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Abstract
Robot learning is usually done by trial-and-
error or learning by example. Neither of these 
methods takes advantage of prior knowledge or 
of any ability to reason about actions. We 
describe two learning systems. In the first, we 
learn a model of a robot's actions. This is used 
in simulation to search for a sequence of 
actions that achieves the goal of traversing 
rough terrain. Further learning is used to 
compress the results of this search into a set of 
situation-action rules. In the second system, we 
assume the robot has some knowledge of the 
effects of actions and can use these to plan a 
sequence of actions. The qualitative states that 
result from the plan are used as constraints for 
trial-and-error learning.  This approach greatly 
reduces the number of trials required by the 
learner. The method is demonstrated on the 
problem of a bipedal robot learning to walk. 

1. Introduction
Robot learning is necessarily incremental. That is, 
models of the world and models of the robot’s 
interaction with the world are updated as new 
information is obtained during the performance of some 
task. In contrast with data mining, where the problem is 
usually how to learn from very large amounts of data, 
incremental learning must solve the problem of how to 
acquire a concept given only small amounts of data. 
When the robot already has some domain knowledge, 
part of the solution is in using that knowledge to 
constrain the learning system’s search for an adequate 
model. In this paper, we give two examples of this kind 
of learning.
 In the first case, simple planning in a simulator is 
used to generate a large number of training instances 
that could not be obtained in practice (Sheh, 2010). In 
the second, a planner is used to construct constraints on 
the search space of a trial-and-error learner (Yik, 2007). 

2. Learning to Traverse Uneven Terrain
In our first example of robot learning, we use 
Behavioural Cloning (Michie, Bain, & Hayes-Michie, 
1990) to control of a four-wheel-drive robot, shown in 
Figure 1. This robot is used for autonomous operations 
in the RoboCup Rescue Robot League competitions and 
is able to traverse a variety of terrain ranging from flat 
floors to low rubble and step fields.  It is equipped with a 
3D range imager for sensing the terrain and an attitude 
sensor for detecting the robot’s pitch and roll.  A laser 

range finder mounted on an automatically levelled 
platform, is used to track the robot’s position.
 The robot is constrained to perform one of eight 
possible actions. Each action drives the wheels on each 
side of the robot at a pre-set speed for one second. The 
eight actions, when performed on flat ground, result in a 
forward left turn, straight forward drive,  forward right 
turn, spin left, spin right, backward left turn, straight 
backward drive and backward right turn respectively. 
On uneven and rough terrain, the result of an action is 
difficult to predict.
 Control strategies are learned and evaluated on step 
fields,  which were developed for testing response robots 
(Jacoff,  Downs, Virts, & Messina, 2008). An example of 
a step field sequence is shown in Figure 1. It is designed 
to be an analogue for unstructured terrain,  such as 
rubble and debris, that is reproducible and on which 
comparable tests can be carried out. The robot’s task is 
to drive over the step field without flipping over, 
becoming stuck or leaving the step field.
 The first requirement for learning is to have a 
representation of the robot’s world. The general layout 
of the terrain, such as a hill,  flat or valley, determines 
long-range driving strategy while obstacles, such as 
protrusions or holes, determine limitations on possible 
actions. We represent the terrain in the immediate 
vicinity of the robot by dividing it into several regions 
of differing size and shape. These regions are show in 
Figure 2. For the terrain in each region, a plane of best 
fit contributes three features: the average height relative 
to the robot, the angle between the normal of the plane 
and the vertical axis and the angle that the normal, 
projected onto the horizontal plane, makes with the 
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Figure 1.4: The robot, Emu, at the start of the Stepfield Dash.

custom built physics simulator. This includes the ability to generate random

Stepfield terrains with varying degrees of difficulty. We use the simulator as a

training environment and as a test environment, in order to evaluate a variety

of controllers.

Concerns have often been expressed about the use of simulation for learn-

ing and to evaluate techniques that are to be used on real robots. Brooks and

Matarić (1993) sum this up in three broad categories. It is too tempting to

make the simulated environment “easy”, both by adjusting its behaviour and

by providing information not available in reality – “Simulations are doomed to

succeed”. Simulation diverges from reality in its overall behaviour, in particu-

lar as they are often deterministic and simulation introduces artefacts that do

not occur in the real world.

We take several measures to address these concerns. We discuss these in

more detail in Section 3.3.1. We validate the simulator according to meth-

Figure 1. Robot traversing NIST step fields
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robot’s forward axis. The co-ordinates of the point in 
the terrain within the region of interest that deviates the 
most from this plane provide another three numeric 
features.
 From the 3D range camera images, it is possible to 
create faithful reconstructions of the step fields. Both 
the robot and step fields are reproduced in a physics 
simulator (JMonkeyEngine, 2010), as shown in Figure 
3. The performance of the simulated robot closely 
matches that of the real robot. The simulator is used for 
learning and testing but we also evaluate the entire 
system by training and testing on the real robot.

2.1. An Autonomous Instructor
One way of generating training examples for learning 
how to drive over rough terrain is to observe a human 
operator remotely controlling the robot. Since this is 
time consuming, this method does not yield a large 
number of examples.
 The simulator allows us to implement an automated 
instructor based on a forward search, similar to that 
used by Green (2007). For a given terrain, an A* 
algorithms searches for a sequence of actions that takes 
the robot over the terrain to a specified distance ahead. 
Once a path has been found, the path is replayed. 
Simulated sensor data are gathered at each step and 
stored as the training data, along with the best action 
found by the search. Weka’s decision tree learning 
algorithm, J48, uses these examples to construct rules 
that map the incoming sensor data to the best action to 
perform, given those data.
 Note that the A* search does not make use of sensor 

data at all. It simply tries different sequences of actions 
in the simulated environment until it finds a sequence 
that succeeds.  In effect, it has “perfect” knowledge of 
what the robot will do, knowledge that is clearly 
unrealistic as sensors are limited in field of view, 
accuracy and resolution.
 Table 1 shows a fragment of a decision tree learned 
by this method.  In practice, an operational decision tree 
may contain hundreds of nodes. The method has been 
evaluated in simulation and on the real robot and found 
to perform as well as a human operator, within the error 
of the experiments (Sheh, 2010).
 The main conclusion drawn from this experiment is 
that considerable advantage can be gained by creating a 
model of a robot’s environment from sensor data. The 
model can be used to envisage many possible future 
states of the robot. The robot is expected to make 
decisions in real-time. Since the search space for finding 
a successful path through the step fields is very large, 
we perform search off-line on many randomly generated 
training scenarios. Machine Learning is used to generate 
a set of rules that implement a situation-action 
controller based. Machine Learning effectively 
summarises the decisions found by off-line search to be 
effective in different situations.
 In the case of a robot traversing rough terrain, all 
learning is based in training examples generated in 
simulation. Thus, we assume that it possible to construct 
a high-fidelity model of bot the robot and the terrain. In 
the next case, we use off-line search to constrain trial-
and-error learning on an actual robot. Here, we assume 
only an approximate model, avoiding the requirement 
for a high-fidelity simulation, which is often difficult to 
obtain.

3. Reinforcement Learning Constrained by 
Planning

Reinforcement learning is a form of trial-and-error 
learning that works well as long as the number of state 
variables and actions is small. Subsequent to early 
formulations of reinforcement learning (Michie & 
Chambers,  1968; Sutton & Barto,  1998; Watkins, 1989), 
many methods have been proposed to alleviate this 
problem. These include the use of sophisticated value 
functions, relational reinforcement learning (Dzeroski, 
De Raedt, & Blockeel, 1998),  hierarchical learning  
(Dietterich, 1998; Hengst, 2002) and hybrids of 
symbolic AI and reinforcement learning (Ryan, 2002). 
Here, we discuss a hybrid method aimed at the practical 
application of trial-and-error learning in continuous 
domains with many degrees of freedom.
 The method is demonstrated on the problem of 
learning a walking gait for a bipedal robot. Bipedal gaits Figure 3. Reconstructed step field in simulator

Figure 2. Step field representation

Table 1. Fragment of a decision tree

if robot is in a deep valley then
! if the valley is really deep then
! ! reverse
! else if obstacle in front of robot is on the left then
! ! turn right
! else
! ! turn left
else
! drive forward



can be constructed by careful modelling and algorithm 
design. However, this is a time-consuming process that 
usually requires very intimate knowledge of the robot. 
Our approach is to treat the robot dynamics as a “black 
box”, learning the properties needed to make the robot 
walk. Were we to attempt naïve reinforcement learning 
to generate a gait, the number of trials required would 
be prohibitive. Instead, a planner constructs a qualitative 
description of the gait using fairly obvious, common 
sense knowledge of the main phases in walking. This 
description is refined using a simple numerical 
optimisation algorithm. The result is that a sequence of 
symbolic actions is turned into an operational set of 
motor commands that respond to feedback from the 
pressure sensors attached to the robot’s feet. The 
architecture of the learning system is shown in Figure 4.
 The aim is to show that it is possible to do trial-and-
error learning on a physical robot without needing so 
many trials that we would wear out the mechanism or 
that it would only be possible if an accurate simulation 

were available. Experiments are performed on a Cycloid 
II robot, from Robotis. The robot is unmodified except 
by the addition of four pressure sensors on the corners 
of each foot pad (see Figure 5).
 The objective set for learning is to be able to walk 
50cm in a straight line. Since each step moves the robot 
three or four centimetres, between 12 and 17 steps are 
need to reach the 50cm target. This is a sufficient 
number to consider the walk stable. A learning trial is 
successful if the robots reaches its target and fails if it 
falls or the trial lasts longer than a pre-defined time 
limit. The latter is needed in case the robot takes such 
small steps that it effectively walks on the spot.

4. Qualitative Representation and Planning
The first step in constructing a controller for walking is 
to specify the actions available to the robot. Actions are 
described in a STRIPS-style notation (Fikes & Nilsson, 
1971) which is extended by allowing actions to be 
parameterised. For example, the action for swaying 
sideways is shown in Table 2.  The add list for the action 
specifies that after execution,  the hip angle in the lateral 
plane should be positive, that is, leaning to the left, and 
the body weight has shifted onto the left leg. The joint 
angles are illustrated in Figure 6. Note that inequalities 
in the add list can be treated as constraints on the 
parameters, θ and ε. After the planner has produced a 
sequence of actions,  each with its own parameters, these 

Figure 5. Cycloid II robot with pressure sensors added to 
foot pads and tether to PC.
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Figure 4. Architecture of Learning System

Table 2. Specification for “sway sideways” action

SwaySideways(a): a ∈ [Left, Right], b ∈ [Left, Right], a ≠ y 

Precondition:
 Both feet are on the ground
 ForceSensor(x) > 0 ∧ ForceSensor(y) > 0

Add:
 Shift body weight onto leg, a
 θHip,y > 0 ∧
 ForceSensor(a) > ForceSensor(b) + ε

Delete:
 Remove constraints that conflict with the add list

Implementation:
 Set both hip joints to θHip,y



constraints can be collected and input to a constraint 
solver. This results in bounds on the possible values the 
parameters can take. Hence, we can reduce the size of 
the space that the learning algorithm must search to find 
operational parameter values. Unless stated otherwise, 
setting a joint angle is implemented as a simple 
proportional controller.

4.1. The Planner
The most common use of a planner is to find a sequence 
of actions that will lead from a initial state to a goal 
state. Often, the planner employs backwards chaining 
from the goal, finding actions whose effects include the 
goal conditions or the preconditions of other actions.
 Creating a plan for walking is somewhat different. 
In this case,  we want to find a sequence of actions that 
can be repeated so that after each repetition, the distance 
to the target has been reduced. Figure 7 shows an 
example of a looping plan. We use a depth-bounded 
forward search for suitable loops.  Because this domain 
does not have a very large number of possible actions, 
an exhaustive search is possible.  Thus, from the starting 
state, we perform a depth-first search of all possible 
action sequences. A loop is detected if a sub-sequence 
leads to a state that has been visited before. If a possible 
side-effect of executing this sub-sequence is forward 
movement, then it becomes a candidate for the learning 
algorithm. This is somewhat similar to building for 

macros.
 Table 3 gives the specification for the “lift leg” 
action. Note that the precondition of this action is 
contained in the add effects of the “sway sideways” 
action. Therefore,  “lift leg” is a candidate action to 
follow “sway sideways”. Also note that the 
implementation of “set joint angle” action is qualified. 
We want the rotation of the hip joint to by faster than 
that of the knee joint to reduce the chances of the robot 
over-balancing.
 Algorithm 1 is a sketch of the loop finding routine. 
It performs its search until it finds the first feasible loop 
or fails if it reaches the depth bound. The planner must 
not only find a loop but one that is likely to move the 
robot forward. For example, the robot could simply 
walk on the spot. Since no action in this domain can 
cause backward motion, we use a simple heuristic that 
the plan should include at least one action that causes 
forward motion, for example, LiftFwd, which causes a 
leg to be lifted and swung forward. A more larger 
domain, with a greater variety actions, may require 
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Figure 7. A looped plan

θHip,x

θKnee,x

θAnkle,x θAnkle,y

θHip,y

Figure 6. The left diagram represents the angles that produce 
motion in  the sagittal  plane (front-back) and the right diagram 
represents the angles that  produce motion in the lateral plane 
(left-right). θHip,y, the rotational motion of the hip, is not 
shown.

Table 3. Specification for “lift leg” action

LiftLeg(x): x ∈ [Left, Right], y ∈ [Left, Right], x ≠ y

Precondition:
 The body weight is on leg, y
 θHip,y > 0 ∧
 ForceSensor(y) > ForceSensor(x) + ε

Add:
 Lift leg, x
 θHip,x > 0 ∧
 θKnee,x > 0 ∧
 θAnkle,x = θKnee,x  – θHip,x ∧
 ForceSensor(x) = 0

Delete:
 Remove constraints that conflict with the add list

Implementation:
 Set hip joint to θHip,x

 Set hip joint to θKnee,x

 Set ankle joint to θAnkle,x

 
oiHip,x > oiKnee,x



more complex qualitative reasoning to determine if a 
qualitative plan can be guaranteed to subsume an 
operational policy. However, for our tasks the 
experimental results, to be described, later, demonstrate 
that our simple criterion is effective.

4.2. Constraint Solving
Plan generation results in a sequence of actions required 
for the robot to walk. It also produces a sequence of 
qualitative states that contain constraints on parameter 
values such as joint angles (for example,  see Tables 2 
and 3).  In addition we can define global constraints. 
These will include the minimum and maximum angles 
achievable by the actuators and their maximum 
velocities, etc.
 The constraint solver is applied to successive states.   
After being applied to the initial state, it may determine 
some values that propagate to the next state. Thus, 
constraints solving is performed sequentially, 
propagating values from one state to the next,  until the 
final state is reached. We use the ECLiPSe constraint 
solver (Apt & Wallace, 2007), which is an instance of a 
constraint logic programing language.

5. Learning
After running the constraint solver, we have a 
parameterised plan in which the parameter values are 
known within the bounds of the constraints but we do 
not yet have precise values for them. The final stage is 
to determine these values by trial and error. The set of N 
parameters, where N is domain dependent, forms a 
continuous, multi-dimensional space. The parameter 
values reside within a known volume, specified by the 
constraints. Our-trial-and-error learner performs a 
simple hill-climbing search, starting from a random 
point in the space. Our performance measure is the 
distance travelled by the robot before it falls over.
 After running a trial (i.e. executing the plan with the 
parameter values specified by the current point in the 
search), we compare the distance travelled with the best 
previously achieved. If the new parameters perform 
better than the previous best,  the search continues from 

this point. Otherwise, the new parameters are discarded 
and another point in the search space is chosen. The 
new point is found by adding Gaussian noise to each 
parameter value. If the new point falls within the 
bounds of the constraints, we attempt another trial, if 
not, we generate a new set of random numbers. This 
process is summarised in algorithm 2.
 The best-first hill climbing algorithm could be 
replaced by other search methods, however, as we shall 
see in the next section, the experimental results show 
that a simple search is adequate for this task.

6. Experimental Results
The main hypothesis of this work is that the number of 
trials required to learn a gait should be small enough 
that the above process is practical on a real robot. This 
hypothesis was confirmed by our experiments. Apart 
from low-level motor control and sensing, all other 
programs ran off-board via a tether. Each trial was 
started by hand and a harness was attached to the 
Cycloid II to catch it after it fell. The harness was 
designed to neither help nor hinder the robot’s 
autonomous control.
 Fifteen attempts were made to  learn a stable gait. 
Of the 15, 14 succeeded in producing a working gait. 
The number of trials needed ranged from 9 to 92 with 
an average of 42. While the method is fairly reliable in 
producing a working gait,  the current set of action 
models and constraints do not produce anything like 
optimal results. The experiment in which no feasible 
value set could be found suggests that the simple best-
first hill climbing search works most of the time but can 
become trapped in a local maximum. Therefore, a 
mechanism is needed to reduce the chances of this 
happening.

7. Conclusion
A robot's interaction with its environment can be 
extremely complex and planning actions can be too 
time-consuming for the robot to be able to operate in 
real time. Learning allows the robot to build its own 
acquire efficient behaviours that are quick to execute. 
Unfortunately, learning usually requires many training 
examples and acquiring those examples can be very 
costly. Planning and learning can be combined so that a 

Algorithm 2. Hill Climbing

best ←null
best_distance ← 0
candidate ← random point in parameter space

repeat 
! if action constraints are not violated then
! ! execute plan on robot
! ! candidate_distance ← distance travelled 
! ! if candidate_distance > best_distance then
! ! ! best ← candidate 
! ! ! best_distance ← candidate_distance 

! candidate ← add Gaussian noise to best 
until target reached 

return best

Algorithm 1. Loop Finding

depth ← max depth 
plan ← []
visited ← []
find_plan(starting state, depth)
append check for goal to plan 

boolean find_plan(state, depth)
! If depth = 0 then
! ! return false
! if state in visited then
! ! if plan contains forward action then
! ! ! return true
! ! else return false
! visited ← append state to visited
! for all actions do
! ! if precondition satisfied by state then 
! ! ! state ← update state by action effects 
! ! ! plan ← append action to plan 
! ! ! if find_plan(state, depth−1) then
! ! ! ! return true



planner with an approximate world model provides 
constraints for the learning algorithm that constructs 
efficient behaviours. We have presented two examples 
of such hybrid systems. The first uses the robot's 
sensors to build an internal model that can be imported 
into a simulator. Off-line search finds solutions to many 
possible situations, which are then compiled by a 
machine learning algorithm into situation-action rules. 
The second method uses a planner to generate 
constraints for a trial-and-error learner. The results of 
experiments in simulation and on real robots show that 
the combination of planning and learning can be 
effective in building complex robot behaviours. 
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