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Abstract. Among many approaches to address the high-level decision
making problem for autonomous robots and agents, the robot program-
ming and plan language Golog follows a logic-based deliberative ap-
proach, and its successors were successfully deployed in a number of
robotics applications over the past ten years. Usually, Golog interpreter
are implemented in Prolog, which is not available for our target plat-
form, the bi-ped robot platform Nao. In this paper we sketch our first
approach towards a prototype implementation of a Golog interpreter in
the scripting language Lua. With the example of the elevator domain we
discuss how the basic action theory is specified and how we implemented
fluent regression in Lua. One possible advantage of the availability of a
Non-Prolog implementation of Golog could be that Golog becomes avail-
able on a larger number of platforms, and also becomes more attractive
for roboticists outside the Cognitive Robotics community.

1 Introduction

To address the problem of high-level decision making for autonomous robots or
agents, a number of different robot programming languages have been devel-
oped. Each of these follow a particular paradigm or technique how the problem
of decision making could be solved. Among them are for instance the Procedural
Reasoning System (PRS) [1], the Saphira architecture [2], Reactive Action Pack-
ages (RAP) [3], or the Reactive Plan Language (RPL) [4] and Structured Reac-
tive Controller (SRC) [5]. These approaches mostly follow a reactive paradigm
or deploy hierarchical task networks.

The robot programming and plan language Golog, on the other hand, fol-
lows a logic-based deliberative approach [6], and its successors were successfully
deployed in a number robotics applications over the past ten years. The appli-
cations range from service robotics to even robotic soccer applications. Golog
was used as the high-level decision-making component on a number of different
robot platforms, ranging from the RWI B14/B21 over the Sony Aibo to Lego
Mindstorms, and many more tailor-made platforms. During the course of the
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last decade it was extended with useful features like integrating sensing and ex-
ogenous actions [7], continuous change [8], or decision-theoretic planning [9] to
name just a few. It emerged into an expressive robot programming and plan
language and is used in the Cognitive Robotics community.

Golog interpreter are in general implemented in Prolog. This is straight-
forward as the semantic of the language constructs is described in the situation
calculus [10], a first order action logic which allows for reasoning about actions
and change. The implementation, or better the specification of Golog in Prolog
is just a page long, and it was shown that the implementation is correct, having
a proper Prolog interpreter [11].

Until now, we did not face any problems to run Golog on our robots [12],
though one has to note that it always took some extra computational resources
to do the action selection with Golog. However, for our current robot project, it
seems that no Prolog interpreter is available. We want to use Golog on the bi-ped
robot Nao from French Aldebaran, which is running Open Embedded Linux, for
which, to the best of our knowledge, no Prolog system is currently available.

This motivated to start with a re-implementation of Golog in a language
different from Prolog. We came up with using the the scripting language Lua
[13], which we also used for the Behaviour Engine that we are running on the
robot [14]. In this paper, we present our first approach towards a prototype
implementation of a Vanilla Golog interpreter in Lua. We first briefly introduce
the hardware platform and the software system which we are running on the
Nao, as this motivates our decisions to try a re-implementation of Golog, and
to use Lua for this purpose. Then, we introduce Golog and Lua, and show in
some detail the Prolog implementation of Golog, before we give details of our
Lua re-implementation. In particular, we show how the basic action theory is
specified or how regression is implemented in our interpreter. As a proof-of-
concept we implemented the elevator domain [6, 11]. We conclude with discussing
the preliminary state of this work and give an outlook to some future work.

2 Our Embedded System: The Nao Robot

2.1 Hardware Platform

In the past, we used and extended Golog for several robotics applications ranging
from service robotics to robotic soccer applications [12]. We learnt to value the
flexibility in modelling the application domain and expressing control knowledge
in an elegant way. Our Golog implementation was always based on Prolog, and
we could run a Prolog engine on our robots so far. It is worth noting that running
Golog on a mobile robot platform requires some extra computational resources.
For our latest robotics project, however, no Prolog system, to the best of our
knowledge, seems to be available. Moreover are the computational resources of
our new mobile robot platform quite restricted.

Currently, we are developing robotic soccer applications for the bi-ped hu-
manoid robot Nao built by French Aldebaran [15]. The platform is the successor



of the Sony Aibo in Robocup’s Standard Platform League. It is a 21 degree-
of-freedom humanoid robot about 58 cm tall and is equipped with two VGA
resolution cameras, ultrasonic sensors as well as infrared sensors, an inertial
measurement unit, tactile sensors and force resistance sensors in the feet. The
robot has microphones, loudspeakers, and it has a number of LEDs with which it
can display status information. It is powered by an AMD Geode 500 MHz CPU
and equipped with 256 MB of memory. Furthermore, it has 1 GB flash memory
for hard disk space.

2.2 Software Framework

The programming framework we are using on the Nao is the Fawkes framework.
The Fawkes robot software framework [16] provides the infrastructure to run
a number of plug-ins which fulfil specific tasks. Each plug-in consists of one
or more threads. The application runs a main loop which is sub-divided into
certain stages. Threads can be executed either concurrently or synchronised with
a central main loop to operate in one of the stages. All threads registered for
the same stage are woken up and run concurrently. The software architecture
of Fawkes follows a component-based approach. A component is defined as a
binary unit of deployment that implements one or more well-defined interfaces
to provide access to an inter-related set of functionality configurable without
access to the source code. Components are implemented in Fawkes as a plug-in.
For communication between the components we use a blackboard infrastructure
which serves well-defined communication interfaces.

Another building block of Fawkes is the use of a Lua-based Behaviour Engine
[14]. The idea of this behaviour engine is to provide a behaviour middle-ware
between the low-level robot system and high-level decision-making modules. The
behaviour engine deploys extended hybrid state machines for monitoring the
execution of action patterns or primitive actions. We decided to deploy Lua
for the Behaviour Engine, as this scripting language is lightweight with a small
memory footprint, though expressive enough for the task. Moreover, Lua showed
its potential in a number of successful Al applications so far.! The behaviour
middle-ware was designed with a high-level decision-making module such as a
Golog-based deliberative component in mind. The good experiences with Lua
influenced our decision for developing a Lua-based Golog interpreter.

3 Situation Calculus and Golog

3.1 Situation Calculus

The situation calculus is a first order language with equality which allows for
reasoning about actions and their effects. The world evolves from an initial
situation due to primitive actions. Possible world histories are represented by
sequences of actions. The situation calculus distinguishes three sorts: actions,

! See http://lua.org for a list of applications.



situations, and domain dependent objects. A special binary function symbol
do : action X situation — situation exists, with do(a,s) denoting the situa-
tion which arises after performing action a in the situation s. The constant Sy
denotes the initial situation, i.e. the situation where no actions have yet occurred.
The state the world is in is characterised by functions and relations with a sit-
uation as their last argument. They are called functional and relational fluents,
respectively.

For each action one has to specify a precondition axiom stating under which
conditions it is possible to perform the respective action and an effect aziom
formulating how the action changes the world in terms of the specified fluents.
An action precondition axiom has the form Poss(a(x),s) = P(x, s) where the
binary predicate Poss C action X situation specifies when an action can be
executed, and x stands for the arguments of action a. In the situation calculus
the effects of actions are formalised by so-called successor state axioms of the
form F(z,do(a,s)) = ¢j(x,a,8) V F(z,s) A ~¢p(z,a,s), where F denotes a
fluent, (p} and ¢ are formulae describing under which conditions F' is true, or
false resp. This axiom simply states that F' is true after performing action a if
gp} holds, or the fluent keeps its former value if it was not made false. Successor
state axioms describe Reiter’s solution to the frame problem [11], the problem
that all the non-effects of an action have to be formalised as well. Note that
free variables in the occurring formulae are meant to be implicitly universally
quantified. The background theory (also called basic action theory, or BAT for
short) is a set of sentences D consisting of D = X' U Dggq U Dgp U Dyng U Dg,,
where D,,, contains sentences about the successor state axioms, D,;, contains
the action precondition axioms, D, states sentences about unique names for
actions, and Dg, consists of axioms stating what holds in the initial situation.
Additionally, X' contains a number of foundational axioms defining situations.
For details we refer to [17,11].

3.2 Golog

The high-level programming language Golog [6] is based on the situation cal-
culus. As planning is known to be computationally very demanding in general,
which makes it impractical for deriving complex behaviours with hundreds of
actions, Golog finds a compromise between planning and programming. The
robot or agent is equipped with a situation calculus background theory. The
programmer can specify the behaviour just like in ordinary imperative program-
ming languages but also has the possibility to project actions into the future.
The amount of planning (projection) used is in the hand of the programmer.
With this, one has a powerful language for specifying the behaviours of a cog-
nitive robot or agent. While the original Golog is well-suited to reason about
actions and their effects, it has the drawback that a program has to be evalu-
ated up to the end before the first action can be performed. It might be that the
world changed between plan generation and plan execution so that the plan is
not appropriate or is invalid. The original Golog was extended over recent years
and has become an expressive robot programming language. Dialects of Golog



feature online execution, sensing facilities [7], continuous change [8], or decision-
theoretic planning [9], to name just a few. Golog and it’s derivatives were used
in a number of successful cognitive robotics applications such as [18-20, 12, 21].

Golog interpreter are usually based on Prolog, as it is straight-forward to
implement the logical situation calculus specification of the language in a logic
programming framework. In the following, we present the implementation of
Vanilla Golog.?

1. Sequence: each sequence of actions or program statements are evaluated from
left to right;
do(El : E2,S,S1) :- do(El1l,S,S2), do(E2,S2,S1).
2. Test action: a test actions evaluates the truth value of a logical formula;
do(?(P),S,S) :— holds(P,S).

3. Pick: a variable V is non-deterministically chosen and each occurrence of v
is substituted in program E resulting in E1;

do(pi(V,E),S,S81) :— sub(v,_,E,E1l), do(El,S,S1).
4. Star: implements the non-deterministic repetition of a program;
do(star(E),S,S1) := S1 =S ; do(E : star(E),S,S1).

5. Conditional: if the test on the condition holds, the then-branch is evaluated,
otherwise, the else-branch is taken into account;

do(if (P,E1,E2),S,S1) :— do((?(P) : El1) # (?(-P) : E2),S,S1).
6. Loop: the star operator is conditioned on P;
do (while (P,E),S,S1):- do(star(?(P) : E) : 2(-P),S,S1).
7. Non-deterministic choice of actions: either program E1 or E2 is evaluated;
do(E1 # E2,S,S1) :- do(El,S,S1l) ; do(E2,S,S1).

8. Procedure: for a procedure, it is simply checked if a declaration of a proce-
dure in Prolog’s database with the same name exists, if so, the body of the
procedure is further evaluated;

do(E,S,S1) :—- proc(E,El), do(ELl,S,S1).

9. Primitive Action: similar to procedures, it is checked whether the action is
declared. Furthermore, it is checked if the precondition axiom poss in the
current situation holds.

do(E,S,do(E,S)) :— primitive_action(E), poss(E,S).

2 Tt is based on a version, which was adopted by S. Sardifia to run under SWI-Prolog
and is available at http://www.cs.toronto.edu/cogrobo/main/systems/index.html.



The Elevator Example In the following we restate the elevator example from
[6]. First, we need to define the actions in our basic action theory:

primitive_action (turnoff (N)).
primitive_action (up(N)) .
poss (up(N),S) :—- currentFloor(M,S), M < N.

Other primitive actions which are required for the elevator application are actions
for going one storey down, opening, and closing the elevator doors, and can also
be found in [11]. As an example for a control procedure we give the goFloor(n)
procedure and the main control procedure control.

proc (goFloor (N), ?(currentFloor(N)) # up(N) # down(N)).
proc (control, while(some(n, on(n)), serveAfloor) : park).

goFloor tests the actual floor, and either chooses the up or down action. Note
that Golog here depends on Prolog’s backtracking mechanism to choose either
to go up or down. The control procedure simply calls the procedure serveA Floor
(which we omit here) until there is no more clause instance of the fluent on(n) in
the clauses database. The fluent on(n) becomes true, if an elevator call button
on storey n was pressed. Initially, the call buttons on storey 3 and 5 are pressed,
meaning that the facts on(3,5p) and on(5,S5y) are added to the database as
being valid in Sy.

As a final example we want to show the successor state axiom for the fluent
currentFloor:

currentFloor (M,do(A,S)) :—= A = up((M) ; A = down(M) ;
not A = up(N), not A = down(N), currentFloor(M,S).

currentFloor(m, do(a, s)) is true if either the action performed in situation s
was up(m) or down(m), otherwise the fluent value of currentFloor remains un-
changed. A successful execution of this program leads to the situation, where all
buttons are turned off and the elevator is in its parking position, i.e.

s* = ([down(3), turnoff (3), open, close,
up(5), turnoff (5), open, close, down(0), open], Sp).

4 Lua

Lua [13] is a scripting language designed to be fast, lightweight, and embeddable
into other applications. These features make it particularly interesting for the
Nao platform. The whole binary package takes less then 200 KB of storage.
When loaded, it takes only a very small amount of RAM. This is particularly
important on the constrained Nao platform and the reason Lua was chosen for
our Behaviour Engine over other scripting languages that are usually more than
an order of magnitude larger [22]. In an independent comparison Lua has turned
out to be one of the fastest interpreted programming languages [22, 23]. Besides
that Lua is an elegant, easy-to-learn language [24] that should allow newcomers
to start developing behaviours quickly. Another advantage of Lua is that it can



interact easily with C/C++. As most robot software is written in C/C++, there
exists an easy way to make Lua available for a particular control software.

Lua is a dynamically typed language, attaching types to variable values. Eight
different types are distinguished: nil, boolean, number, string, table, function,
userdata, and thread. For each variable value, its type can be queried.

The central data structure in Lua are tables. Table entries can be addressed
by either indices, thus implementing ordinary arrays, or by string names, imple-
menting associative arrays. Table entries can refer to other tables allowing for
implementing recursive data types. For example t ["name"] = valuel stores
the key-value pair (name, valuel) in table t, while t [9] = value?2 stores the
value2 at position 9 in array t. Special iterators allow access to associative tables
and arrays. Note that both index methods can be used for the same table.

Function are first-class types in Lua and can be created at run-time, assigned
to a variable, or passed as an argument, or be destroyed. Lua provides proper
tail calls and closures to decrease the needed stack size for function calls. Fur-
thermore, Lua offers a special method to modify code at run-time. With the
loadstring () statement chunks of code (one or more instruction of Lua code
is called chunk) can be executed at run-time. This comes in handy to modify
code while you are running it.

Lua deploys a register-based virtual machine to run its code. Although it is an
interpreted language, a program will be pre-compiled. For code chunks that are
created at run-time, the above mentioned loadstring function pre-compiles
the chunk at run-time. As the virtual machine is register-based the code size is
decreased. Furthermore, Lua uses an efficient mark-and-sweep garbage collection
which, for example, frees unused values in associative arrays efficiently. Finally,
we want to mention the explicit support for threads and co-routines in the Lua
specification, which can be particularly useful for robotics applications.

5 Implementing golog.lua: A First Approach

In the following we show some details of our prototypical implementation of
Golog in Lua. One of the very pleasant features of Prolog is that it is very easy
to work with terms and formulae. Creating instances of terms or atoms even
at run-time of a program to modify the code is very helpful for dealing with
dynamic domains. For example, the initial value of the fluent on in our elevator
example above was kept by adding the instances on(3,Sy) and on(5, Sp) to the
internal clauses data base as atomic formulae. Unification is built in, substituting
variable values comes for free and using list structures is comfortable.

In Lua, these concepts are not directly available. As opposed to terms and
lists, Lua has its associative table structures and is good in dealing with string
values. In our first implementation of Golog in Lua, we mainly use tables and
strings to implement a function Do which interprets Golog programs. On a tech-
nical side, note that our implementation resembles more the transition semantics
as proposed in ConGolog [25], as each interpreted statement is consumed from
the input program, leaving the rest program to be interpreted. This is however



not a problem as it has been shown that the transition semantics is equivalent
to the evaluation semantics that is used by Vanilla Golog, but it requires some
special treatment when features such as backtracking are needed. Also, the way
we encode action effects is slightly different. We address these topics in the next
section.

5.1 Programs and Situation Terms as Nested Tables

In golog. lua, a program is a table which is defined in a Lua environment, and
the program is run by calling a function Do (p, s)

prog = {{a_1l, {}}, {a_2, {x_1, x_2}},
{if, {fluent}, {a_3, {}}, {a_4, {}}}}
local s_2, failure = Do (prog, {})

The program above consists of an 0-ary action a; in sequence with as(z1, z2)
and a conditional which, depending on the truth value of fluent, chooses a3 or
ay, resp. The program is executed with calling the interpreter function Do which
takes a program and a situation term, and returns the resulting situation after
executing the program, or, if the program trace lead to a failure, i.e. the failure
variable is true, so contains the last possible action. Assuming that fluent holds,
the resulting execution trace of the prog will be

s_2 = {{"a_1",{}}, {"a_2", {"x_1", "x_2"},{"a_3,{}}}}®

We use the empty table or nil to represent Sy. Therefore, the above situation
term has to be interpreted as do(as, do(az(z1,x2), do(a1,Sp))). Similarly, we rep-
resent logical formulae as tables, with the connectives in prefix notation, i.e.
{and, ¢, {or, 1), 0}} represents the formula ¢ A (¢ V 6).

5.2 Axioms as Tables and Functions

The domain specification and the basic action theory are defined using special
associative arrays. Each fluent name in the domain description has to be inserted
into the special table D_fluents, which, for the elevator example, means:

D_fluents=Set{on, currentFloor}

Set is one of our auxiliary functions to store the values on and currentFloor
in the associative array D_fluents. Similarly, we need to keep track of our
primitive actions and procedures:

D_act = Set{turnoff, open, close, up, down}
D_proc = Set{proc_goFloor, proc_serve,
proc_park,proc_control}

3 Note that all program statements, actions, and fluent names must be given as strings.
For reasons of readability, we omit the quotation marks throughout this paper. Note
also that Lua supports to return multiple value, the situation term and the failure
condition in this case.



We need these sets to be able to distinguish user-defined actions, procedures,
and fluents from Golog keywords when interpreting a program. Next, we show
the definition of fluent on.

on = {["name"]=on, ["arity"] = 1 }

function on.initially (N)
return {{ll3ll}’ {ll5ll}}
5 end

For the fluent on from our elevator domain, we define a table called on. To refer
to it in the Golog program, the field ["name"] needs to be filled, as well as
the arity of the fluent. Next, we specify the initial value, i.e. the value in Sy.
We here use Lua’s facility to define unnamed tables. The function returns an
associative array with the fields table["3"]=true and table["5"]=true.
The intended meaning is that in the initial situation on(3,Sp) = on(5,50) = T.
For O-ary fluents, we would simply return the value true.

For defining the effects of an action, the user of the Prolog implementation of
Vanilla Golog needs to specify successor state axioms. In our Lua implementa-
tion, we use effect axioms similar to the way they were implemented in Indigolog
[7):

function on.turnoff (N, prev_val)
local list = Retract (tostring(N),
prev_vall[l])
return prev_val
5 end

Note that Retract (value, array) isone of our helper functions that deletes
value from array. This means, to evaluate the value of fluent f in a partic-
ular situation s we apply the effect axioms of those actions that are mentioned
in the situation term and that change f’s value. For example, consider the
elevator domain with s’ = ([down(3),turnoff (3), open,close, up(5), turnoff (5),
open, close], Sp). To evaluate the value of fluent on we have to apply the follow-
ing effect axioms:

on.turnoff (5,on.turnoff (3,on.initially(n)))

as the actions up, down, open, close do not change the value of the fluent on.
The above string is generated at run-time by the interpreter and Lua’s facility
to apply code at run-time using the loadstring () command and is executed
to evaluate the effects of an action. Similarly, we use loadstring to check
whether precondition axioms or effects axioms are defined. For example, the
code fragment

local action = "turnoff"
if loadstring("return type ("
action .. ".Poss)") () == "function" then

5 else error ("Precondition axiom for action
\%s undefined\\n", action) end
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checks at run-time whether the precondition axiom for action turnoff is de-
fined.* In the above example our evaluation routine for checking the effects of
action turnoff returns the value nil, meaning that no instances of on are
currently valid. To be able to evaluate fluent values this way, we follow the con-
vention that the last argument of an effect axiom always takes the value from
a successor situation. Another requirement is that all action effects changing a
fluent value are defined per action and that the closed world assumption holds.
We therefore require that effect axioms are defined as part of the fluent defini-
tion. (on.turnoff means that the function turnoff is defined in the namespace
of on and can only be used in this namespace.) An example for a precondition
axiom is:

function turnoff.Poss (N, s)
return has_fval ({on, {N}}, s)
end

The action turnoff (n) is only possible, if the call button on the respective
storey is pressed, i.e iff (on(n), s) = true. To access the fluent value the
user can apply the function holds or has_fval, which we address below.

5.3 Holds, Pick, and Some

To evaluate logical formulae, we provide a function holds (£, s), which eval-
uates if £ holds in situation s. As stated above, we use an prefix notation for
logical connectives. We evaluate sub-formulae recursively, just as Golog’s Prolog
implementation does.

function holds (f, s)
if type(f) == "table" then
if Member (f[1], binop) —-—binary op
then return holds_binop(f, s)

end

function holds_binop (f, s)
local op = table.remove (f, 1)
local result
—-— traverse formula and evaluate each element
if op == "and" then result = true
while f[1] do
local eval=holds (table.remove (f, 1), s)
result = result and eval end

return result
end

4 In our current naive and not optimised proof-of-concept implementation, we check for

the axiom each time the action is called. A more clever way would be to check these
things once before executing the program. Note that “..” is the string concatenation
operator in Lua.

10



We call the respective evaluation function depending on the operator type. The
example above shows the evaluation for the operator and. More complicated is
the implementation of quantifiers. The current reasoning engine in our prototype
implementation is somewhat restricted. Existential quantifiers are only allowed
in fluent formulae. To this end, we introduce a function has_fval, to query
fluent formulae.

has_fval ({"on", {"3"}}, {}) — true
has_fval ({"on", {nil}}, {}) — {{"3", "5"}}

With the help of has_fval it is straight-forward to the operator some(n, fluent(n)),
which refers to the logical formula Jz.fluent(z). In the Prolog implementation,
the evaluation via the predicate holds is successful, if fluent(n, s) follows from
subsequently applying the fluent’s successor state axiom on s given its initial
value. Similarly, we check with has_fval (f, s) if there is an instantiation
of £ in s by subsequently applying the effect axioms on f. Vanilla Golog also
offers the pi operator, which binds the variable in the formula Jz.fluent(z):
pi(n, ?(fluent(n)). We omitted the pi operator in our current prototype imple-
mentation. We achieve the variable binding with applying some to a fluent,
whose arguments are void, i.e. the arguments of the fluent contain nil values
(second case of has_fval (f,s) above). A more general reasoning engine is
subject to future work. One possibility might be to use the constraint system
CLIPS [26], for which also a Lua interface is available.

Finally we need to address argument substitution to implement call-by-value
functionality. This is needed for procedure arguments, but also for the afore-
mentioned case of substitutions for quantifiers. The substitution algorithm for
procedures is quite simple, for each argument value, we get the variable name
from the procedure prototype, and substitute each occurrence of the variable
reference in the procedure body with the value as given in the procedure call.
To allow nested procedure calls, we hold the substitutions on each call level on a
stack. Similarly, we substitute each occurrence of a variable in a some statement
in the subsequent program.

5.4 Executing Actions

As primitive actions need to be declared first, it is easy to distinguish them from
other constructs. As we have mentioned above follows our implementation the
transition semantics idea of ConGolog. The current program statement is con-
sumed while being interpreted. Hence, it is particularly easy to execute actions
immediately by using the loadstring () functionality.®

One complication of Lua comes with how Lua handles variables. Lua supports
in general call-by-reference, meaning that you alter the original data object given
as an argument, and not a local copy of it. If you need a local copy of a Golog sub-
program such as a procedure, you have to iterate through the table representing

® With adding sensing and exogenous actions to the Lua specifications of the inter-
preter together with guarded action theories [7], it should be quite straight-forward
to extend our current implementation to an on-line interpreter.
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the sub-program and copy each sub-table to a new table. Although, the programs

are not large and Lua is fast with accessing tables, it seems to be overhead. Here,

we might need to find a different way to deal with this. This means also that for

backtracking as needed for Golog’s “#” operator, we need to copy not only the

different branches of the non-deterministic choice, but also the situation terms,

so that we can determine the correct situation term for the successful branch.
Finally, we sketch the implementation of our function Do:

function Do (program, sl)
local s2, failure, instr
repeat
instr = table.remove (program, 1)
—— process next instruction
if type(instr) == "table" then
-— pop first statement from program
local statement=table.remove (instr, 1)
—-— process the first instruction

if statement == nil then return
sl, true
—-— non-det. choice
elseif statement == "#" then

local ndet_l=table.remove (instr, 1)
local ndet_2=table.remove (instr, 1)
s2, failure=Do_ndet (ndet_1,ndet_2,s1)
. —-— other statements
else —-— unknown action
error ("Unknown statemet\n"))
failure = true

end
else
error ("Program invalid\n")
s2 = {}; failure = true
25 end
sl = s2

if failure then break end
until not program([1l]
return s2, failure
30 end

The main loop iterates over the program, popping the first statement from the
program and processing it. If there are no more statements in the input pro-
gram, and no failure occurred, the execution of the program was successful, if at
any point during the interpretation of the program a failure occurs, the further
execution is immediately terminated.

5.5 The Elevator in Lua

The main control loop for the elevator in Lua looks like:

proc_control={["name"]=control, {},

12
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{{while, {some, {n}, {on, {n}}},
{{proc_serve, {n}}}}, {proc_park}}}

proc_serve ={["name"]=proc_serve, {N},
{{proc_goFloor, {N}}, {turnoff, {N}},
{open, {}}, {close,{}}}}

proc_goFloor={["name"]=proc_goFloor, {N},
{{#, {#,{?, {{currentFloor, {N}}}},
{up, {N}}}, {down, {N}}}}}

As long as there are still instances of the fluent on, the procedure proc_serve
is executed. As we discussed above note that we get a value for the argument n
of some(n). The argument for the procedure proc_serve(n) is also substituted by
this value as the procedure is the body of the while instruction. The execution
trace of the elevator program in Lua is

**x* SUCCESS! No (more) solution (lol):
s2={{down, {3}}, {turnoff, {3}}, {open, {}}, {close,{}},{up,{5}},
{turnoff, {5}}, {open,{}},{close,{}},{down,{0}}, {open,{}}}

leading to the same solution as the Prolog implementation of Vanilla Golog.

6 Discussion

Why do we believe this work is useful? Our motivation to begin with this work
was the unavailability of a Prolog system on our target platform. The Open
Embedded Linux system, to the best of our knowledge, does not offer a Prolog
system so far. As we still want to make use of Golog for the high-level deci-
sion making of the robot, we need to provide an interpreter by other means.
However, as mentioned several times throughout this paper and also the title
suggests is the state of this work preliminary. We yet have to show, for the
general applicability of this work, that our implementation is competitive with
known implementations in Prolog. As for our application on the Nao, we seem
to have no other choice than to re-implement Golog. Besides our first results and
the fact that the elevator examples works with our interpreter, we have to show
that our implementation is correct. Also note that this implementation is naive,
and a first quick approach to develop a Golog interpreter in Lua. In particu-
lar, we did not yet consider to use meta tables or Lua’s closure mechanism for
defining the BAT. In future implementations, these features may be taken into
account as well as the possibility of integrating Golog language features directly
into the Lua specification using Metalua [27], a meta language based on Lua.
As already mentioned, for our future work we need to enhance the reasoning
engine and develop an interpreter for online Golog, incorporating features that
have proved useful (e.g. cf. [12]). Furthermore, we have to show that our imple-
mentation is competitive with the Prolog implementation. Another important
issue for the usability of Golog is an easy and neat syntax. The syntax presented
here is contributed to the syntax of the associative arrays as provided by Lua.
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We think that this representation resembles rather an abstracted syntax tree,
and should become the representation for the back-end of our new interpreter.
The front-end should make use of a regular programming syntax without “lots of
silly curly brackets”. Here we aim at using the LPEG library which is available
for Lua [28]. This package provides interpreting parsing expression grammars
(PEGs), which could be used to generate the intermediate code, which we pre-
sented in this paper. Also, in this step several optimisations can be undertaken
to speed up the execution time of a Golog program such as pre-processing loop
invariants, or generating tables for often used fluent values, to speed up regres-
sion. Another advantage of Lua is the availability of a fast C/C++ interface. It is
rather easy to connect Lua with the rest of your robot system. Finally, we aim at
using Golog as the standard high-level control language in the Fawkes framework
which was recently released (www. fawkesrobotics.org). The idea with that
is to find a larger robotics community that might be using Golog for encoding
control programs.
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