integers.
Next, the goal was to use separation logic with �xpoints as an interface

language for pointer analysis. That is, translating the domains of those analyses
into formulae of the logic (and conversely) and to prove their correctness. One

14 Peter O'Hearn, Arnd Poetzsch-He�ter and Shmuel Mooly Sagiv

might also use the translations to prove the correctness of the pointer analysis
itself.

We illustrate this approach with a simple pointers-partitioning analysis. We
translate the logic formulae into an abstract language we designed which allows
us to describe the type of values registered in the memory (nil, integer, booleans,
pointers to pairs of some types, etc.) as well as the aliasing and non-aliasing re-
lations between variables and locations in the memory. The main contribution
is the de�nition of the abstract language and its semantics in a concrete domain
which is the same as the one for the semantics of for- mulae. In particular, the se-
mantics of the auxiliary variables, which is usually a question of implementation,
is explicit in our language and its semantics. The abstract language is a partially
reduced product of several subdomains and can be parametrised with existing
numerical domains. We created a subdomain which is a tabular data structure
to cope with the imprecision from not having sets of graphs. We expressed and
proved the translations of formulae into this abstract language.

Keywords: Separation logic, �xpoints, postponed substitution, pointer analysis,
shape analysis, abstract interpretation

Full Paper:
http://www.di.ens.fr/∼sims

Nondeterministic Abstract Regular Tree Model Checking

Tomas Vojnar (Brno University of Technology, CZ)

Abstract regular tree model checking (ARTMC) is a generic technique for au-
tomated formal veri�cation of various kinds of in�nite-state and parameterised
systems, including, e.g., parameterised protocols or programs manipulating dy-
namic, pointer-linked data structures. ARTMC is based on representing in�nite
sets of con�gurations of the examined systems by �nite tree automata whose
e�cient manipulation is thus crucial for an overall e�ciency of ARTMC. It
turns out that a signi�cant bottleneck in dealing with �nite tree automata is
the need to determinise them when checking inclusion or within the classical
automata minimisation procedure. We present several recent works whose aim
is to eliminate the need to determinise the automata being handled in ARTMC.
In particular, we present methods for an antichain-based inclusion checking on
nondeterministic tree automata and e�cient methods for reducing the size of
such automata based on various types of upward, downward, and composed
(bi)simulations. According to our experimental results, these techniques signif-
icantly improve the performance of ARTMC (in particular, when applied for
veri�cation of tree-manipulating programs).

The talk is based on joint work with Ahmed Bouajjani, Peter Habermehl,
and Tayssir Touili from LIAFA, University Paris Diderot�Paris7/CNRS, Parosh
Aziz Abdulla and Lisa Kaati from the Uppsala University, and Lukas Holik from
FIT, Brno University of Technology.

http://www.di.ens.fr/~sims

Typing, Analysis and Veri�cation of Heap-Manipulating Programs 15

Counterexample-Guided Focus

Thomas Wies (EPFL - Lausanne, CH)

The automated inference of quanti�ed invariants for heap-manipulating pro-
grams is considered one of the next challenges in software veri�cation.

The question of the right precision-e�ciency tradeo� for the corresponding
program analyses here boils down to the question of the right treatment of dis-
junction below and above the universal quanti�er. In the closely related setting
of shape analysis one uses the focus operator in order to adapt the treatment of
disjunction (and thus the e�ciency-precision tradeo�) to the individual program
statement. One promising research direction is to design parameterized versions
of the focus operator which allow the user to �ne-tune the focus operator not
only to the individual program statements but also to the speci�c veri�cation
task. We carry this research direction one step further. We �ne-tune the focus
operator to each individual step of the analysis (for a speci�c veri�cation task).
This �ne-tuning must be done automatically. Our idea is to use counterexamples
for this purpose. We realize this idea in a tool that automatically infers quan-
ti�ed invariants for the veri�cation of a variety of heap-manipulating programs.
This is joint work with Andreas Podelski.

Keywords: Quanti�ed invariants of heap programs, shape analysis, abstraction
re�nement

Phalanx: Parallel Checking of Expressive Heap Assertions

Greta Yorsh (IBM TJ Watson Research Center - Hawthorne, US)

We present Phalanx - a practical framework for dynamically checking expressive
heap properties such as ownership, sharing and reachability.

Phalanx uses novel parallel algorithms to e�ciently check heap properties
utilizing the available cores in the system.

To debug her program, a programmer can annotate it with expressive heap
assertions in JML, which use heap primitives provided by Phalanx.

The framework combines a modi�ed version of the JML compiler with a spe-
cialized runtime to e�ciently evaluate these assertions using parallel algorithms.
The Phalanx runtime has been implemented on top of a production virtual ma-
chine.

We applied Phalanx to real world applications in various scenarios, and found
expressive heap assertions to be extremely valuable in debugging and program
understanding. Further, our experimental results indicate that evaluating heap
queries using parallel algorithms can lead to signi�cant performance improve-
ments, often resulting in linear speedups as the number of cores increases.

Keywords: Reachability, ownership, runtime assertion checking, parallel algo-
rithms, garbage collector

Joint work of: Yorsh, Greta; Yahav, Eran; Vechev, Martin; Bloom, Bard

	09301 Abstracts Collection Typing, Analysis and Verification of Heap-Manipulating Programs — Dagstuhl Seminar —
	 Peter O'Hearn, Arnd Poetzsch-Heffter and Shmuel Mooly Sagiv

