
Towards Dilated Placement of

Dynamic NoC Cores

Branislav Hredzak1, Oliver Diessel2

1 School of Electrical Engineering
2 School of Computer Science and Engineering

University of New South Wales
Sydney NSW 2052, Australia

b.hredzak@unsw.edu.au, odiessel@cse.unsw.edu.au

Abstract. Instead of mapping application task graphs in a compact
manner onto reconfigurable devices using a network-on-chip for inter-
connecting application cores, we propose dilating the mappings as much
as the available latencies on critical connections allow. In a dilated map-
ping, the unused resources between an application’s configured compo-
nents can be used to provide additional flexibility when the configuration
needs to change. We motivate the reasons for dilating application task
graphs targeted at reconfigurable devices; derive a simulated annealing
approach to dilating the placement of such graphs; and present pre-
liminary results of applying the algorithm to synthetic test cases. The
method appears to result in successful and meaningful graph dilation
and could be further tuned to satisfy desired power constraints.

Keywords. Modular reconfiguration, networks-on-chip, application map-
ping, dilation

1 Introduction

Our research aims to facilitate the implementation, using field-programmable
gate arrays, of performance critical digital systems in which hardware compo-
nents need to rapidly adapt to changing requirements. Relevant systems in-
clude applications in video surveillance, mobile communications, multimedia,
telemedicine, robotics, remote environments including space, and electronic war-
fare. It is our belief that such dynamically reconfigurable systems are not ade-
quately supported with frameworks for their development. This leads to costly
ad-hoc development efforts, design failures, re-invention, and a lack of gener-
ality that disables re-use. We aim to discover new, more general approaches
to improving the utilization and flexibility of FPGAs when used for dynamic
reconfiguration.

Central to our approach is our premise that dynamically reconfigured hard-
ware cores should be interconnected by a network-on-chip that can be adapted
to optimize the communication between components. In contrast to conventional

Dagstuhl Seminar Proceedings 10281
Dynamically Reconfigurable Architectures
http://drops.dagstuhl.de/opus/volltexte/2010/2834

2 B. Hredzak, O. Diessel

approaches, which assume FPGA resources are in short supply, we propose ex-
ploring the potential of utilizing the considerable resources that are expected
to be available in the mid-term future. Instead of mapping an application to
the smallest compact region possible, we propose the simple yet unconventional
approach of dilating the mapping as much as the available latency (slack) on
critical network connections allows.

In a dilated mapping, the free space comprising unused configurable regions,
associated network routers and links between an application’s configured com-
ponents can be used to provide additional flexibility when the configuration is
required to be changed. For example, when a core is to be added to a dilated de-
sign, there are potentially many more locations to find placements that provide
good connectivity to components which have already been configured. Alterna-
tively, it will be less disruptive, and is likely to incur less overhead, to move
within a small neighbourhood (jog) some of the cores that have already been
placed in order to make room for a new one. More importantly, it will be easier
to allocate additional routing paths or insert express channels into free regions
when additional bandwidth is required or latency needs to be reduced.

Dilating the placement will cause more power to be consumed due to the ad-
ditional network links and routers used. However, this increase in consumption is
relatively easy to estimate, and if the power consumed by a dilated configuration
is deemed too high, we intend compacting the arrangement of cores to reduce
path lengths and to switch off those regions that have thereby been rendered
idle.

This idea requires us to investigate several problems, including (1) techniques
for dilating the placement of application task graphs, (2) methods for modifying
a dilated placement of cores through addition of new cores, removal of existing
cores, and updates to inter-core connections such as changes in bandwidth and
latency, (3) approaches to compacting a dilated placement in order to reduce
power consumption or latency, and (4) assessment of the techniques on bench-
mark applications to determine their efficacy in terms of performance and energy
use.

The principal contributions of this paper are: (1) an outline of the potential
benefits of the concept of dilating the mapping of dynamic task graphs, (2) the
derivation of a simulated annealing algorithm for dilating the placement of an
application task graph, and (3) an analysis of the preliminary results we obtained
by applying the algorithm to a couple of simple test cases.

The paper is organized as follows. In the next section we detail the back-
ground that motivated us to examine the potential benefits of dilating the map-
ping of application task graphs into network-on-chip based FPGAs. In Section 3
we derive the objective function of a simulated annealing algorithm for dilating
the mapping of a task graph. We describe our simulation experiments and results
in Section 4 and conclude in Section 5 with a summary of the objectives and
results of our work so far and outline the directions for further study.

Towards Dilated Placement of Dynamic NoC Cores 3

2 Background

Reconfigurable logic allows application components to be accelerated over their
execution as software [1]. Reconfigurability also provides a means by which
performance-critical components can be implemented in a more flexible, ro-
bust, reusable and useful manner than if they are provided as ASIC devices.
Reconfigurable systems provide designers with the flexibility to accommodate
various system changes. The 2009 semiconductor industry roadmap estimates
that approximately 35% of current system on chip functionality implemented in
software or hardware is reconfigurable. By 2024, this fraction is expected to rise
to a massive 70% [2]. Combined with the scaling effect due to Moore’s Law (ap-
proximately 1000-fold over the next 15 years), powerful new design techniques
will be needed to exploit this potential.

Having been configured for a particular application, systems that include
reconfigurable logic can be reconfigured, meaning new functional blocks or com-
ponents can be added and/or old ones can be removed or exchanged, for a
range of benefits. For example, changes may be initiated by a user who requires
new functionality to be added, such as a specific filter to a surveillance camera
network [3]. Alternatively, the user may want to improve overall system perfor-
mance by choosing a more efficient implementation of some component. When
the power supply to the system is disconnected the system operating objective
may need to switch from a high-performance mode to a low power mode [4].
The system environment can change and the system needs to cope with these.
For example, a signal may become affected by noise and more filtering is then
required to process the signal [5]. A different modulation scheme may need to
be employed [6], or some (hardware) component may have failed, necessitating
reallocation of functional tasks to the available resources [7]. Furthermore, the
system designer may exploit the fact that certain components are only needed
sometimes, or that others are never needed simultaneously in order to conserve
the amount of logic or power used at runtime [8]. As suggested, some of these
changes may be planned for at design time, but it is desirable to allow for others
to occur in an unforeseen manner as repairs to bugs become available, when a
new component is developed, or when new protocols are invoked, or when a user
changes the requirements or demands new functionality.

When the extent of possible changes is closed or planned for, the designer
can optimize the system architecture and operation a priori. This is the way
embedded systems are commonly designed. However, it may be desirable to
have mechanisms in place that allow a system to cope with open or unforeseen
application changes and to cope with them dynamically, while the system is
in operation, instead of after a potentially lengthy offline re-optimization and
restart. It is also worth noting that a system may not be concerned with per-
forming just one task or serving a single application. It may be dealing with
many complex or compute-intensive tasks simultaneously [9,10]. And in such a
case, the changes in one application may impact on the other applications that
are sharing the resources of the system and calls for a response in executing
applications to dynamic changes in resource availability and system load [11].

4 B. Hredzak, O. Diessel

Engineering digital systems that can dynamically respond to changes in the
number, type and interconnection of components they are composed of, even
when known up front, is non-trivial. The following significant issues need to be
resolved to obtain a generally applicable solution, and apply whether the envis-
aged system environment is closed or open, namely: (1) identifying and designing
the components involved in dynamic reconfiguration; (2) designing a reconfig-
urable system architecture that lends itself to dynamically swapping functional
components and their interconnection patterns; (3) controlling the reconfigu-
ration process and maintaining system correctness during the reconfiguration
process; and (4) ensuring the envisaged benefits are not swamped by the costs.

The first issue requires methods for determining which components from a
set of executing applications are active over given periods of time. This aids in
the effective temporal clustering of logic into a sequence of active configurations.
The solution is likely to be non-trivial, since it may rely on accurate forecasts
of component activity that are independent of the data being processed. Traces
may therefore only be of limited use. In the following we assume a component or
a core is a functional block such as an FFT or DCT or matrix multiply unit of
the required size. A component may be available as a (hard) IP core or a macro
for which a (relocatable) mapping to FPGA resources is already available.

The second issue deals with providing a system structure that can support the
dynamic allocation of components to resources and can provide the interconnec-
tions the currently active components require. Primarily, this issue is concerned
with providing a flexible and efficient method for dealing with time-varying in-
terconnection patterns that include changes to the number and location of in-
terconnected components and changes to the traffic patterns between them.

The third issue is concerned with scheduling and controlling reconfigura-
tion events such that system correctness is never compromised. This includes
rerouting traffic, buffering data, disconnecting and reconnecting components to
the communication infrastructure, moving components amongst the available
resources to ensure constraints can be met, determining a new arrangement and
utilization of components such that the objectives of each active application and
the system overall can be met.

The fourth issue is concerned with making the effort worthwhile. While some
researchers are studying the tradeoffs between execution time or energy and the
choice of reconfigurable components, current state of the art relies primarily
on principles such as minimizing reconfiguration overheads and maximizing the
ratio of the periods during which components are used and the periods during
which they are being reconfigured.

In our research, we assume we are provided with an application communi-
cation graph which provides a partitioning of an application into configurable
components as well as knowledge about the periods during which components
are active. We therefore focus on the second issue above and address those as-
pects of the third that deal with the dynamic interconnect structure and its
control. We follow principles that aim to minimize reconfiguration overheads.

Towards Dilated Placement of Dynamic NoC Cores 5

2.1 Communication infrastructure

In recent years attention has been drawn towards so-called networks-on-chip
[12,13,14,15]. A network-on-chip (NoC) consists of routers that are intercon-
nected via links which convey packetized messages between the routers. A packet
contains the data that is to be conveyed from a sending component to a receiving
component, which are both connected via network interfaces to routers in the
network. The intervening routers make decisions about where a packet is sent
next based on the source and destination routers of the packet. In principle,
each router provides an opportunity for connecting to components via network
interfaces and the network topology generally provides multiple paths to reach
any destination. Multiple messages can be conveyed through the network simul-
taneously. As the number of routers grows, typically the number of connection
points and routing paths also grows. Networks are therefore more scalable and
flexible than buses and point-to-point connections.

NoC technology appears to be well-suited for providing the communication
infrastructure of future dynamically reconfigurable systems-on-chip. However, a
number of shortcomings in the previous work can be identified.

First, the previous work concentrates on closed, embedded application sets in
which the set of applications and their data communication profiles are known at
design time. To date, few results ([16,17,18]) attempt to address the time-varying
needs of dynamic and open application sets. In [16], a regular mesh of routers is
proposed. Variously sized cores are placed where they fit and non-deterministic,
adaptive routing algorithms are proposed for communicating between the cores,
but communication requirements cannot be guaranteed. In [17], a tile-based
approach is used to implement a customized network for the configured compo-
nents. Unfortunately, reconfiguring the tiles disrupts the traffic on links within
the tiles. Reconfiguration of the network incurs significant overheads. In order
to provide an efficient set of mechanisms for adapting the communication infras-
tructure to the needs of time-varying applications, the temporal communication
requirements of applications must be understood; the degree of run-time flexi-
bility needed should be determined; and the mechanisms by which they are best
delivered using reconfigurable logic can be developed.

Second, since they are typically implemented using static resources, NoCs
are designed to cater for worst-case communication needs. This means they are
over-provisioned and, on average, consume more power than they need to. Imple-
mentations in reconfigurable logic make it possible to alter network parameters
as execution proceeds. This potential has not yet been systematically studied
with due account for the overheads and efficiency of proposed adaptations.

Third, FPGAs are currently quite constrained in the types of specialized
resources available and their distribution. While significant further specialization
can be expected over the coming decade, and theses shifts in the technology
need to be factored into the conclusions of research studies, current resource
constraints require NoCs for FPGAs to be designed with consideration for the
on-chip complexity of the strategies employed to support dynamic adaptation.
The balance between distributed and centralized, autonomous and command-

6 B. Hredzak, O. Diessel

driven, on-chip and off-chip control measures deserves closer examination than
it has so far received.

Fourth, reusable methods for supporting dynamic reconfiguration need to
be made available to designers. This goal may require the support of FPGA
vendors who vigorously protect the details of the implementation of their devices.
Researchers can do little more than prove their methods and suggest how their
results could be integrated with vendor tool-flows.

In this paper, we report on the development of a dilated mapping tech-
nique that will enable initial, quasi-optimal, dilated placement of application
task graphs into a given network topology. The developed mapping technique
addresses the following critical issues: (1) how to spread out the placement of
cores without exceeding latency requirements; (2) how to place cores so as to
maximize the potential to provide additional bandwidth or reduce latency be-
tween cores when required; and (3) how to place cores so as to allow fast and
easy relocation, addition or removal of cores. Our results also aim to assess the
increases in latency and power consumption that result when a task graph is di-
lated when compared with the more compact mappings conventional placement
approaches produce. It is necessary that these objectives be met before we begin
to study methods for dynamically updating the cores and the routes used to
interconnect them.

3 Development of dilated mappuing techniques

3.1 Definitions

Definition 1: We define a communication task graph as a special case of an
application characterization graph, as given in [19]. A communication task graph
CTG = CTG(T, C) is a directed graph, where each vertex ti ∈ T represents an
IP core or a task that has been mapped to a core and each directed arc ci,j ∈ C

summarizes the total communication or interconnection between vertices ti and
tj .

While cores for reconfigurable computing applications should be tagged with
application-specific information such as size or area, clock frequency, period of
activity, and latency, we ignore these details in this paper. However, our work al-
lows the placement of a core to be locked to a particular position to use location-
dependent resources.

Each ci,j is tagged with application-specific information including the sum
of the bandwidth required by all signals from ti to tj and the maximum latency
that can be tolerated for the connection.

A communication task graph may be specified by the number of cores in the
graph and a listing of the connection characteristics as provided in Table 1 and
illustrated in Fig. 1.

Definition 2: We define a network topology as a directed graph NT = NT(R,
L) comprising a set of routers R and links L connecting them. Each ri ∈ R is
specified by its xy coordinates on an FPGA floorplan and each li,j ∈ L connects

Towards Dilated Placement of Dynamic NoC Cores 7

a given source router ri with a unique destination router rj . In this study, each
link li,j has a maximum bandwidth capacity and a latency associated with it. In
this work all links are assumed to have the same maximum bandwidth and the
same, constant link latency. The routers are assumed to be capable of switching
the traffic when all incoming links are operating at maximum bandwidth. In this
work, we assume the latency of a router is a constant, irrespective of the traffic
volume it switches. Routers are also assumed to have a pair of special local links
that allow a single core to be directly connected with the router. This pair of
links allows the core to inject traffic (data) into the network and to receive data
from other cores connected to the network. We define the latency of a network
hop to comprise the sum of the latency of a single network link and the latency
of the router the link inputs to. We neglect the latency, incurred at a core, of
injecting data into the network and transferring it from the router to the core.
The Manhattan distance between cores and the latency per hop thus characterize
the latency between cores.

Table 1. A simple 4-core CTG example.

Connection Bandwidth Latency
(MB/s) (ns)

c1,2 20 10

c2,3 30 20

c3,4 40 20

c4,1 10 10

Fig. 1. Example of a simple 4-core CTG.

In this work, we consider the problem of mapping given CTGs to two-
dimensional (2D) mesh network topologies. A 2D mesh network has routers
located at all xy positions in [1..max x, 1..max y] and all routers are connected
via bi-directional links to their immediate neighbours to the north, south, east
and west, where these neighbours are present.

Definition 3 : Mapping a CTG to a network topology involves finding an
optimal placement (router positions) for the CTG cores and determining legal,
minimal cost routes through network links for the inter-core connections. In

8 B. Hredzak, O. Diessel

our work to date we have only considered XY routing, which is known to be
deadlock-free on a mesh [20].

Optimality of the placement can be determined with respect to a number of
metrics. Typical performance metrics include average/maximum packet latency,
bisection bandwidth, network throughput and quality of service, whereas cost
metrics include average/peak energy/power consumption, network area over-
head, total area and average/peak temperature [19]. Maximizing performance
usually forces the mapping to be as compact as possible. For example, the CTG
of Table 1 might be mapped to a 4 x 4 router mesh as in Fig. 2. In this case,
the maximum link bandwidth must be at least 40MB/s for the mapping to be
possible with XY routing.

Fig. 2. Mapping of CTG from Table 1 to a 4 x 4 mesh. Router positions are
depicted as grey squares at link intersections. Link positions are dotted. Used
routers and links are darkened. Positions are numbered along x (horizontal) and
y (vertical) axes.

In our work, we are primarily interested in obtaining mappings that facilitate
future dynamic modification. Our strategy for achieving such mappings is to
dilate the embedding of the cores in the network topology so as to maximize the
opportunities (via unused neighbouring routers) for inserting cores into the CTG.
The dilation of the mapping is constrained by the latency bounds on connections
and the utilization of link bandwidth capacity. Dilating the mapping results in
an increase in power that can readily be used to constrain the placement as well.
As an example, the CTG of Table 1 can be mapped in a dilated manner to a 4
x 4 router mesh with a maximum link bandwidth of at least 40MB/s and a hop
latency of 10ns as in Fig. 3. The difference with the previous mapping of Fig. 2
is that connections c2,3 and c3,4 have now been mapped to routes that require
two hops instead of one as permitted by their given latency constraints.

The advantage of doing so is that if a 5th core needs to be added to the
CTG of Table 1, as listed in Table 2, then the mapping of Fig. 2 will need to be
modified to accommodate the core with the possibility of incurring significant
reconfiguration overheads. However, in this case, the new core can easily be

Towards Dilated Placement of Dynamic NoC Cores 9

Fig. 3. Dilated mapping of CTG from Table 1 to a 4 x 4 mesh.

inserted into the dilated mapping of Fig. 3 at router position (2, 2) as illustrated
in Fig. 4.

Table 2. A 5th core is added to the CTG example of Table 1.

Connection Bandwidth Latency
(MB/s) (ns)

c1,2 20 10

c2,3 30 20

c3,4 40 20

c4,1 10 10

c4,5 10 10

c5,2 20 10

The dilated mapping problem we have outlined above in some sense inverts
the conventional mapping problem which aims to minimize the mapping cost
by minimizing the sum of the products of the embedded connection lengths and
the required connection bandwidths. In our case the connection lengths are to
be maximized subject to the latency constraints and/or a power constraint. We
conjecture this problem is harder to optimize than the usual mapping problem
since there is more freedom to place the cores at a distance. As the conventional
mapping problem is known to be a special case of the quadratic assignment
problem, and therefore NP-hard, we suspect this problem is in NP as well. The
approach we have therefore taken to obtain a timely solution to the problem is
to apply a simulated annealing heuristic, which is known to produce good results
for the conventional mapping problem.

3.2 Simulated annealing framework

Simulated annealing [21], has been applied to combinatorial optimization prob-
lems including partitioning, placement and routing, to name a few. The method

10 B. Hredzak, O. Diessel

Fig. 4. Addition of 5th core to mapping of Fig. 3

requires four ingredients for it to be applicable: a concise description of a con-
figuration of the system; a random generator of rearrangements of the elements
in a configuration; a quantitative objective function containing the tradeoffs to
be made; and an annealing schedule of the temperatures and length of times for
which the system is to be evolved.

For the dilated mapping problem, the mapping of CTG cores to mesh routers
represents a system configuration. It should be clear, that the placement of cores
at specific routers together with our choice of XY routing algorithm determines
which routes are used for the inter-core connections. Rearrangements are gener-
ated by randomly choosing two routers, at least one of which should be occu-
pied by a core, and exchanging the cores connected to the chosen routers. The
derivation of the quantitative objective function we used will be described in the
remainder of this subsection. The annealing schedule we used is described in the
following section.

The objective function (Eqn 1) used in our experiments balances a term
promoting a compact placement of the communicating cores with another term
that stimulates the dilated placement of cores:

cost = α ∗ compaction + (1 − α) ∗ dilation (1)

The balance of the compaction and dilation terms can be adjusted by modify-
ing the weight given to the multiplicative constant, α. The goal of the annealing
process is to minimize the cost as given by (1).

The compaction term of (1) can be expanded as in (2), in which the product
of the required bandwidth for each connection between the cores and the number
of hops (Manhattan distance) over which the connection is formed is summed
over all connections in the graph. This approach is typically used to minimize
the distance between the most heavily communicating cores and thus commonly
leads to a low power/low latency/high clock frequency solution.

compaction =
∑

connections,c

bandwidthc ∗ hopsc (2)

Towards Dilated Placement of Dynamic NoC Cores 11

The dilation term of (1) is expanded as in (3), whereby the amount of slack
on connections, the proximity of non-communicating cores and the utilization
of link capacity are minimized. These factors can be traded off by adjusting the
multiplicative constants, β, γ and δ.

dilation = β ∗ slack + γ ∗ proximity + δ ∗ utilization (3)

The slack of the current placement of the cores is calculated as in (4), where
the latency constraint of a connection, the number of hops for the connection
and the hop latency determine the slack of the connection. The slack of all
connections is used to determine the slack of the placement.

slack =
∑

connections, c

(latencyc − hopsc ∗ latencyh) (4)

Minimizing the slack on all connections does not ensure that tasks which are
not connected are maximally separated. To ensure non-communicating compo-
nents are spread out, we penalize their proximity. Overall cost is reduced by
minimizing the proximity term given by (5), in which the Manhattan distance
between non-communicating tasks is minimized.

proximity =
∑

unconnected task pairs (u,v)

−distanceu,v (5)

Placements that minimize the link utilization are preferred in order to provide
spare capacity for cores to be added to the communication graph over time. This
goal is captured by Eqn 6, in which the used bandwidth of shared network links is
minimized. The term comprises a factor that penalizes the number of connections
sharing each link and the sum of the bandwidths of the connections sharing the
link. Rather than apply Eqn 6 to the CTG embedding in the network, which
penalizes longer (dilated) shared paths more than shorter ones, we construct a
graph of the embedded CTG connections, thereby inserting pseudo-vertices into
the CTG where signal paths meet at shared routers. Eqn 6 is then applied to this
graph of the embedding with each shared connection being counted just once.

utilization =
∑

shared links, s

connectionss ∗ bandwidths (6)

A number of constraints also need to be observed:

bandwidth l − bandwidths ≥ 0, ∀sharedlinks, s (7)

latencyc − hopsc ∗ latencyh ≥ 0, ∀connections , c (8)

Eqn 7 requires that the total bandwidth allocated to a network link must
be no greater than the link bandwidth capacity. In particular, the CTG cannot
include any connections whose bandwidth requirement exceeds the maximum
link bandwidth. Eqn 8 ensures that no connection exceeds its latency constraint.

12 B. Hredzak, O. Diessel

4 Results

This section presents simulation results for two synthetic test cases. The simula-
tions were performed in Matlab. We first explain the parameter values we chose
for the objective function, and then explain the annealing schedule we followed
before presenting the problem instances and our results.

As described in the previous section, the balance of the compaction and dila-
tion terms can be adjusted by modifying the weight given to the multiplicative
constant α in (1). For simplicity, in the simulation results presented here, the
multiplicative constant α was changed in a discrete manner, i.e., initially α = 1,
which corresponded to compaction only. Once the compaction converged, α was
changed to α = 0, which corresponded to dilation only. In this way, the initial
allocation was first compacted and then dilated.

The advantage of modifying the objective function in a phased manner is
that we were able to achieve convergence of the simulated annealing (SA) algo-
rithm more effectively when the initial placements did not adhere to the given
constraints. Such illegal initial configurations may occur when legal starting po-
sitions are rare and are more likely to occur in large, dense communication task
graphs. By running the compaction stage first, the SA algorithm first obtains
a compacted solution in which the maximum link bandwidths are unlikely to
be exceeded. This intermediate solution also locates the communicating cores
as closely as possible, resulting in the maximum possible slack between commu-
nicating cores. When the dilation phase of the SA algorithm is started from a
compacted solution, the probability of starting the dilation phase with an ille-
gal solution is small and the convergence of the SA algorithm is significantly
improved.

Experimentation with a number of synthetic graphs indicated that β = 1,
γ = 0.2 and δ = 0.04 resulted in a good balance in the contributions to Eqn (3)
from the interconnection slack, the proximity of non-communicating cores and
the utilization of link capacity. Settings for α, β, γ and δ that result in good
performance on a range of benchmarks will be investigated through further study.

In our experiments, the SA was started with an initial (random) placement
of the cores and an initial temperature Tstart, set to 800 for the compaction
phase and to 30 for the dilation phase. Following standard SA practice, the cur-
rent placement was perturbed at the given temperature (as described in Section
III.B) and the change in configuration was accepted if the perturbation resulted
in a lower cost configuration, or with exponentially decreasing likelihood if it
yielded an increase in cost [21]. In both the compaction and dilation phases we
decreased the temperature by ∆T when at least 50 successive rejected pertur-
bations preceded a successful one. During the compaction phase, ∆T was set to
0.5, and during the dilation phase it was set to 0.02. In both cases, the algo-
rithm was terminated when Tmin = 0 was reached, or when 10,000 successive
perturbations were rejected.

Towards Dilated Placement of Dynamic NoC Cores 13

4.1 Case I

In Case I, listed in Table 3, we dilated 8 cores into a 9 x 9 mesh. Fig. 5 shows
the initial placement of the 8 cores. Fig. 6 shows the compacted solution and
Fig. 7 shows the dilated solution. The maximum allowed link bandwidth was set
to 10. The dilated placement has zero slack for all connections, the utilization
is minimized, and the Manhattan distances between non-communicating cores
were maximized. Comparing placements shown in Fig. 6 and Fig. 7, it can be
appreciated that new cores can be inserted more easily into the dilated place-
ment, For example, if a new core needs to be placed close to cores 2, 3, 6 and 7,
this can be more readily achieved for the dilated placement without disturbing
any existing connections or placements.

Table 3. Interconnection matrix for Case I. Connections listed as Required Band-
width/Connection Latency in hops ; cells representing null connections left blank.

Core t1 t2 t3 t4 t5 t6 t7 t8

t1 10/2 10/4

t2 10/2 10/2 10/4

t3 10/2 10/2 10/4

t4 10/2 10/4

t5 10/4 10/2

t6 10/4 10/2 10/2

t7 10/4 10/2 10/2

t8 10/4 10/2

At a given operating frequency, the dynamic NoC power consumption is
proportional to the utilized bandwidth and the number of network links and
routers involved in signalling. Taking the product of the bandwidth per link and
the number of links using that bandwidth, we observe the compacted placement
of Fig. 6 consumes 200 units of power while the dilated placement of Fig. 7
consumes 560 units. Such analysis ignores the actual contribution of each factor
and the power consumed by the cores. Unused cores and links will also consume
static power which hasn’t been factored in here.

4.2 Case II

In Case II, as listed in Table 4, we dilated 7 cores into an 8 x 8 mesh. Fig. 8
shows the initial (random) placement of the 7 cores. Fig. 9 shows the compacted
solution and Fig. 10 shows the dilated solution. The maximum allowed link
bandwidth was set to 50 in this case. The dilated placement resulted in a slack
of one for two connections (c3,5 and c4,7), the utilization was minimized, and the
Manhattan distances between non-communicating cores were maximized.

To investigate the reasons for the two connections with non-zero slack, we
increased β to 10. Nevertheless, we were unable to eliminate connections with

14 B. Hredzak, O. Diessel

Fig. 5. Initial (random) placement of the 8 cores into a 9 x 9 mesh.

Table 4. Interconnection matrix for Case II.

Core t1 t2 t3 t4 t5 t6 t7

t1 10/3 11/3 50/3

t2 5/3 26/3

t3 11/3

t4 31/3 23/3

t5

t6 13/3

t7 3/3 19/3

non-zero slack. This suggests that the slack for the two connections may not
necessarily represent an optimization error, but that no solution with zero slack
for all connections exists.

Applying the same power analysis as for Case I, the NoC used by the com-
pacted placement in this case consumes 236 units of power, whereas the network
involved in the dilated placement consumes 522 units in total.

5 Conclusions

Instead of mapping application task graphs to the smallest compact regions
possible, we propose dilating the mapping as much as the available latency on
critical network connections allows. In a dilated mapping, the free space compris-
ing unused configurable regions, associated network routers and links between
an application’s configured components could be used to provide additional flex-

Towards Dilated Placement of Dynamic NoC Cores 15

Fig. 6. Placement of 8 cores into a 9 x 9 mesh after compaction.

ibility when the configuration of active cores or their interconnection needs to
change.

In this paper we detailed our motivation for exploring the benefits of dilating
communication task graphs, derived a simulated annealing (SA) approach to
dilating the initial placement of such graphs, and presented preliminary results
of applying the algorithm to a pair of synthetic test cases. The method appears
to result in successful and meaningful graph dilation and could be further tuned
to satisfy desired power constraints since the bandwidth use per link is known
at annealing time.

Our future work will involve: (1) performing a systematic study of the SA
parameter selection on benchmarks from the literature and synthetic graphs; (2)
developing methods for dynamically modifying configurations and benchmarking
the methods against doing so without dilation, and (3) developing methods for
reducing the power consumption, when desired, by compacting a dilated network.

6 Acknowledgment

We wish to thank Lingkan Gong for his contributions to early discussions on the
simulated annealing approach developed in this paper and for his experimental
validation of the power assumptions used in our analysis.

References

1. El-Araby, E., Gonzalez, I., El-Ghazawi, T.: Exploiting partial runtime reconfig-
uration for high-performance reconfigurable computing. ACM Transactions on
Reconfigurable Technology and Systems 1 (2009) 23 pp.

2. ITRS: International Technology Roadmap for Semiconductors 2009 Edition —
Design. http://public.itrs.net/Links/2009ITRS/Home2009.htm (2009)

http://public.itrs.net/Links/2009ITRS/Home2009.htm

16 B. Hredzak, O. Diessel

Fig. 7. Placement of 8 cores into a 9 x 9 mesh after dilation.

3. Tadigotla, V., Commuri, S.: Dynamic image filter selection using partially recon-
figurable FPGAs for imaging operations. In: International Conference on Circuits,
Systems, Electronics, Control and Signal Processing. (2006) 60 – 65

4. Paulsson, K., Hübner, M., Becker, J.: On-line optimization of fpga power-
dissipation by exploiting run-time adaption of communication primitives. In: Sym-
posium on Integrated Circuits and Systems Design. (2006) 173 – 178

5. Tessier, R., Swaminathan, S., Ramaswamy, R., Goekel, D., Burleson, W.: A recon-
figurable, power-efficient adaptive Viterbi decoder. IEEE Transactions on VLSI
Systems 13 (2005) 484 – 488

6. Smit, G., Havinga, P., Smit, L., Heysters, P., Rosien, M.: Dynamic reconfiguration
in mobile systems. In: International Conference on Field-Programmable Logic and
Applications (FPL). (2002) 171 – 181

7. Zipf, P.: Applying dynamic reconfiguration for fault tolerance in fine-grained logic
arrays. IEEE Transactions on VLSI Systems 16 (2008) 134 – 143

8. Burns, J., Donlin, A., Hogg, J., Singh, S., de Wit, M.: A dynamic reconfigura-
tion run-time system. In: IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM’97). (1997) 66 – 75

9. Diessel, O., ElGindy, H., Middendorf, M., Schmeck, H., Schmidt, B.: Dynamic
scheduling of tasks on partially reconfigurable FPGAs. IEE Proceedings — Com-
puters and Digital Techniques 147 (2000) 181 – 188

10. Simmler, H., Levinson, L., R. Männer, R.: Multitasking on FPGA coprocessors.
In: International Workshop on Field-Programmable Logic and Applications (FPL).
(2000) 121 – 130

11. Diessel, O., Wigley, G.: Opportunities for operating systems research in recon-
figurable computing. Technical report ACRC–99–018, Advanced Computing Re-
search Centre, School of Computer and Information Science, University of South
Australia, Mawson Lakes, SA (1999)

12. DeMicheli, G., Benini, L.: Networks on Chips: Technology and Tools. Morgan
Kaufmann (2006)

13. Jantsch, A., Tenhunen, H.: Networks-on-Chip. Kluwer (2003)

Towards Dilated Placement of Dynamic NoC Cores 17

Fig. 8. Initial (random) placement of the 7 cores into a 8 x 8 mesh.

14. Dally, W., Towles, B.: Route packets, not wires: On-chip interconnection networks.
In: Design Automation Conference (DAC). (2001) 684 – 689

15. Taylor, M.B., Lee, W., Miller, J., Wentzlaff, D., Bratt, I., Greenwald, B., Hoffmann,
H., Johnson, P., Kim, J., Psota, J., Saraf, A., Shnidman, N., Strumpen, V., Frank,
M., Amarasinghe, S., Agarwal, A.: Evaluation of the Raw microprocessor: An
exposed-wire-delay architecture for ILP and streams. In: International Symposium
on Computer Architecture (ISCA). (2004) 2 – 13

16. Bobda, C., Majer, M., Koch, D., Ahmadinia, A., Teich, J.: A dynamic NoC ap-
proach for communication in reconfigurable devices. In: International Conference
on Field Programmable Logic and Applications (FPL). (2004) 1032 – 1036

17. Pionteck, T., Koch, R., Albrecht, C.: Applying partial reconfiguration to Networks-
on-chips. In: International Conference on Field Programmable Logic and Applica-
tions (FPL). (2006) 155 – 160

18. Stensgaard, M., Spars, J.: ReNoC: A Network-on-chip architecture with recon-
figurable topology. In: International Symposium on Networks-on-Chip (NOCS).
(2008) 55 – 64

19. Marculescu, R., Ogras, U., Peh, L.S., Jerger, N., Hoskote, Y.: Outstanding research
problems in NoC design: system, microarchitecture, and circuit perspectives. Trans.
Comp.-Aided Des. Integ. Cir. Sys. 28 (2009) 3 – 21

20. Ni, L., McKinley, P.: A survey of wormhole routing techniques in direct networks.
Computer 26 (1993) 62 – 76

21. Kirkpatrick, S., Gelatt, C. D., J., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220 (1983) 671 – 680

18 B. Hredzak, O. Diessel

Fig. 9. Placement of 7 cores into a 8 x 8 mesh after compaction.

Fig. 10. Placement of 7 cores into a 8 x 8 mesh after dilation.

	Towards Dilated Placement of Dynamic NoC Cores
	Branislav Hredzak, Oliver Diessel

