
09411 Abstracts Collection

Interaction versus Automation: The two Faces of

Deduction

� Dagstuhl Seminar �

Thomas Ball1, Jürgen Giesl2, Reiner Hähnle3 and Tobias Nipkow4

1 Microsoft Corp. - Redmond, USA

tball@microsoft.com
2 RWTH Aachen, D

giesl@informatik.rwth-aachen.de
3 Chalmers UT - Göteborg, S

4 TU München, D

nipkow@in.tum.de

Abstract. From 04.10. to 09.10.2009, the Dagstuhl Seminar 09411 �In-

teraction versus Automation: The two Faces of Deduction� was held in

Schloss Dagstuhl � Leibniz Center for Informatics. During the seminar,

several participants presented their current research, and ongoing work

and open problems were discussed. Abstracts of the presentations given

during the seminar as well as abstracts of seminar results and ideas are

put together in this paper. The �rst section describes the seminar top-

ics and goals in general. Links to extended abstracts or full papers are

provided, if available.

Keywords. Formal Logic, Deduction, Arti�cial Intelligence

09411 Executive Summary � Interaction versus
Automation: The two Faces of Deduction

This seminar was the ninth in the series of the Dagstuhl "Deduction" seminars
held biennially since 1993. Its goal was to bring together the closely related
but unnecessarily disjoint communities of researchers working in interactive and
automatic program veri�cation.

Keywords: Formal Logic, Deduction, Arti�cial Intelligence

Joint work of: Ball, Thomas; Giesl, Jürgen; Hähnle, Reiner; Nipkow, Tobias

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2010/2421

Dagstuhl Seminar Proceedings 09411
Interaction versus Automation: The two Faces of Deduction
http://drops.dagstuhl.de/opus/volltexte/2010/2503

http://drops.dagstuhl.de/opus/volltexte/2010/2421

2 Thomas Ball, Jürgen Giesl, Reiner Hähnle and Tobias Nipkow

LTL over Description Logic Axioms

Franz Baader (TU Dresden, DE)

Most of the research on temporalized Description Logics (DLs) has concentrated
on the most general case where temporal operators can occur both within DL
concepts and in front of DL axioms. In this setting, reasoning usually becomes
quite hard. If rigid roles (i.e., roles whose interpretation does not vary over
time) are allowed, then the interesting inference problems (such as satis�ability
of concepts) become undecidable. Even if all symbols are interpreted as �exible
(i.e., their interpretations can change arbitrarily from one time-point to the
next), the complexity of reasoning is doubly exponential, i.e., one exponential
higher than the complexity of reasoning in pure DLs such as ALC. In this paper,
we consider the case where temporal operators are allowed to occur only in front
of axioms (i.e., ABox assertions and general concept inclusion axioms (GCIs)),
but not inside concepts. As the temporal component, we use linear temporal
logic (LTL) and in the DL component we consider ALC. We show that reasoning
becomes simpler in this setting.

Keywords: Description Logic, temporal logic, reasoning, complexity

Full Paper:
http://lat.inf.tu-dresden.de/research/papers/2008/BaaGhiLu-KR08.pdf

See also: Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over Description
Logic Axioms. In Proceedings of the 11th International Conference on Principles
of Knowledge Representation and Reasoning (KR2008), 2008.

The SMT "Big Bang": Applications of Z3 in Microsoft

Thomas Ball (Microsoft Research - Redmond, US)

SMT solvers have been the focus of increased recent attention thanks to techno-
logical advances and an increasing number of applications. The Z3 solver from
Microsoft Research is noteworthy both concerning technological advances and
applications. I will describe several of the applications of Z3, such Pex (Program
EXploration) for generating test cases for .NET binaries, SAGE for security
testing, Static Driver Veri�er version 2.0 (shipped with the Windows 7 Driver
Development Kit), PRE�x (enchanced with bit-precise reasoning to �nd integer
over�ows), SpecExplorer from the Protocol Test Team for generating test inputs
from model-based test suites, as well as the HAVOC and VCC veri�ers for C
code.

http://lat.inf.tu-dresden.de/research/papers/2008/BaaGhiLu-KR08.pdf

Interaction versus Automation: The two Faces of Deduction 3

Model Evolution with Built-In Theories

Peter Baumgartner (NICTA - Canberra, AU)

Many applications of automated deduction require reasoning modulo some form
of integer arithmetic or other theories. Unfortunately, theory reasoning support
in current approaches is sometimes too weak for practical purposes. This problem
has been widely recognised and is currently a hot topic.

In previous work, we have shown how to add linear integer arithmetic rea-
soning to the Model Evolution calculus. The drawback of this approach is that,
although complete, it builds on assumptions that make it di�cult to apply it
to other theories than linear integer arithmetic. In the talk we will present a
new approach that solves this problem, is conceptually simpler and easier to
implement.

Keywords: Theorem proving, arithmetic, SMT-solver

Joint work of: Baumgartner, Peter; deMoura, Leonardo; Tinelli, Cesare

Proof Assistant vs. Extended Static Checking: The Two
Faces of Program Veri�cation

Bernhard Beckert (Universität Koblenz-Landau, DE)

This talk compares two paradigms/philosophies of program veri�cation: using a
proof assistant and using extended static checking. We discuss their di�erences,
similarities, and what they can learn from each other.

Generalized E�cient Array Decision Procedures

Nikolaj Bjorner (Microsoft Research - Redmond, US)

The theory of arrays is ubiquitous in the context of automatic software and hard-
ware veri�cation and symbolic analysis. The basic array theory was introduced
by McCarthy and allows to symbolically representing array updates.

To this date the theory of arrays itself remains fundamental to how modern
program veri�cation, test-case generation, and model-based program tools model
program heaps and higher level data-types, such as sets and �nite maps.

We present combinatory array logic, CAL, using a small, but powerful core
of combinators, and reduce it to the theory of uninterpreted functions.

CAL allows expressing properties that go well beyond the basic array theory.
CAL does not allow expressing the identity function I. CAL+I on the other hand
allows encoding arbitrary lambda terms. We provide a new e�cient decision
procedure for the base theory as well as CAL. The e�cient procedure serves a
critical role in the performance of the state-of-the-art SMT solver Z3 on array
formulas from applications.

4 Thomas Ball, Jürgen Giesl, Reiner Hähnle and Tobias Nipkow

Keywords: Decision Procedures, Automation

Joint work of: Bjorner, Nikolaj; de Moura; Leonardo

Full Paper:
http://research.microsoft.com/apps/pubs/?id=102329

Decision procedures with unsound inferences for software
veri�cation

Maria Paola Bonacina (Università degli Studi di Verona, IT)

Applications in software veri�cation often require determining the satis�ability
of �rst-order formulae, including quanti�ers, with respect to some background
theories. Superposition-based inference systems are strong at reasoning with
equality, universally quanti�ed variables, and Horn clauses. Satis�ability modulo
theories (SMT) solvers are strong at reasoning with propositional logic, includ-
ing non-Horn clauses, ground equalities and integrated theories such as linear
arithmetic.

This talk presents an approach to combine these complementary strengths
by integrating the superposition-based inference system in the SMT-solver.

Since during software development conjectures are usually false, it is desirable
that the theorem prover terminates on satis�able instances. In the integrated
approach termination can be enforced by introducing additional axioms in such
a way that the system detects and recovers from any ensuing unsoundness.

Joint work with Chris Lynch and Leonardo de Moura

Keywords: Satis�ability modulo theories; superposition-based theorem proving;
model-based combination of theories

Joint work of: Bonacina, Maria Paola; Lynch, Christopher A.; de Moura
Leonardo

Full Paper:
http://profs.sci.univr.it/∼bonacina/papers/CADE2009dpllSPutp.pdf
See also: Maria Paola Bonacina, Christopher A. Lynch and Leonardo de Moura.
On deciding satis�ability by DPLL(Gamma+T) and unsound theorem prov-
ing. In Renate Schmidt (Ed.) Proceedings of the Twenty-Second International
Conference on Automated Deduction (CADE), Montreal, Canada, August 2009.
Springer, Lecture Notes in Arti�cial Intelligence 5663, 35-50, 2009.

Inductive Theorem Proving meets Dependency Pairs

Carsten Fuhs (RWTH Aachen, DE)

Current techniques and tools for automated termination analysis of term rewrite
systems (TRSs) are already very powerful. However, they fail for algorithms
whose termination is essentially due to an inductive argument.

http://research.microsoft.com/apps/pubs/?id=102329
http://profs.sci.univr.it/~bonacina/papers/CADE2009dpllSPutp.pdf

Interaction versus Automation: The two Faces of Deduction 5

Therefore, we show how to couple the dependency pair method for TRS ter-
mination with inductive theorem proving. As con�rmed by the implementation
of our new approach in the tool AProVE, now TRS termination techniques are
also successful on this important class of algorithms.

Keywords: Termination, Term Rewriting, Dependency Pairs, Inductive Theo-
rem Proving

Joint work of: Swiderski, Stephan; Parting, Michael; Giesl, Jürgen; Fuhs,
Carsten; Schneider-Kamp, Peter

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2422

Embedding Automated Deduction in a Question
Answering System

Ulrich Furbach (Universität Koblenz-Landau, DE)

The deduction system E-KRHyper is used as the main inference machine in the
question answering system Loganswer.

This talk focuses on aspects of interaction of other system components with
E-KRHyper. In particular we will discuss how machine learning and deduction
are co-operating in the task of handling a knowledge base of formulae, which
represents 12 million sentences.

Another aspect of embedding the prover, is the query relaxation mechanism,
which is applied, whenever the deduction component does not yield an immediate
answer.

This is joint work with Björn Pelzer and Ingo Glöckner.

Termination of Integer Term Rewriting

Juergen Giesl (RWTH Aachen, DE)

Recently, techniques and tools from term rewriting have been successfully applied
to prove termination automatically for di�erent programming languages.

The advantage of rewrite techniques is that they are very powerful for algo-
rithms on user-de�ned data structures.

But in contrast to techniques for termination analysis of imperative pro-
grams, the drawback of rewrite techniques is that they do not support data
structures like integer numbers which are pre-de�ned in almost all programming
languages.

To solve this problem, we extend term rewriting by built-in integers and adapt
the dependency pair framework to prove termination of integer term rewriting
automatically. Our experiments show that this indeed combines the power of
rewrite techniques on user-de�ned data types with a powerful treatment of pre-
de�ned integers.

http://drops.dagstuhl.de/opus/volltexte/2010/2422

6 Thomas Ball, Jürgen Giesl, Reiner Hähnle and Tobias Nipkow

Keywords: Termination analysis, integers, term rewriting, dependency pairs

Joint work of: Fuhs, Carsten; Giesl, Jürgen; Plücker, Martin; Schneider-Kamp,
Peter; Falke, Stephan

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2010/2423

Formalized Automation

Georges Gonthier (Microsoft Research UK - Cambridge, GB)

Formal proofs can increase the robustness and adaptability of programs by pro-
viding a better understanding of how and on which data they operate. This ratio-
nale should apply to programs that build proofs, though it is often trumped by
economy. However, we will show that higher-order logic o�ers a variety of tools
that help support the formalization of proof techniques, ranging from dependent
types and internal evaluation to type inference with value reconstruction. Com-
bined, these can capture a set of proof techniques rich enough to support our
work on the four-color theorem and on the odd order theorem.

Symbolic Execution and Partial Evaluation

Reiner Haehnle (Chalmers UT - Göteborg, SE)

Partial evaluation is a program specialisation technique that allows to optimize
programs for which partial input is known. We show that partial evaluation can
be used with advantage to speed up as well symbolic execution of programs.
Interestingly, the input required for partial evaluation comes from symbolic exe-
cution itself which makes it natural to interleave partial evaluation and symbolic
execution steps in a software veri�cation setup.

Keywords: Symbolic execution, partial evaluation, software veri�cation

Joint work of: Haehnle, Reiner; Bubel, Richard

Inching towards the completion of the Flyspeck Project

Thomas C. Hales (University of Pittsburgh, US)

Flyspeck is a large-scale proof formalization project. Its purpose is to give a
formal proof of the Kepler conjecture on sphere packings. The project is now
entering into its �nal stages. This talk will discuss the work of several people
who have made signi�cant recent contributions to the project. It will map out
the �nal stages of this project.

Keywords: Proof assistant, formal proof

http://drops.dagstuhl.de/opus/volltexte/2010/2423

Interaction versus Automation: The two Faces of Deduction 7

Comparing Uni�cation Algorithms in First-Order Theorem
Proving

Krystof Hoder (University of Manchester, GB)

Uni�cation is one of the key procedures in �rst-order theorem provers.
Most �rst-order theorem provers use the Robinson uni�cation algorithm.
Although its complexity is in the worst case exponential, the algorithm is

easy to implement and examples on which it may show exponential behaviour are
believed to be atypical. More sophisticated algorithms, such as the Martelli and
Montanari algorithm, o�er polynomial complexity but are harder to implement.

Very little is known about the practical perfomance of uni�cation algorithms
in theorem provers: previous case studies have been conducted on small num-
bers of arti�cially chosen problem and compared term-to-term uni�cation while
the best theorem provers perform set-of-terms-to-term uni�cation using term
indexing.

To evaluate the performance of uni�cation in the context of term indexing,
we made large-scale experiments over the TPTP library containing thousands of
problems using the COMPIT methodology. Our results con�rm that the Robin-
son algorithm is the most e�cient one in practice.

They also reveal main sources of ine�ciency in other algorithms.
We present these results and discuss various modi�cation of uni�cation algo-

rithms.

Keywords: Uni�cation, term indexing, �rst-order, theorem proving

Joint work of: Hoder, Krystof; Voronkov, Andrei

Full Paper:
http://www.springerlink.com/content/r168818720158m78/

See also: K. Hoder and A. Voronkov. Comparing uni�cation algorithms in �rst-
order theorem proving. In M. Hund B. Mertsching and Z. Aziz, editors, KI 2009:
Advances in Arti�cial Intelligence, Proceedings of the 32nd German Conference
on Arti�cial Intelligence, LNAI 5803. Springer, 2009.

Software Veri�cation using Liquid Types

Ranjit Jhala (University of California - San Diego, US)

ABSTRACT: We present Liquid Types, a new static program veri�cation tech-
nique which combines the complementary strengths of automated deduction
(SMT solvers), model checking (Predicate Abstraction), and type systems (Hindley-
Milner inference).

We show how liquid types can be used to statically verify a variety of invari-
ants like array-bound-safety, sortedness, balancedness, binary-search-ordering,

http://www.springerlink.com/content/r168818720158m78/

8 Thomas Ball, Jürgen Giesl, Reiner Hähnle and Tobias Nipkow

variable ordering, set-implementation, heap-implementation, and acyclicity of
data structure libraries for list-sorting, union-�nd, splay trees, AVL trees, red-
black trees, heaps, associative maps, extensible vectors, and binary decision di-
agrams. (Joint work with Patrick Rondon and Ming Kawaguchi)

Keywords: Re�nement Types, Predicate Abstraction, SMT, Hindley-Milner

Full Paper:
http://pho.ucsd.edu/liquid/

Inductive Decidability Revisited

Deepak Kapur (University of New Mexico - Albuquerque, US)

In a CADE paper in 2000, Kapur and Subramaniam proposed a framework for
deciding a subclass of inductive conjectures by placing restrictions on the de�-
nitions of recursive functions on freely-generated recursive data structures. The
subclass of inductive conjectures that could be handled in that paper was sub-
sequently extended by Kapur and Giesl presented at (IJCAR 2001) and (CADE
2003). However, the enlarged subclass still did not include any nonlinear con-
jectures or did not allow recursive de�nitions which could use some auxiliary
functions. In this talk, those conditions are relaxed, thus deciding validity of
nonlinear conjectures. Recursive de�nitions can also use other auxiliary func-
tions de�ned elsewhere, or de�ned in a mutually recursive style. De�nitions can
use quanti�er-free Presburger constraints as conditions. Previous work was done
using the cover set induction method, a heuristic for implementing the explicit
induction approach. This talk will illustrate how the framework also works for the
socalled inductionless induction or implicit induction approach. A decision pro-
cedure for the enlarged class of conjectures is given. Its implementation demon-
strates that syntactic checks on de�nitions and conjectures take much less time
compared to the time spent on attempting proofs of conjectures in the enlarged
class.

Keywords: Mechanization of induction, decision procedures, inductive conjec-
tures

Joint work of: Falke, Stephan; Kapur, Deepak

Deductive Veri�cation of Multi-threaded Java Programs
by Symbolic Execution

Vladimir Klebanov (Universität Koblenz-Landau, DE)

We present an approach for deductive veri�cation of multi-threaded Java pro-
grams. For this we have de�ned a Dynamic Logic and implemented a veri�cation
calculus in the KeY system. The calculus is based on symbolic execution, proves
full functional properties and can handle unbounded multi-threading. We report
on the arising deduction issues.

http://pho.ucsd.edu/liquid/

Interaction versus Automation: The two Faces of Deduction 9

Finding Loop Invariants Using a Theorem Prover

Laura Kovacs (ETH Zürich, CH)

This talk presents how quanti�ed loop invariants of programs over arrays can be
automatically inferred using a �rst order theorem prover, reducing the burden
of annotating loops with complete invariants.

Our approach allows one to generate �rst-order invariants containing alter-
nations of quanti�ers.

For doing so, we deploy symbolic computation methods to generate numeric
invariants of the scalar loop variables, based on the software package Aliga-
tor, and then use update predicates of the loop. An update predicate for an
array A expresses updates made to A. We observe that many properties of up-
date predicates can be extracted automatically from the loop description and
loop properties obtained by other methods such as a simple analysis of coun-
ters occurring in the loop, recurrence solving and quanti�er elimination over
loop variables. The �rst-order information extracted from the loop description
can use auxiliary symbols, such as symbols denoting update predicates or loop
counters. After having collected the �rst-order information, we run the satu-
ration theorem prover Vampire to eliminate the auxiliary symbols and obtain
loop invariants expressed as �rst-order formulas. When the invariants obtained
in this way contain skolem functions, we de-skolemise them into formulas with
quanti�er alternations.

Our method does not require the user to give a post-condition, a prede�ned
collection of predicates or any other form of human guidance and avoids inductive
reasoning.

This is a joint work with Andrei Voronkov (University of Manchester, UK).

Keywords: Program veri�cation, invariant generation, sumbolic computation,
theorem proving

Full Paper:
http://www.springerlink.com/content/h4208k235552777q/

See also: @inproceedingsKovacsV09, author = L. Kovács and A. Voronkov, title
= Finding Loop Invariants for Programs over Arrays Using a Theorem Prover,
booktitle = FASE, year = 2009, pages = 470-485

Deciding Function Images and Recursive Functions over
Data Types by BAPA Reduction

Viktor Kuncak (EPFL - Lausanne, CH)

I describe decision procedures for logics that supports sets, multisets, cardinality
operator, as well as function and relation images. I also describe a parameterized
decision procedure for classes of recursively de�ned functions on algebraic data
types.

http://www.springerlink.com/content/h4208k235552777q/

10 Thomas Ball, Jürgen Giesl, Reiner Hähnle and Tobias Nipkow

The presented procedures reduce the satis�ability problem to the satis�abil-
ity in BAPA (Boolean Algebra with Presburger Arithmetic). I outline a frame-
work for BAPA reductions and show that, in addition to these new examples,
some existing expressive logics such as weak monadic second-order logic of two
successors and two-variable logic with counting �t into the framework. This al-
lows us to combine expressive logics even when their signatures share set algebra
operations.

Keywords: Decision procedure, set algebra, cardinality, algebraic data types,
Tarskian set constraints

Simplex algorithm and formal proofs

Assia Mahboubi (Ecole Polytechnique - Palaiseau, FR)

Joint work with Pierre-Yves Strub (INRIA Rocquencourt - Tsinghua University,
Beijing)

The simplex algorithm is both a standard method in optimization and the
basis of decision methods for linear arithmetics, implemented for instance in var-
ious SMT tools. We propose to discuss our formalization inside the Coq system
the theory of the simplex algorithm, ie. the correctness proof of the optimization
algorithm. We will also present the computational counter-part of this work,
eventually leading to e�cient proof-producing decision procedures.

Keywords: Coq, decision procedures, linear arithmetic, formal proofs

Joint work of: Mahboubi, Assia; Strub, Pierre-Yves

Combination of automatic and interactive proving in
program veri�cation

Claude Marche (INRIA - Orsay, FR)

The Why platform (http://why.lri.fr) is a set of tools for deductive veri�cation
of Java and C source code. In both cases, the requirements are speci�ed as
annotations in the source, in a special style of comments. It is based on a unique,
stand-alone, veri�cation condition generator called Why, which is able to output
goals in the native syntax of many provers, either automatic or interactive ones.

In this talk I will show the importance of combining several provers to perform
program veri�cation.

Keywords: Program veri�cation, combination of provers

Interaction versus Automation: The two Faces of Deduction 11

Decreasing Diagrams and Relative Termination

Aart Middeldorp (Universität Innsbruck, AT)

In this talk, based on joint work with Nao Hirokawa, we present a new con�u-
ence result for left-linear term rewrite systems based on critical pairs and relative
termination. The proof is based on the decreasing diagrams technique. We fur-
ther show how to encode the rule-labeling heuristic for decreasing diagrams as
a satis�ability problem. We give experimental data for both methods.

Keywords: Con�uence, automation, decreasing diagrams, relative termination

Sledgehammer: Judgment Day

Tobias Nipkow (TU München, DE)

Sledghammer is Isabelle's proof method that calls external �rst order provers E,
Spass and Vampire. How well does it work? We present an empirical evaluation
of Sledgehammer using existing Isabelle theories.

Joint work of: Nipkow, Tobias; Böhme, Sascha

Verifying C code in a microkernel

Michael Norrish (NICTA - Canberra, AU)

This paper presents the formal Isabelle/HOL framework we use to prove re�ne-
ment between an executable, monadic speci�cation and the C implementation
of the seL4 microkernel. We describe the re�nement framework itself, the au-
tomated tactics it supports, and the connection to our previous C veri�cation
framework. We also report on our experience in applying the framework to seL4.
The characteristics of this microkernel veri�cation are the size of the target
(8,700 lines of C code), the treatment of low-level programming constructs, the
focus on high performance, and the large subset of the C programming language
addressed, which includes pointer arithmetic and type-unsafe code.

Keywords: Veri�cation, interactive theorem-proving, micro-kernels

Full Paper:
http://nicta.com.au/__data/assets/pdf_�le/0018/20961/tphols2009.pdf

See also: Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick,
David Cock and Michael Norrish. Mind the Gap: A Veri�cation Framework for
Low-Level C. Proceedings of TPHOLs, Munich, 2009. LNCS 5674, pp500�515.

http://nicta.com.au/__data/assets/pdf_file/0018/20961/tphols2009.pdf

12 Thomas Ball, Jürgen Giesl, Reiner Hähnle and Tobias Nipkow

Beluga: programming with dependent types and
higher-order data

Brigitte Pientka (McGill University - Montreal, CA)

The logical framework LF supports specifying formal systems and proofs about
them using a simple, powerful technique, namely higher-order abstract syntax
(HOAS). Recently, it has been for example successfully used to specify and verify
guarantees about the run-time behavior of mobile code. However, incorporating
logical framework technology into functional programming to directly allow pro-
grammers to describe and reason about properties of programs from within the
programming language itself has been a major challenge.

In this talk, I will present Beluga, a dependently-typed functional language
which supports programming with data speci�ed in the logical framework LF.
First, I will show how to implement normalization for typed lambda-terms in Bel-
uga, and highlight its theoretical foundation based on contextual types. Second,
I will discuss practical challenges regarding type reconstruction for dependently
typed systems and summarize the status of our implementation.

Keywords: Logical frameworks, dependent types, type theory

Automated Deduction for Hybrid Systems

Andre Platzer (Carnegie Mellon University - Pittsburgh, US)

Hybrid systems are models for complex physical systems and are de�ned as
dynamical systems with interacting discrete transitions and continuous evolu-
tions along di�erential equations. They arise frequently in many application
domains, including aviation, automotive, railway, and robotics. As a theoretical
and practical foundation for deductive veri�cation of hybrid systems, we present
a dynamic logic for hybrid systems: di�erential dynamic logic. Our veri�cation
approach for this logic is a compositional proof calculus combining results from
symbolic logic, real algebraic geometry, di�erential algebra, and computer alge-
bra. Our main result proves that this calculus axiomatizes the transition behavior
of hybrid systems completely relative to di�erential equations. Our approach is
implemented in the hybrid theorem prover KeYmaera for hybrid systems that
supports both automatic and interactive veri�cation of hybrid systems. With
KeYmaera, we have veri�ed several interesting case studies from ground and air
transportation.

See http://symbolaris.com/info/KeYmaera.html

Keywords: Dynamic logic, di�erential equations, sequent calculus, axiomatisa-
tion, automated theorem proving, veri�cation of hybrid systems

Full Paper:
http://symbolaris.com/pub/freedL.pdf

http://symbolaris.com/info/KeYmaera.html
http://symbolaris.com/pub/freedL.pdf

Interaction versus Automation: The two Faces of Deduction 13

See also: André Platzer. Di�erential dynamic logic for hybrid systems. Journal
of Automated Reasoning, 41(2), pages 143-189, 2008. See also André Platzer.
Di�erential-algebraic dynamic logic for di�erential-algebraic programs. Journal
of Logic and Computation, 2008

Static and Precise Detection of Concurrency Errors in
Systems Code Using SMT Solvers

Zvonimir Rakamaric (University of British Columbia - Vancouver, CA)

Context-bounded analysis is an attractive approach to veri�cation of concurrent
programs. Bounding the number of contexts executed per thread not only reduces
the asymptotic complexity, but also the complexity increases gradually from
checking a purely sequential program.

Previous work provided a method for reducing the context-bounded veri�ca-
tion of a concurrent boolean program to the veri�cation of a sequential boolean
program, thereby allowing sequential reasoning to be employed for verifying
concurrent programs. In this work, we adapt the encoding to work for systems
programs written in C with the heap and accompanying low-level operations
such as pointer arithmetic and casts. Our approach is completely automatic:
we use a veri�cation condition generator and SMT solvers, instead of a boolean
model checker, in order to avoid manual extraction of boolean programs and
false alarms introduced by the abstraction. We evaluate our tool STORM on a
set of real-world Windows device drivers.

Keywords: Software veri�cation, software checking, concurrent programs, SMT
solvers

Full Paper:
http://www.zvonimir.info/publications/cav2009-lqr.pdf

See also: S. Lahiri, S. Qadeer, Z. Rakamaric, "Static and Precise Detection
of Concurrency Errors in Systems Code Using SMT Solvers", Proceedings of
the 21st International Conference on Computer Aided Veri�cation (CAV 2009),
Lecture Notes in Computer Science, Springer, Vol. 5643, 2009, pp 509-524

Automated Synthesis of Tableau Calculi

Renate Schmidt (University of Manchester, GB)

We present a method for synthesising sound, complete and terminating tableau
calculi. Given a well-de�ned speci�cation of the formal semantics of a logic, the
method generates a set of tableau inference rules which can then be used to
reason within the logic. The method guarantees that the generated rules form a
calculus, which is sound and constructively complete. If the logic can be shown

http://www.zvonimir.info/publications/cav2009-lqr.pdf

14 Thomas Ball, Jürgen Giesl, Reiner Hähnle and Tobias Nipkow

to admit �nite �ltration then adding a general blocking mechanism produces
a terminating tableau calculus. The process of generating tableau rules can be
completely automated and produces together with the blocking mechanism an
automated procedure for generating tableau decision procedures for logics. The
framework is intended to be as general as possible and covers a large class of
logics including well-known description and modal logics. For illustration we
show the workability of the approach on propositional intuitionistic logic.

Keywords: Synthesis, tableaux, decidability, blocking

Full Paper:
http://dx.doi.org/10.1007/978-3-642-02716-1_23

The Dependency Triple Framework for Termination
Analysis of Logic Programs

Peter Schneider-Kamp (Univ. of Southern Denmark - Odense, DK)

There are two major approaches to termination analysis of logic programs (LPs).
In the global approach one tries to �nd one global ranking function, that

proves termination of the given LP, while in the local approach, di�erent ranking
functions can be used for di�erent loops of the LP. Some automated techniques
in the global approach are based on a constraint-based framework to search for
a suitable ranking function. In the local approach, most techniques use a given
small set of functions which is either �xed or provided by the user.

We present a new local approach, the dependeny triple framework, which is
both modular on the level of loops and allows for constraint-based automated
generation of ranking functions. With this new framework, one can combine
arbitrary termination techniques for LPs (even including transformations from
LPs to term rewrite systems) in a completely modular way.

Keywords: Logic programming, termination analysis, ranking functions

Joint work of: Schneider-Kamp, Peter; Giesl, Jürgen; Nguyen, Manh Thang

Automated reasoning in extensions of theories of
constructors with recursively de�ned functions and
homomorphisms

Viorica Sofronie-Stokkermans (MPI für Informatik - Saarbrücken, DE)

We study possibilities of reasoning about extensions of base theories with func-
tions which satisfy certain recursion and homomorphism properties. Our focus
is on emphasizing possibilities of hierarchical and modular reasoning in such
extensions and combinations thereof.

http://dx.doi.org/10.1007/978-3-642-02716-1_23

Interaction versus Automation: The two Faces of Deduction 15

(1) We show that the theory of absolutely free constructors is local, and locality
is preserved also in the presence of selectors. These results are consistent
with existing decision procedures for this theory (e.g. by Oppen).

(2) We show that, under certain assumptions, extensions of the theory of abso-
lutely free constructors with functions satisfying a certain type of recursion
axioms satisfy locality properties, and show that for functions with values in
an ordered domain we can combine recursive de�nitions with boundedness
axioms without sacri�cing locality.
We also address the problem of only considering models whose data part is
the initial term algebra of such theories.

(3) We analyze conditions which ensure that similar results can be obtained if we
relax some assumptions about the absolute freeness of the underlying theory
of data types, and illustrate the ideas on an example from cryptography.

The locality results we establish allow us to reduce the task of reasoning about
the class of recursive functions we consider to reasoning in the underlying theory
of data structures (possibly combined with the theories associated with the co-
domains of the recursive functions).

As a by-product, the methods we use provide a possibility of presenting in a
di�erent light (and in a di�erent form) locality phenomena studied in cryptogra-
phy; we believe that they will allow to better separate rewriting from proving,
and thus to give simpler proofs.

Keywords: Decision procedures, recursive datatypes, recursive functions, ho-
momorphisms, veri�cation, cryptography

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2010/2424

Interactive Veri�cation of Application Speci�c Security
Protocols

Kurt Stenzel (Universität Augsburg, DE)

Formal veri�cation can give more con�dence in the security of cryptographic
protocols. Application speci�c security properties like �The service provider does
not loose money� can give even more con�dence than standard properties like
secrecy or authentication.

This yields more complex security properties that are proven using interactive
veri�cation. The veri�cation of this kind of application-speci�c property is part
of the SecureMDD approach, a model-driven development method for secure
smart card applications.

However, it is surprisingly easy to get a meaningful property slightly wrong.
The result is that an insecure protocol can be `proven' secure.

We illustrate the problem with a very small example, and propose a solution
that incorporates more of the real-world application into the formal model.

Keywords: Interactive veri�cation, security protocols

http://drops.dagstuhl.de/opus/volltexte/2010/2424

16 Thomas Ball, Jürgen Giesl, Reiner Hähnle and Tobias Nipkow

Full Paper:
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD

See also: Formal Veri�cation of Application-Speci�c Security Properties in a
Model-Driven Approach; Nina Moebius, Kurt Stenzel, Wolfgang Reif; Proceed-
ings of ESSoS 2010 - International Symposium on Engineering Secure Software
and Systems; Springer LNCS 2010; Pitfalls in Formal Reasoning about Security
Protocols; Nina Moebius, Kurt Stenzel, Wolfgang Reif; Proceedings of ARES
2010 - The Fifth International Conference on Availability, Reliability and Secu-
rity; IEEE Press 2010;

Dependently Typed Programming with Mutable State

Aaron Stump (University of Iowa - Iowa City, US)

The Guru veri�ed-programming language combines a dependently typed pure
functional programming language with a logic for machine-checked proofs about
its programs. Imperative abstractions like mutable arrays or aliased linked data
structures are supported by specifying a pure functional model, to use for proving
properties of programs using the abstractions; and an imperative implementation
in C, which the compiler inserts during compilation in place of the pure functional
model. Linear types help ensure that the functional model's behavior matches the
imperative implementation's. This talk will survey some imperative abstractions
implemented using this approach.

Keywords: Dependent types, aliasing, program veri�cation

Integrating SAT and SMT into the Coq proof assistant

Laurent Thery (INRIA - Sophia Antipolis, FR)

In this talk, we are going to report on our ongoing e�ort to integrate SAT/SMT
technologies inside Coq.

Certifying Termination Proofs: Interaction and
Automation

Rene Thiemann (Universität Innsbruck, AT)

Current termination analyzer for term rewrite systems are powerful tools for
generating termination proofs in a fully automatic way.

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/secureMDD

Interaction versus Automation: The two Faces of Deduction 17

However, sometimes the resulting proofs are incorrect due to some bug in
one of these analyzers. A human inspection of the proofs is often not feasible,
since the resulting proofs reach sizes of several megabytes.

To solve this problem, we show how one can use an interactive theorem prover
to develop a fully automatic certi�ed algorithm which can check the correctness
of proofs from a termination analyzer.

We also illustrate some similarities and di�erences between termination an-
alyzers and the certi�cation algorithm.

Our implementation IsaFoR / CeTA supports several termination techniques,
including dependency pairs, usable rules, the subterm-criterion, semantic label-
ing, size-change termination, and matrix interpretations. This variety allows us
to certify a large class of proofs that are found by current termination analyzers.

Keywords: Termination, certi�cation, theorem proving, term rewrite systems

Joint work of: Thiemann, René; Sternagel, Christian; Krauss, Alexander; Win-
kler, Sarah; Zankl, Harald

Full Paper:
http://cl-informatik.uibk.ac.at/software/ceta/

Interaction vs. Automation: The Automated Theorem
Proving View or A Kind of User's Guide to Automatic
Provers

Christoph Weidenbach (MPI für Informatik - Saarbrücken, DE)

Although SAT provers have seen impressive progress in previous years their
behavior is not "robust" in various aspects: the formulation of a problem matters,
small changes to formulas may drastically change the behaviour of an afterwards
applied prover, no single prover/algorithm dominates all others on all problems
etc. This is not surprising because SAT is a hard problem.

If SAT is not robust in the above sense then this applies as well to provers
for more expressive logics such as SMT or �rst-order logic. Therefore, it is not
suprising that a black box usage of such provers does not always lead to satis-
factory results. In such cases it may make a lot of sense to think of an overall
tool chain starting from the selection of a problem over its formalization down
to the eventual proof tasks already in terms of the eventually used automated
prover.

I illustrate the above arguments by a bunch of examples.

On prover interaction and integration with Isabelle/Scala

Makarius Wenzel (TU München, DE)

After several decades, most proof assistants are still centered around tty-bound
interaction in a tight read-eval-print loop.

http://cl-informatik.uibk.ac.at/software/ceta/

18 Thomas Ball, Jürgen Giesl, Reiner Hähnle and Tobias Nipkow

Even well-known Emacs modes for such provers follow this synchronous
model based on single commands. There have also been some attempts at re-
implementing prover interfaces in big IDE frameworks, while keeping the old
interaction model. Can we do better than that?

Already 10 years ago, the Isabelle/Isar proof language has emphasized the
idea of "proof document" (structured text) instead of "proof script" (sequence
of commands), although the implementation was still emulating tty interaction
in order to be able to work with the existing Proof General interface. After some
recent reworking of Isabelle internals, in order to support parallel processing
of theories and proofs, the original idea of structured document processing has
surfaced again.

Isabelle2009 already provides some support for interactive proof documents
with asynchronous / parallel checking, which awaits to be connected to a suit-
able editor framework (or "IDE"). The remaining problem is how to do that
systematically, without having to specify and implement complex protocols or
middle-ware for prover integration.

This is the point where we introduce the new Isabelle/Scala layer, which is
meant to expose certain aspects of Isabelle/ML to the outside world. The Scala
language (by Martin Odersky) is su�ciently close to ML in order to model well-
known prover concepts conveniently, but Scala also runs on the JVM and can
access existing Java libraries without requiring additional glue code. By building
more and more external system wrapping for Isabelle in Scala, we shall eventually
reach the point where we can integrate the prover seamlessly into existing IDEs
(say Netbeans). Although current experiments are focused on relatively simple
editor functionality in jEdit, the emerging Isabelle/Scala library is targeting
general tool integration.

For example, an Isabelle/Isar proof method might want to call into the
Scala/JVM world to invoke some ATP or model �nder that happens to be avail-
able there. Or some external tools might want to invoke Isabelle as a "service",
by interacting directly with a stylized Scala API, instead of generating adhoc
text �les.

Two automation challenges

Freek Wiedijk (Radboud University Nijmegen, NL)

We present two challenges for the automation of mathematics.
The �rst challenge is to automate the mathematical reasoning steps that

in a non-formalized mathematical textbook are just explained with the word
"therefore". The second challenge is to automate mathematics at the high school
level. We propose a project to combine these challenges and make them speci�c.

Keywords: Proof assistants, decision procedures, computer algebra

	09411 Abstracts Collection Interaction versus Automation: The two Faces of Deduction — Dagstuhl Seminar —
	 Thomas Ball, Jürgen Giesl, Reiner Hähnle and Tobias Nipkow

