
Advances and Trends in Dynamic Partial
Run-time Reconfiguration?

Dirk Koch, Jim Tørresen
Department of Informatics
University of Oslo, Norway

1 Benefits of Runtime Reconfiguration

Partial runtime reconfiguration allows to fit circuits on an FPGA that
would exceed the device capacity in a static only implementation. This
implementation technique is only applicable if the system contains mod-
ules with mutual exclusive functionality or if the utilization of some mod-
ules allow time-multiplexing of the same FPGA resources. For example,
as illustrated in Figure 1, in an FPGA-based network package inspection
hardware, the same device resources (a reserved reconfigurable area on
the FPGA) can be used for hosting different accelerator modules. Then,
during runtime, this system can adapt to the current protocol load of
the network traffic. As the total load is limited by the network itself, the
variation among different protocols will lead to different demands among
the corresponding accelerators. As one example, the different demands
could been served by instantiating more or less accelerator instances.

Fig. 1. Example of a reconfigurable network processor. Depending on the present pro-
tocol load, the system can instantiate different accelerator modules with the help of
partial runtime reconfiguration.

? This work is supported in part by the Norwegian Research Council under grant
191156V30. It summarizes results of the Dagstuhl Seminar 10281 Dynamically Re-
configurable Architectures.

Dagstuhl Seminar Proceedings 10281
Dynamically Reconfigurable Architectures
http://drops.dagstuhl.de/opus/volltexte/2010/2841

1

Partial runtime reconfiguration can also be used to accelerate a sys-
tem. By providing more area for a particular task and sharing the same
area with the help of runtime reconfiguration, the execution time for each
task can be reduced, as shown in Figure 2. Assuming that a task can start
after the completion of its successor, the total execution time (latency)
can be reduced time for all tasks. For example, in a system providing
hardware acceleration for a secured SSL network data transfer, runtime
reconfiguration can be used to switch between an accelerator module the
asymmetric key exchange and a symmetric cipher module which is used
for the entire data encryption.

Fig. 2. Accelerating a system by partial runtime reconfiguration. By exploiting more
parallelism (i.e. utilizing more resources), each module completes its execution faster.
This can result in a smaller combined latency, even if we considering some configuration
overhead.

It can be summarized that partial runtime reconfiguration can help
to use smaller devices which helps to save monetary cost, power con-
sumption, and space in a system. Furthermore, it can in some systems
be used to reduce latency or throughput. However, despite this promising
benefits, partial runtime reconfiguration is still exotic and is not popular
in industrial systems. It has been shown its capabilities in, for example,
software defined radio applications [1, 2]. Runtime reconfiguration is not
widely applied, because not all systems are suitable for profitably apply-
ing this technique (e.g. if all modules are active at any time) and because
a weak tool support for implementing corresponding systems. Further-
more, not all FPGA-vendors support partial runtime reconfiguration in
their devices. As revealed in the following section, the latter issues will
be solved by fulfilling customer demands regarding system reliability and
safety as well as for fast system boot.

2

2 Support for Dynamic Partial Runtime Reconfiguration
is Becoming Mainstream

The progress in silicon industry has resulted in a tremendous increase
in device capacity of FPGAs. As illustrated in Figure 3, the smallest
devices of the upcoming Altera Stratix 5 FPGAs as well as the announced
Xilinx Virtex-7 FPGAs provide more than double the amount of logic and
embedded memory as the flagship devices of the one decade old Stratix
or Virtex-II series FPGAs. By passing the one million LUTs border, high
density FPGAs are sufficient to host 250 softcore CPUs plus the required
peripherals.

Fig. 3. One decade of FPGA evolution. The figure denotes the increase in logic density
over time and over the corresponding process technology.

As the functionality of the here regarded FPGAs is defined by SRAM
cells, the corresponding configuration data has also rose towards tens of
megabytes (see Figure 4). Note that the highest capacity FPGAs typically
provide more SRAM cells of what can be found in the largest SRAM
memories released at the same time.

This progress in device density results in two drivers for introducing
dynamic partial runtime reconfiguration in all future high-density devices:
1) increasing vulnerability to SEUs and 2) an increase in the configuration
time.

3

Fig. 4. One decade of FPGA evolution. The figure lists the increase in configuration
memory size (total bitstream). By comparison, the largest currently available SRAM
device provides 18 MB (Cypress 2009).

2.1 Increasing Vulnerability to SEUs

By dramatically increasing the total amount of configuration bits as well
as by shrinking the configuration memory cells at the same time, FPGAs
have become more vulnerable to single event upsets (SEU). As compared
to ASICs, a single event upset may not only result in an error in the
datapath but much more likely in a malfunction of the circuit. This results
from possible SEUs in the configuration SRAM cells that describe the
present circuit that has been loaded to the FPGA [3]. Not every SEU
results necessary in a malfunction as, for example, not all resources of an
FPGA (e.g., logic or routing resources) are used in a particular circuit.
However, if SEUs are not corrected, multiple event upsets might occur
and therefore dramatically increase the risk of a circuit failure [4].

For dealing with SEUs, different application and safety scenarios have
to be considered [5]. If faults can be temporarily accepted (can be seen as
noise), it is sufficient to permanently overwrite the existing configuration
(or parts of it) while keeping the device in active operation mode. This
process is called configuration scrubbing. Note that configuration scrub-
bing can be combined with other fault tolerant techniques, such as triple
modular redundancy (TMR) [6, 7].

In other applications, the present configuration has to be validated
(e.g., by reading back the configuration data) before committing the re-
sult, like for instance, in banking applications.

4

Fig. 5. One decade of FPGA evolution. The figure lists the configuration time of a full
bitstream when considering the fastest possible configuration speed.

We can summarize that partial runtime reconfiguration is required for
implementing safety critical systems.

2.2 Configuration Bootstrapping

As the configuration bitstream size has enormously increased (see Fig-
ure 4), FPGAs vendors have started to introduce faster configuration
interfaces in order to avoid an exponential rise in configuration time (see
Figure 5). This was mainly achieved by widening the configuration ports
(e.g. from 8-bit in Virtex-II to 32-bit in Virtex-4 FPGAs).

However, the initial configuration is typically still provided by a rela-
tively slow flash memory device [8]. This is critical for many applications
that demand fast availability after power-up, like for example, a PCIe in-
terfaces implemented on a FPGA. This issue can be solved with the help
of bootstrapping where in an initial configuration step only the modules
requiring fast availability will be loaded to the device while finishing the
configuration in a further step. An example of this procedure is illustrated
in Figure 6 for bootstrapping a system with an PCIe interface core and
is inspired by application notes from Altera and Xilinx [9, 10]. Bootstrap-
ping is based on partial reconfiguration for incrementally loading sections
of the configuration bitstream at system start. Bootstrapping has also
been demonstrated in a few academic systems (e.g., [11, 12]).

Reconfiguration is a general technique that can be used to speed-up
the start of a system in manifold ways. For instance, in [13], readback

5

Fig. 6. Configuration bootstrapping example for PCIe solutions. a) After power-up,
mainly the PCIe core is configured while leaving the rest of the device empty in order
to fulfill fast PCIe core activation. b) Finally, the remaining system is loaded in a
second non time-critical phase to the device.

and partial reconfiguration have been used to rapidly initialize a system
with its initial state which has been captured once after normal system
start. In [8], it is suggested to replace a HW-decompression module with
user logic after it has decompressed the firmware of a system faster than
a software only solution would perform this task.

We can summarize that partial runtime reconfiguration allows to im-
plement faster start-up times. Together with the increasing vulnerability
to SEUs, this forces FPGA vendors to include partial runtime capability
in all their future devices. This can be identified be the vendor Altera
Inc. that recently announced to provide full support for dynamic partial
run-time reconfiguration in their Stratix-V series [14].

3 Context-Switching on FPGAs

With the widely introduction of partial run-time reconfiguration in all
future high-density FPGAs, the technical basis for implementing context
switching on FPGAs will be provided. In context switching FPGA-based
systems, parts of the FPGA fabric will be shared by multiple modules
over time. This is similar to multi-context task execution in software sys-
tems. However, in the hardware case, we have to distinguish between 1)
the context of the FPGA (device level) and 2) the context represented
inside the memories of the modules (module level). As depicted in Fig-
ure 7, the device level is given by the present module layout that can vary
when (partially) reconfiguring the FPGA. Respectively, the module level
is represented by the flip-flop values or the content of RAM blocks within
the entire modules located on the device.

6

Fig. 7. Context-switching on FPGAs. The context of an FPGA is twofold: on a) the
device level, it is represented by the present FPGA configuration and on b) the module
level, by the internal state of the modules.

3.1 COSRECOS: Making Context-Switching Available

Despite the technical basis and more than two decades of intensive re-
search on exploiting partial run-time reconfiguration, there still exist a
wide gap between the possibilities and what is currently available to im-
plement reconfigurable systems. This can be seen by the little acceptance
in industry for this topic.

With the new COSRECOS project (Context Switching Reconfigurable
Hardware for Communication Systems) [15] we try to bridge this gap. By
developing novel methodologies and advanced tools, we want to make the
implementation of reconfigurable systems and their operation as simple
as it is known from the software world. Consequently, we are investi-
gating 1) design-time aspects, including models, analysis, debugging, and
tools as well as 2) run-time aspects where we focus on high-speed recon-
figuration, temporal module placement and interprocess communication.
Moreover, we will 3) demonstrate our approaches on applications from
the networking and general purpose domain.

In particular, we will enhance the capabilities of the tool ReCoBus-
Builder (www.recobus.de) which already allows to implement reconfig-
urable systems with enhanced capabillities, including module placement
in a very fine-grained two-dimensional resource grid, multi module instan-
tiation, and module relocation. Note that these features are not available
in the tools for implementing reconfigurable systems that are provided by
the FPGA market leader Xilinx. Future versions of the tool will support
latest FPGA devices and provide improvements in the implementation of

7

an on-FPGA communication architecture that integrates reconfigurable
modules. This will include tool handling (e.g., a comfortable GUI as well
as a scripting interface), support for RTL simulation of the reconfigura-
tion process, and efficiency in terms of latency and implementation cost.

For speeding up the reconfiguration process in the runtime system,
we will evaluate the technical limits on existing FPGA platforms (e.g.,
by overclocking a configuration port) and by using advanced bitstream
decompression techniques. For determining module placement and mod-
ule scheduling, we are currently evaluating constraint programming which
will be enhanced for heuristics required by the runtime system in the case,
the temporal module placement cannot be predetermined.

As an application example, we are currently implementing accelerator
modules for databases (e.g., sorting modules) which will be instantiated
and combined dynamically with the help of partial runtime reconfigura-
tion with respect to the present database operation (i.e., an SQL query).

The addressed topics are not only important for the implementation of
reconfigurable systems, but also for a fully component based design flow
where fully physically implemented modules can be directly integrated
into a system. Our communication architecture will then be in charge to
carry out the final top level routing among the pre-implemented compo-
nents and our Framework will provide a placer for automatically comput-
ing module placement positions (by modeling the placement problem as
a constraint program).

With this project we want to contribute to the research community
with a strong emphasis on active collaborations as well as to enhance
acceptance in industry for using dynamic partial run-time reconfiguration.

References

1. Kao, C.: Benefits of partial reconfiguration (2005) Xilinx Xcell Journal, vol. 2005,
no. 55.

2. Kumar, R., Joshi, R., Raju, K.: A fpga partial reconfiguration design approach
for rasip sdr. In: Annual IEEE India Conference (INDICON). (2009)

3. Caffrey, M., Graham, P., Johnson, E., Wirthlin, M.: Single-event upsets in SRAM
FPGAs. In: Proceedings of the 5th Annual International Conference on Military
and Aerospace Programmable Logic Devices (MAPLD). (2002)

4. Gebelein, J., Engel, H., Kebschull, U.: An approach to system-wide fault toler-
ance for FPGAs. In: Proceedings of the International Conference on Field Pro-
grammable Logic and Applications (FPL 2009). (2009) 467–471 ISBN: 978-1-4244-
3892-1, DOI: 10.1109/FPL.2009.5272477.

5. Alderighi, M., Casini, F., D’Angelo, S., Pastore, S., Sechi, G.R., Weigand, R.:
Evaluation of Single Event Upset Mitigation Schemes for SRAM based FPGAs
using the FLIPPER Fault Injection Platform. In: DFT ’07: Proceedings of the 22nd

8

IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems,
Washington, DC, USA, IEEE Computer Society (2007) 105–113

6. Heiner, J., Sellers, B., Wirthlin, M.J., Kalb, J.: FPGA Partial Reconfiguration via
Configuration Scrubbing. In: Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL 2009). (2009) 99–104

7. Lima, F., Carro, L., Reis, R.: Designing fault tolerant systems into SRAM-based
FPGAs. In: Proceedings of the 40th annual Design Automation Conference (DAC
03), New York, NY, USA, ACM (2003) 650–655

8. Koch, D., Beckhoff, C., Teich, J.: Hardware Decompression Techniques for FPGA-
Based Embedded Systems. ACM Transactions on Reconfigurable Technology and
Systems (TRETS) 2 (2009) 1–23

9. Altera Inc.: Introducing Innovations at 28 nm to
Move Beyond Moore’s Law (2010) available online:
www.altera.com/literature/wp/wp-01125-stxv-28nm-innovation.pdf .

10. Xilinx Inc.: Partial Reconfiguration User Guide (UG702, v 12.2) (2010)
http://china.xilinx.com/support/documentation/sw manuals/xilinx12 2/-

ug702.pdf.
11. Fong, R.J., Harper, S.J., Athanas, P.M.: A Versatile Framework for FPGA Field

Updates: An Application of Partial Self-Reconfiguation. In: Proceedings of the 14th
IEEE International Workshop on Rapid System Prototyping (RSP’03), Washing-
ton, DC, USA, IEEE Computer Society (2003) 117–123

12. Hübner, M., Meyer, J., Sander, O., Braun, L., Becker, J., Noguera, J., Stewart,
R.: Fast Sequential FPGA Startup Based on Partial and Dynamic Reconfigura-
tion. In: Proceedings of the 2010 IEEE Annual Symposium on VLSI. ISVLSI ’10,
Washington, DC, USA, IEEE Computer Society (2010) 190–194

13. Schiefer, A., Kebschull, U.: Optimization of Start-up Time and Quiescent Power
Consumption of FPGAs. In: International Conference on Field Programmable
Logic and Applications (FPL 2005), IEEE Computer Society (2005) 551–554

14. Altera Inc.: Altera Unveils Innovations for 28-nm FPGAs (2010) available online:
http://www.altera.com/corporate/news room/releases/2010/products-

/nr-innovating-at-28-nm.html .
15. University of Oslo: The COSRECOS project website (2010)

http://www.matnat.uio.no/forskning/prosjekter/crc/.

9

