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Abstract. In this paper, we present an overview of new watermarking
and identification techniques for FPGA IP cores. Unlike most existing
watermarking techniques, the focus of our techniques lies on ease of ver-
ification, even if the protected cores are embedded into a product. More-
over, we have concentrated on higher abstraction levels for embedding
the watermark, particularly at the logic level, where IP cores are dis-
tributed as netlist cores. With the presented watermarking methods, it
is possible to watermark IP cores at the logic level and identify them
with a high likelihood and in a reproducible way in a purchased prod-
uct from a company that is suspected to have committed IP fraud. The
investigated techniques establish the authorship by verification of either
an FPGA bitfile or the power consumption of a given FPGA.

1 Introduction

The ongoing miniaturization of on-chip structures allows us to implement very
complex designs which require very careful engineering and an enormous effort
for debugging and verification. Indeed, complexity has risen to such enormous
measures that it is no longer possible to keep up with productivity demands if
all parts of a design must be developed from scratch. A popular solution to close
this so called productivity gap is to reuse design components that are available in-
house or that have been acquired from other companies. The constantly growing
demand for ready to use design components, also known as IP cores, has created
a very lucrative and flourishing market which is very likely to continue its current
path not only into the near future.

One problem of IP cores is the lack of protection mechanisms against un-
licensed usage. A possible solution is to hide a unique signature (watermark)
inside the core. However, there also exist techniques where an IP core can be
identified without an additional signature. Identification methods are based on
the extraction of unique characteristics of the IP core, e.g., lookup table con-
tents for FPGA IP cores. With these techniques, the author of the core can be
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identified and an unlicensed usage can be proven. In this paper, watermarking
as well as identification techniques for IP cores will be presented.

Our vision is that unlicensed IP cores, embedded in a complete SoC design
which could be further embedded into a product, can be detected solely by using
the given product and information from the IP core developer. Information of the
accused SoC developer or product manufacturer should not be necessary and no
extra information should be required from the accused company. Furthermore,
the embedded author identification should be preserved even when the IP cores
pass through different design flow steps. On the one hand, we must deal with
the problem that design tools might remove the signature or the characteristics
during synthesis and optimization. On the other hand, we must also secure the
signature or characteristics against the removal by pirates which do not want
the IP core be identifiable.

In Figure 1, a possible watermarking flow is depicted. An IP core developer
embeds a signature inside his core using a watermark embedder and sells the
protected IP core. A third-party company may obtain an unlicensed copy of the
protected IP core and use it in one of their products. If the IP core developer
becomes suspicious that his core might have been used in a certain product
without proper licensing, he can simply acquire the product and check for the
presence of his signature. If this attempt is successful and his signature presents
a strong enough proof of authorship, the original core developer may decide to
accuse the product manufacturer of IP fraud and press legal charges.

IP cores exist for all design flow levels, from plain text HDL cores on the
register-transfer level (RTL) to bitfile cores for FPGAs or layout cores for ASIC
designs on the device level. In the future, IP core companies will concentrate more
and more on the versatile HDL and netlist cores due to their flexibility. This work
focuses on watermarking methods for IP cores implemented for FPGAs. These
have a huge market segment and the inhibition threshold for using unlicensed
cores is lower than in the ASIC market where products are produced in high
volumes and vast amounts of funds are spent for mask production. Moreover,
we concentrate on flexible IP cores which are delivered on the logic level in a
netlist format. The advantage of this form of distribution is that these cores can
be used for different families FPGA devices and can be combined with other
cores to obtain a complete SoC solution. Our methods differ from most other
existing watermarking techniques, which do not cover the area of netlist cores,
or are not able to easily extract an embedded watermark from a heterogeneous
SoC implemented in a given product.

The remaining work is organized as follows: In Section 2, a short overview
of related work for IP watermarking is provided. Section 3 deals with different
strategies to extract a watermark from an FPGA embedded into a product.
We proceed by describing two ways for extracting a watermark. The first way
explains the identification of an IP core from an FPGA bitfile in Section 4.
Analyzing the power consumption of the FPGA in order to verify the presence
of a watermark is the second method and will be discussed in Section 5. In
conclusion, the contributions will be summarized.
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Fig. 1. This figure shows a typical watermarking flow: An IP core developer
embeds a watermark A inside his core. If a product developer obtains an unli-
censed core and embeds this core in his product, the IP core developer can buy
this product and extract the watermarks of all used IP cores. Now, he is able to
compare his signature with the extracted signatures.

2 Related Work

In general, hiding a signature into data, such as a multimedia file, some text,
program code, or even an IP core by steganographic methods is called water-
marking. For multimedia data, it is possible to exploit the imperfection of human
eyes or ears to enforce variations on the data that represent a certain signature,
but for which the difference between the original and the watermarked work
cannot be recognized. Images, for example, can be watermarked by changing the
least significant bit positions of the pixel tonal values to match the bit sequence
of the original authors signature. For music, it is a common practice to water-
mark the data by altering certain frequencies, the ear cannot perceive and thus
not interfering with the quality of the work [1]. In contrast, watermarking IP
cores is entirely different from multimedia watermarking, because the user data,
which represents the circuit, must not be altered since functional correctness
must be preserved.

Most methods for watermarking IP cores focus on either introducing addi-
tional constraints on certain parts of the solution space of synthesis and opti-
mization algorithms, or adding redundancies to the design.

Additive methods add a signature to the functional core, for example, by
using empty lookup-tables in an FPGA [2,3] or by sending the signature as a
preamble of the output of the test mode [4]. Constraint-based methods were
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originally introduced by [5] and restrict the solution space of an optimization al-
gorithm by setting additional constraints which are used to encode the signature.
Methods for constraint-based watermarking in FPGAs exploit the scan-chain [6],
preserve nets during logic synthesis [7], place constraints for CLBs in odd/even
rows [8], alter the transistor width [9] or route constraints with unusual routing
resources [8].

A common problem of many watermarking approaches is that for verification
of the presence of the marks, the existence and the characteristic of a watermark
must be disclosed, which enables possible attackers to remove the watermark.
To overcome this obstacle, Adelsbach [10] and Li [11] have presented so-called
zero-knowledge watermark schemes which enable the detection of the watermark
without disclosing relevant information.

A survey and analysis of watermarking techniques in the context of IP cores
is provided by Abdel-Hamid and others [12]. Further, we refer to our own survey
of watermarking techniques for FPGA designs [13]. Moreover, a general survey
of security topics for FPGAs is given by Drimer [14].

3 Watermark Verification Strategies for Embedded
FPGAs

The problem of applying watermarking techniques to FPGA designs is not the
coding and insertion of a watermark, rather it is the verification with an FPGA
embedded in a system that poses the real challenge. Hence, our methods concen-
trate in particular on the verification of watermarks. When considering finished
products, there are five potential sources of information that can be used for
extracting a watermark: The configuration bitfile, the ports, the power con-
sumption, electromagnetic (EM) radiation, and the temperature.

If the developer of an FPGA design has disabled the possibility to simply read
back the bitfile from the chip, it can be extracted by wire tapping the communi-
cation between the PROM and the FPGA. Some FPGA manufactures provide
an option to encrypt the bitstream which will be decrypted only during config-
uration inside the FPGA. Monitoring the communication between PROM and
FPGA in this case is useless, because only the encrypted file will be transmitted.
Configuration bitfiles mostly use a proprietary format which is not documented
by the FPGA manufacturers. However, it seems to be possible to read out some
parts of the bitfile, such as information stored in RAMs or lookup tables. In
Section 4, we introduce netlist IP core identification and watermarking methods
where the verification is done by using the extracted configuration bitstream.

Another popular approach for retrieving a signature from an FPGA is to
employ unused ports. Although this method is applicable to top-level designs,
it is impractical for IP cores, since these are mostly used as components that
will be combined with other resources and embedded into a design so that the
ports will not be directly accessible any more. Due to these restrictions, we do
not discuss the extraction of watermarks over output ports.
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Furthermore, it is possible to force patterns on the power consumption of an
FPGA, which can be used as a covert channel to transmit data to the outside
of the FPGA. We have shown in [15] and [16] that the clock frequency and
toggling logic can be used to control such a power spectrum covert channel.
The basic idea to use these techniques for watermarking is to force a signature
dependent toggle pattern and extract the resulting change in power consumption
as a signature from the FPGA’s power spectrum. We refer to this method as
“Power Watermarking” in Section 5

With almost the same strategy it is also possible to extract signatures from
the electro magnetic (EM) radiation of an FPGA. A further advantage of this
technique is that a raster scan of an FPGA surface with an EM sensor can also
use the location information to extract and verify the watermark. Unfortunately,
more and more FPGAs are delivered in a metal chip package which absorbs
the EM radiation. Nevertheless, this is an interesting alternative technique for
extracting watermarks and invites for future research.

Finally, a watermark might be read out by monitoring the temperature radia-
tion. The concept is similar to the power and EM-field watermarking approaches,
however, the transmission speed is drastically reduced. Interestingly, this is the
only watermarking approach which is commercially available [17]. Here, reading
the watermark from an FPGA may take up to 10 minutes.

More about the different verification strategies can be found in [18].

4 Watermark Verification using the FPGA Bitfile

This section gives an overview of methods where the verification is done by
extracting an FPGA bitfile. The bitfile can be analyzed to detect structures that
can carry a watermark or that can be used to identify an IP core. Here, lookup
table contents are used which are excellently suitable for watermarking and IP
core identification. We start out by discussing how the contents of the lookup
tables may be extracted from the FPGA bitfile. Following, methods for netlist
IP core identification and watermarking are proposed (see also [19] and [20]).

4.1 Lookup Table Content Extraction

For FPGA designs, the functional lookup tables are an ideally suited component
for carrying watermarks or using it for IP core identification. From a finished
product, it is possible to obtain the configuration bitstream of the FPGA. The
extraction of the lookup table contents from the configuration bitfile depends on
the FPGA device and the FPGA vendor. To read out the LUT content directly
from the bitfile, it must be known at which position in the bitfile the lookup table
content is stored and how these values must be interpreted. In [19], for example,
a standard black-box reverse engineering procedure is applied to interpret Xilinx
Virtex-II and Virtex-II Pro bitfiles.
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4.2 Identification of Netlist Cores by Analysis of LUT Contents

In this approach, we do not add any signature or watermark. The core itself
remains unchanged, so the functional correctness is given and no additional
resources are used. We compare the content of the used lookup tables from the
registered core with the used lookup tables in an FPGA design from the product
of the accused company. If a high percentage of identical content is detected, the
probability that the registered core is used is very high.

The synthesis tool maps the combinatorial logic of an FPGA core to lookup
tables and writes these values into a netlist. After the synthesis step, the content
of the lookup tables of a core is known, so we can protect netlist cores which are
delivered at the logic level. The protection of bitfile cores at the device level is
also possible.

After the core is purchased, the customer can combine this core with other
cores. In the following CLB mapping step, it is possible that lookup tables are
merged across the core boundaries or are removed by an optimizing transfor-
mation. This happens when different cores share logic or when outputs of the
core are not used. These lookup tables cannot be found in the FPGA bitfile,
but experimental results in [19] show that the percentage of these lookup tables
compared to the number of all lookup tables in the core is typically low for the
used mapping tool (Xilinx map).

After the extraction of the content of lookup tables from a bitfile, we can
compare the obtained values with the information in the netlist. Unfortunately,
the mapping tools do not necessarily adopt these values. The mapping tool may
merge lookup tables from different cores together, convert one, two or three input
lookup tables to four input lookup tables and permute the inputs to achieve a
better routing.

All lookup tables of an FPGA have n inputs. On most FPGA architectures,
lookup tables have n = 4 inputs. In a core netlist, also lookup tables with less
than n inputs may exist. These lookup tables must be mapped onto n input
lookup tables. If one input is unused, only half of the memory is needed to
store the function and the remaining space must be filled. In the case that a
function uses less inputs than the underlying technology of the FPGA provides,
it is desirable to turn the unused inputs into don’t cares. Intuitively, this can be
achieved rather easily by replicating the function table as it is demonstrated in
Figure 2.

The mapping tool can permute the inputs of the lookup tables, for example,
to achieve a better routing. In most FPGA architectures, the routing resources
for lookup table inputs are not equal, and so a permutation of the lookup table
inputs can lower the amount of used routing resources. Permutation of the inputs
significantly alters the content of a lookup table. For n inputs, n! permutations
exist and thus up to n! different lookup table values for one so-called unique
function. To compare the contents of the lookup table from the netlist and the
bitfile, it must be checked if one of these possible different lookup table values
for one unique function is equal to the value of the lookup table in the bitfile.
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Fig. 2. Converting a two input lookup table into a three input lookup table with
unused input i2.

This is done by creating a table with all possible values of lookup tables for all
unique functions (see Figure 3).

More about this method as well as experimental results and a robustness
analysis can be found in [19] and [18]. The experimental results show that it is
possible to identify a core in a design with a high probability.

4.3 Watermarks in Functional LUTs for Netlist Cores

Since we want to keep the IP core as versatile as possible, we watermark the
design in the form of a netlist representation, which, although technology depen-
dent to a certain degree, can still be used for a large number of different devices.
Netlist designs will almost certainly undergo the typical design flow for silicon
implementations. This also includes very sophisticated optimization algorithms,
which will eliminate any redundancy that can be found in the design in order to
make improvements. As a consequence it is necessary to embed the watermarks
in the netlist in such a way, that the optimization tools will not remove the
watermarks from the design.

In Xilinx FPGAs, for example, lookup tables are essentially RAM cells, with
the inputs specifying which of the stored bits to deliver to the output of the
RAM. Naturally, these cells can therefore also be used as storage, but also as
shift-register cells (see Figure 4). Interesting, however, is the fact that if the cell
is configured as a lookup table, Xilinx optimization tools will try to optimize the
contained logic function. If the cell is in contrast configured as a shift-register or
distributed RAM, the optimization tools will leave the contents alone, but the
logic function is still carried out. This means, that if we want to add redundancy
to a netlist, that is not removed by automized tools, all we have to do is to take
the corresponding cells out of the scope of the tools.

FPGAs usually consist of the same type of lookup tables with respect to
the number of inputs. For example, the Xilinx Virtex-II uses lookup tables with
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pared, they are mapped into unique functions.

four inputs whereas the Virtex-5 has lookup tables with six inputs. However, in
common netlist cores many logical lookup tables exist, which have less inputs
than the type used on the FPGA.

These lookup tables are mapped to the physical lookup tables of the FPGA
during synthesis. If the logical lookup table of the netlist core has fewer inputs
than the physical representation, the memory space which was not present in
the logical representation remains unused. Using the unused memory space of
functional lookup tables for watermarking without converting the lookup table
either to a shift register or distributed memory turns out to be not applicable,
because design flow tools identify the watermark as redundant and remove the
content due to optimization. Converting the watermarked functional lookup ta-
ble into a shift register or a memory cell prevents the watermark from deletion
due to optimization.

If a product developer is accused of using an unlicensed core, the product
can be purchased and the bitfile can be read out, e.g., by wire tapping. The
lookup table content and the content of the shift registers can be extracted from
the bitfile. Now, the extracted lookup table or shift register content can be used
for a watermark detector which can decide if the watermark is embedded in the
work or not.

A detailed description of this method as well as the experimental verification
results and the overhead analysis are described in [20] and [18].
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Fig. 4. In the Xilinx Virtex architecture, the same standard cell is used as a
lookup table (LUT4) and also as a 16-bit shift-register lookup table(SRL16).

5 Power Watermarking

This section describes watermarking techniques introduced in [15] and [16],
where a signature is verified over the power consumption pattern of an FPGA.
For power watermarking methods, the term signature refers to the part of the
watermark which can be extracted and is needed for the detection and verifica-
tion of the watermark. The signature is usually a bit sequence which is derived
from the unique key for author and core identification.

There is no way to measure the relative power consumption of an FPGA
directly. Only by measuring the relative supply voltage or current the actual
power consumtion can be inferred. We have decided to measure the voltage of
the core as close as possible to the voltage supply pins such that the smoothing
from the plane and block capacities are minimal and no shunt is required. Most
FPGAs have ball grid array (BGA) packages and the majority of them have
vias to the back of the PCB for the supply voltage pins. So, the voltage can
be measured on the rear side of the PCB using an oscilloscope. The voltage
can be sampled using a standard oscilloscope, and analyzed and decoded using
a program developed to run on a PC. The decoded signature can be compared
with the original signature and thus, the watermark can be verified. This method
has the advantage of being non-destructive and requires no further information
or aids than the given product (see Figure 5).

In the power watermarking approach described in [21] and [15], the amplitude
of the interferences in the core voltage is altered. The basic idea is to add a
power pattern generator (e.g., a set of shift registers) and clock it either with
the operational clock or an integer division thereof. This power pattern generator
is controlled according to the encoding of the signature sequence which should
be sent.

The mapping of a signature sequence s = {0, 1}n onto a sequence of symbols
{σ0, σ1}n [16] is called encoding: {0, 1}n → Zn, n ≥ 0 with the alphabet Z =
{σ0, σ1}. Here, each signature bit {0, 1} is assigned to a symbol. Each symbol σi

is a triple (ei, δi, ωi), with the event ei ∈ {γ, γ̄}, the period length δi > 0, and the
number of repetitions ωi > 0. The event γ is power consumption through a shift
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operation and the inverse event γ̄ is no power consumption. The period length
is given in terms of number of clock cycles. For example, the encoding through
32 shifts with the period length 1 (one shift operation per cycle) if the data bit
’1’ should be sent, and 32 cycles without a shift operation for the data bit ’0’ is
defined by the alphabet Z = {(γ, 1, 32), (γ̄, 1, 32)}.

Different power watermarking encoding schemes were introduced and ana-
lyzed. The basic method with encoding scheme: Z = {(γ, 1, 1), (γ̄, 1, 1)}, the
enhanced robustness encoding: Z = {(γ, 1, 32), (γ̄, 1, 32)}, and the BPSK ap-
proach: Z = {(γ, 1, ω), (γ̄, 1, ω)} are explained in detail in [15]. The correlation
method with encoding Z = {(γ, 25, 1), (γ̄, 25, 1)} can be reviewed in [16]. To
avoid interference from the operational logic in the measured voltage, the signa-
ture is only generated during the reset phase of the core.

The power pattern generator consists of several shift registers, causing a
recognizable signature- and encoding-dependent power consumption pattern. As
mentioned before in Section 4.3, a shift register can also be used as a lookup
table and vice versa in many FPGA architectures (see Figure 4 in Section 4.3).
A conversion of functional lookup tables into shift registers does not affect the
functionality if the new inputs are set correctly. This allows us to use functional
logic for implementing the power pattern generator. The core operates in two
modes, the functional mode and the reset mode. In the functional mode, the shift
is disabled and the shift register operates as a normal lookup table. In the reset
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mode, the content is shifted according to the signature bits and consumes power
which can be measured outside of the FPGA. To prevent the loss of the content
of the lookup table, the output of the shift register is fed back to the input, such
that the content is shifted circularly. When the core changes to the functional
mode, the content have to be shifted to the proper position to get a functional
lookup table for the core.

To increase the robustness against removal and ambiguity attacks, the con-
tent of the power consumption shift register which is also part of the functional
logic can be initialized shifted. Only during the reset state, when the signa-
ture is transmitted, the content of the functional lookup table can be positioned
correctly. So, normal core operation cannot start before the signature was trans-
mitted completely. The advantage is that the core is only able to work after
sending the signature. Furthermore, to avoid a too short reset time in which
the watermark cannot be detected exactly, the right functionality will only be
established if the reset state is longer than a predefined time. This prevents the
user from leaving out or shorten the reset state with the result that the signature
cannot be detected properly.

The advantage of power watermarking is that the signature can easily be
read out from a given device. Only the core voltage of the FPGA must be mea-
sured and recorded. No bitfile is required which needs to be reverse-engineered.
Also, these methods work for encrypted bitfiles where methods extracting the
signature from the bitfile fail. Moreover, we are able to sign netlist cores, because
our watermarking algorithm does not need any placement information. However,
many watermarked netlist cores can be integrated into one design. The results
are superpositions and interferences which complicate or even prohibit the cor-
rect decoding of the signatures. To achieve the correct decoding of all signatures,
we proposed multiplexing methods in [22].

6 Summary

In this paper, we have presented an overview of new approaches for identication
and watermarking of IP cores. Our methods follow the strategy of an easy verifi-
cation of the watermark or the identification of the core in a bought product from
an accused company without any further information. Netlist cores, which have
a high trade potential for embedded systems developers, are in the focus of our
analysis. To establish the authorship in a bought product by watermarking or
core identification, we have discovered different new techniques, how information
can be transmitted from the embedded core to the outer world. In this paper, we
concentrated on methods using the FPGA bitfile which can be extracted from
the product and on methods where the signature is transmitted over the power
pins of the FPGA. All methods mentioned in this overview paper are described
in detail with experimental results in [18] and in the corresponding referenced
papers.
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